naiveproxy/src/base/threading/hang_watcher.h

690 lines
27 KiB
C
Raw Normal View History

2024-02-16 21:00:50 +03:00
// Copyright 2020 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_THREADING_HANG_WATCHER_H_
#define BASE_THREADING_HANG_WATCHER_H_
#include <atomic>
#include <cstdint>
#include <memory>
#include <type_traits>
#include <vector>
#include "base/atomicops.h"
#include "base/auto_reset.h"
#include "base/base_export.h"
#include "base/bits.h"
#include "base/compiler_specific.h"
#include "base/dcheck_is_on.h"
#include "base/debug/crash_logging.h"
#include "base/functional/callback.h"
#include "base/functional/callback_forward.h"
#include "base/functional/callback_helpers.h"
#include "base/gtest_prod_util.h"
#include "base/memory/memory_pressure_listener.h"
#include "base/memory/raw_ptr.h"
#include "base/synchronization/lock.h"
#include "base/synchronization/waitable_event.h"
#include "base/template_util.h"
#include "base/thread_annotations.h"
#include "base/threading/platform_thread.h"
#include "base/threading/simple_thread.h"
#include "base/threading/thread_checker.h"
#include "base/time/tick_clock.h"
#include "base/time/time.h"
#include "build/build_config.h"
namespace base {
class WatchHangsInScope;
namespace internal {
class HangWatchState;
} // namespace internal
} // namespace base
namespace base {
// Instantiate a WatchHangsInScope in a code scope to register to be
// watched for hangs of more than |timeout| by the HangWatcher.
//
// Example usage:
//
// void FooBar(){
// WatchHangsInScope scope(base::Seconds(5));
// DoWork();
// }
//
// If DoWork() takes more than 5s to run and the HangWatcher
// inspects the thread state before Foobar returns a hang will be
// reported.
//
// WatchHangsInScopes are typically meant to live on the stack. In some
// cases it's necessary to keep a WatchHangsInScope instance as a class
// member but special care is required when doing so as a WatchHangsInScope
// that stays alive longer than intended will generate non-actionable hang
// reports.
class BASE_EXPORT [[maybe_unused, nodiscard]] WatchHangsInScope {
public:
// A good default value needs to be large enough to represent a significant
// hang and avoid noise while being small enough to not exclude too many
// hangs. The nature of the work that gets executed on the thread is also
// important. We can be much stricter when monitoring a UI thread compared to
// a ThreadPool thread for example.
static constexpr base::TimeDelta kDefaultHangWatchTime = base::Seconds(10);
// Constructing/destructing thread must be the same thread.
explicit WatchHangsInScope(TimeDelta timeout = kDefaultHangWatchTime);
~WatchHangsInScope();
WatchHangsInScope(const WatchHangsInScope&) = delete;
WatchHangsInScope& operator=(const WatchHangsInScope&) = delete;
private:
// Will be true if the object actually set a deadline and false if not.
bool took_effect_ = true;
// This object should always be constructed and destructed on the same thread.
THREAD_CHECKER(thread_checker_);
// The deadline set by the previous WatchHangsInScope created on this
// thread. Stored so it can be restored when this WatchHangsInScope is
// destroyed.
TimeTicks previous_deadline_;
// Indicates whether the kIgnoreCurrentWatchHangsInScope flag must be set upon
// exiting this WatchHangsInScope if a call to InvalidateActiveExpectations()
// previously suspended hang watching.
bool set_hangs_ignored_on_exit_ = false;
#if DCHECK_IS_ON()
// The previous WatchHangsInScope created on this thread.
raw_ptr<WatchHangsInScope> previous_watch_hangs_in_scope_;
#endif
};
// Monitors registered threads for hangs by inspecting their associated
// HangWatchStates for deadline overruns. This happens at a regular interval on
// a separate thread. Only one instance of HangWatcher can exist at a time
// within a single process. This instance must outlive all monitored threads.
class BASE_EXPORT HangWatcher : public DelegateSimpleThread::Delegate {
public:
// Describes the type of a process for logging purposes.
enum class ProcessType {
kUnknownProcess = 0,
kBrowserProcess = 1,
kGPUProcess = 2,
kRendererProcess = 3,
kUtilityProcess = 4,
kMax = kUtilityProcess
};
// Describes the type of a thread for logging purposes.
enum class ThreadType {
kIOThread = 0,
kMainThread = 1,
kThreadPoolThread = 2,
kMax = kThreadPoolThread
};
// Notes on lifetime:
// 1) The first invocation of the constructor will set the global instance
// accessible through GetInstance().
// 2) In production HangWatcher is always purposefuly leaked.
// 3) If not leaked HangWatcher is always constructed and destructed from
// the same thread.
// 4) There can never be more than one instance of HangWatcher at a time.
// The class is not base::Singleton derived because it needs to destroyed
// in tests.
HangWatcher();
// Clears the global instance for the class.
~HangWatcher() override;
HangWatcher(const HangWatcher&) = delete;
HangWatcher& operator=(const HangWatcher&) = delete;
static void CreateHangWatcherInstance();
// Returns a non-owning pointer to the global HangWatcher instance.
static HangWatcher* GetInstance();
// Initializes HangWatcher. Must be called once on the main thread during
// startup while single-threaded.
static void InitializeOnMainThread(ProcessType process_type,
bool is_zygote_child);
// Returns the values that were set through InitializeOnMainThread() to their
// default value. Used for testing since in prod initialization should happen
// only once.
static void UnitializeOnMainThreadForTesting();
// Thread safe functions to verify if hang watching is activated. If called
// before InitializeOnMainThread returns the default value which is false.
static bool IsEnabled();
static bool IsThreadPoolHangWatchingEnabled();
static bool IsIOThreadHangWatchingEnabled();
// Returns true if crash dump reporting is configured for any thread type.
static bool IsCrashReportingEnabled();
// Use to avoid capturing hangs for operations known to take unbounded time
// like waiting for user input. WatchHangsInScope objects created after this
// call will take effect. To resume watching for hangs create a new
// WatchHangsInScope after the unbounded operation finishes.
//
// Example usage:
// {
// WatchHangsInScope scope_1;
// {
// WatchHangsInScope scope_2;
// InvalidateActiveExpectations();
// WaitForUserInput();
// }
//
// WatchHangsInScope scope_4;
// }
//
// WatchHangsInScope scope_5;
//
// In this example hang watching is disabled for WatchHangsInScopes 1 and 2
// since they were both active at the time of the invalidation.
// WatchHangsInScopes 4 and 5 are unaffected since they were created after the
// end of the WatchHangsInScope that was current at the time of invalidation.
//
static void InvalidateActiveExpectations();
// Sets up the calling thread to be monitored for threads. Returns a
// ScopedClosureRunner that unregisters the thread. This closure has to be
// called from the registered thread before it's joined. Returns a null
// closure in the case where there is no HangWatcher instance to register the
// thread with.
[[nodiscard]] static ScopedClosureRunner RegisterThread(
ThreadType thread_type);
// Choose a closure to be run at the end of each call to Monitor(). Use only
// for testing. Reentering the HangWatcher in the closure must be done with
// care. It should only be done through certain testing functions because
// deadlocks are possible.
void SetAfterMonitorClosureForTesting(base::RepeatingClosure closure);
// Choose a closure to be run instead of recording the hang. Used to test
// that certain conditions hold true at the time of recording. Use only
// for testing. Reentering the HangWatcher in the closure must be done with
// care. It should only be done through certain testing functions because
// deadlocks are possible.
void SetOnHangClosureForTesting(base::RepeatingClosure closure);
// Set a monitoring period other than the default. Use only for
// testing.
void SetMonitoringPeriodForTesting(base::TimeDelta period);
// Choose a callback to invoke right after waiting to monitor in Wait(). Use
// only for testing.
void SetAfterWaitCallbackForTesting(
RepeatingCallback<void(TimeTicks)> callback);
// Force the monitoring loop to resume and evaluate whether to continue.
// This can trigger a call to Monitor() or not depending on why the
// HangWatcher thread is sleeping. Use only for testing.
void SignalMonitorEventForTesting();
// Call to make sure no more monitoring takes place. The
// function is thread-safe and can be called at anytime but won't stop
// monitoring that is currently taking place. Use only for testing.
static void StopMonitoringForTesting();
// Replace the clock used when calculating time spent
// sleeping. Use only for testing.
void SetTickClockForTesting(const base::TickClock* tick_clock);
// Use to block until the hang is recorded. Allows the caller to halt
// execution so it does not overshoot the hang watch target and result in a
// non-actionable stack trace in the crash recorded.
void BlockIfCaptureInProgress();
// Begin executing the monitoring loop on the HangWatcher thread.
void Start();
// Returns true if Start() has been called and Stop() has not been called
// since.
bool IsStarted() const { return thread_started_; }
// Returns the value of the crash key with the time since last system power
// resume.
std::string GetTimeSinceLastSystemPowerResumeCrashKeyValue() const;
private:
// See comment of ::RegisterThread() for details.
[[nodiscard]] ScopedClosureRunner RegisterThreadInternal(
ThreadType thread_type) LOCKS_EXCLUDED(watch_state_lock_);
// Use to assert that functions are called on the monitoring thread.
THREAD_CHECKER(hang_watcher_thread_checker_);
// Use to assert that functions are called on the constructing thread.
THREAD_CHECKER(constructing_thread_checker_);
// Invoked on memory pressure signal.
void OnMemoryPressure(
base::MemoryPressureListener::MemoryPressureLevel memory_pressure_level);
#if !BUILDFLAG(IS_NACL)
// Returns a ScopedCrashKeyString that sets the crash key with the time since
// last critical memory pressure signal.
[[nodiscard]] debug::ScopedCrashKeyString
GetTimeSinceLastCriticalMemoryPressureCrashKey();
#endif
// Invoke base::debug::DumpWithoutCrashing() insuring that the stack frame
// right under it in the trace belongs to HangWatcher for easier attribution.
NOINLINE static void RecordHang();
using HangWatchStates =
std::vector<std::unique_ptr<internal::HangWatchState>>;
// Used to save a snapshots of the state of hang watching during capture.
// Only the state of hung threads is retained.
class BASE_EXPORT WatchStateSnapShot {
public:
struct WatchStateCopy {
base::TimeTicks deadline;
base::PlatformThreadId thread_id;
};
WatchStateSnapShot();
WatchStateSnapShot(const WatchStateSnapShot& other);
~WatchStateSnapShot();
// Initialize the snapshot from provided data. |snapshot_time| can be
// different than now() to be coherent with other operations recently done
// on |watch_states|. |hung_watch_state_copies_| can be empty after
// initialization for a number of reasons:
// 1. If any deadline in |watch_states| is before
// |deadline_ignore_threshold|.
// 2. If some of the hung threads could not be marked as blocking on
// capture.
// 3. If none of the hung threads are of a type configured to trigger a
// crash dump.
//
// This function cannot be called more than once without an associated call
// to Clear().
void Init(const HangWatchStates& watch_states,
base::TimeTicks deadline_ignore_threshold);
// Reset the snapshot object to be reused. Can only be called after Init().
void Clear();
// Returns a string that contains the ids of the hung threads separated by a
// '|'. The size of the string is capped at debug::CrashKeySize::Size256. If
// no threads are hung returns an empty string. Can only be invoked if
// IsActionable(). Can only be called after Init().
std::string PrepareHungThreadListCrashKey() const;
// Return the highest deadline included in this snapshot. Can only be called
// if IsActionable(). Can only be called after Init().
base::TimeTicks GetHighestDeadline() const;
// Returns true if the snapshot can be used to record an actionable hang
// report and false if not. Can only be called after Init().
bool IsActionable() const;
private:
bool initialized_ = false;
std::vector<WatchStateCopy> hung_watch_state_copies_;
};
// Return a watch state snapshot taken Now() to be inspected in tests.
// NO_THREAD_SAFETY_ANALYSIS is needed because the analyzer can't figure out
// that calls to this function done from |on_hang_closure_| are properly
// locked.
WatchStateSnapShot GrabWatchStateSnapshotForTesting() const
NO_THREAD_SAFETY_ANALYSIS;
// Inspects the state of all registered threads to check if they are hung and
// invokes the appropriate closure if so.
void Monitor() LOCKS_EXCLUDED(watch_state_lock_);
// Record the hang crash dump and perform the necessary housekeeping before
// and after.
void DoDumpWithoutCrashing(const WatchStateSnapShot& watch_state_snapshot)
EXCLUSIVE_LOCKS_REQUIRED(watch_state_lock_) LOCKS_EXCLUDED(capture_lock_);
// Stop all monitoring and join the HangWatcher thread.
void Stop();
// Wait until it's time to monitor.
void Wait();
// Run the loop that periodically monitors the registered thread at a
// set time interval.
void Run() override;
base::TimeDelta monitor_period_;
// Use to make the HangWatcher thread wake or sleep to schedule the
// appropriate monitoring frequency.
WaitableEvent should_monitor_;
bool IsWatchListEmpty() LOCKS_EXCLUDED(watch_state_lock_);
// Stops hang watching on the calling thread by removing the entry from the
// watch list.
void UnregisterThread() LOCKS_EXCLUDED(watch_state_lock_);
Lock watch_state_lock_;
std::vector<std::unique_ptr<internal::HangWatchState>> watch_states_
GUARDED_BY(watch_state_lock_);
// Snapshot to be reused across hang captures. The point of keeping it
// around is reducing allocations during capture.
WatchStateSnapShot watch_state_snapshot_
GUARDED_BY_CONTEXT(hang_watcher_thread_checker_);
base::DelegateSimpleThread thread_;
bool thread_started_ = false;
RepeatingClosure after_monitor_closure_for_testing_;
RepeatingClosure on_hang_closure_for_testing_;
RepeatingCallback<void(TimeTicks)> after_wait_callback_;
base::Lock capture_lock_ ACQUIRED_AFTER(watch_state_lock_);
std::atomic<bool> capture_in_progress_{false};
raw_ptr<const base::TickClock> tick_clock_;
// Registration to receive memory pressure signals.
base::MemoryPressureListener memory_pressure_listener_;
// The last time at which a critical memory pressure signal was received, or
// null if no signal was ever received. Atomic because it's set and read from
// different threads.
std::atomic<base::TimeTicks> last_critical_memory_pressure_{
base::TimeTicks()};
// The time after which all deadlines in |watch_states_| need to be for a hang
// to be reported.
base::TimeTicks deadline_ignore_threshold_;
FRIEND_TEST_ALL_PREFIXES(HangWatcherTest, NestedScopes);
FRIEND_TEST_ALL_PREFIXES(HangWatcherSnapshotTest, HungThreadIDs);
FRIEND_TEST_ALL_PREFIXES(HangWatcherSnapshotTest, NonActionableReport);
};
// Classes here are exposed in the header only for testing. They are not
// intended to be used outside of base.
namespace internal {
// Threadsafe class that manages a deadline of type TimeTicks alongside hang
// watching specific flags. The flags are stored in the higher bits of the
// underlying TimeTicks deadline. This enables setting the flags on thread T1 in
// a way that's resilient to concurrent deadline or flag changes from thread T2.
// Flags can be queried separately from the deadline and users of this class
// should not have to care about them when doing so.
class BASE_EXPORT HangWatchDeadline {
public:
// Masks to set flags by flipping a single bit in the TimeTicks value. There
// are two types of flags. Persistent flags remain set through a deadline
// change and non-persistent flags are cleared when the deadline changes.
enum class Flag : uint64_t {
// Minimum value for validation purposes. Not currently used.
kMinValue = bits::LeftmostBit<uint64_t>() >> 7,
// Persistent because if hang detection is disabled on a thread it should
// be re-enabled manually.
kIgnoreCurrentWatchHangsInScope = bits::LeftmostBit<uint64_t>() >> 1,
// Non-persistent because a new value means a new WatchHangsInScope started
// after the beginning of capture. It can't be implicated in the hang so we
// don't want it to block.
kShouldBlockOnHang = bits::LeftmostBit<uint64_t>() >> 0,
kMaxValue = kShouldBlockOnHang
};
HangWatchDeadline();
~HangWatchDeadline();
// HangWatchDeadline should never be copied. To keep a copy of the deadline or
// flags use the appropriate accessors.
HangWatchDeadline(const HangWatchDeadline&) = delete;
HangWatchDeadline& operator=(const HangWatchDeadline&) = delete;
// Returns the underlying TimeTicks deadline. WARNING: The deadline and flags
// can change concurrently. To inspect both, use GetFlagsAndDeadline() to get
// a coherent race-free view of the state.
TimeTicks GetDeadline() const;
// Returns a mask containing the flags and the deadline as a pair. Use to
// inspect the flags and deadline and then optionally call
// SetShouldBlockOnHang() .
std::pair<uint64_t, TimeTicks> GetFlagsAndDeadline() const;
// Returns true if the flag is set and false if not. WARNING: The deadline and
// flags can change concurrently. To inspect both, use GetFlagsAndDeadline()
// to get a coherent race-free view of the state.
bool IsFlagSet(Flag flag) const;
// Returns true if a flag is set in |flags| and false if not. Use to inspect
// the flags mask returned by GetFlagsAndDeadline(). WARNING: The deadline and
// flags can change concurrently. If you need to inspect both you need to use
// GetFlagsAndDeadline() to get a coherent race-free view of the state.
static bool IsFlagSet(Flag flag, uint64_t flags);
// Replace the deadline value. |new_value| needs to be within [0,
// Max()]. This function can never fail.
void SetDeadline(TimeTicks new_value);
// Sets the kShouldBlockOnHang flag and returns true if current flags and
// deadline are still equal to |old_flags| and |old_deadline|. Otherwise does
// not set the flag and returns false.
bool SetShouldBlockOnHang(uint64_t old_flags, TimeTicks old_deadline);
// Sets the kIgnoreCurrentWatchHangsInScope flag.
void SetIgnoreCurrentWatchHangsInScope();
// Clears the kIgnoreCurrentWatchHangsInScope flag.
void UnsetIgnoreCurrentWatchHangsInScope();
// Use to simulate the value of |bits_| changing between the calling a
// Set* function and the moment of atomically switching the values. The
// callback should return a value containing the desired flags and deadline
// bits. The flags that are already set will be preserved upon applying. Use
// only for testing.
void SetSwitchBitsClosureForTesting(
RepeatingCallback<uint64_t(void)> closure);
// Remove the deadline modification callback for when testing is done. Use
// only for testing.
void ResetSwitchBitsClosureForTesting();
private:
using TimeTicksInternalRepresentation =
std::invoke_result<decltype(&TimeTicks::ToInternalValue),
TimeTicks>::type;
static_assert(std::is_same_v<TimeTicksInternalRepresentation, int64_t>,
"Bit manipulations made by HangWatchDeadline need to be"
"adapted if internal representation of TimeTicks changes.");
// Replace the bits with the ones provided through the callback. Preserves the
// flags that were already set. Returns the switched in bits. Only call if
// |switch_bits_callback_for_testing_| is installed.
uint64_t SwitchBitsForTesting();
// Atomically sets persitent flag |flag|. Cannot fail.
void SetPersistentFlag(Flag flag);
// Atomically clears persitent flag |flag|. Cannot fail.
void ClearPersistentFlag(Flag flag);
// Converts bits to TimeTicks with some sanity checks. Use to return the
// deadline outside of this class.
static TimeTicks DeadlineFromBits(uint64_t bits);
// Returns the largest representable deadline.
static TimeTicks Max();
// Extract the flag bits from |bits|.
static uint64_t ExtractFlags(uint64_t bits);
// Extract the deadline bits from |bits|.
static uint64_t ExtractDeadline(uint64_t bits);
// BitsType is uint64_t. This type is chosen for having
// std::atomic<BitsType>{}.is_lock_free() true on many platforms and having no
// undefined behaviors with regards to bit shift operations. Throughout this
// class this is the only type that is used to store, retrieve and manipulate
// the bits. When returning a TimeTicks value outside this class it's
// necessary to run the proper checks to insure correctness of the conversion
// that has to go through int_64t. (See DeadlineFromBits()).
using BitsType = uint64_t;
static_assert(std::is_same_v<std::underlying_type<Flag>::type, BitsType>,
"Flag should have the same underlying type as bits_ to "
"simplify thinking about bit operations");
// Holds the bits of both the flags and the TimeTicks deadline.
// TimeTicks values represent a count of microseconds since boot which may or
// may not include suspend time depending on the platform. Using the seven
// highest order bits and the sign bit to store flags still enables the
// storing of TimeTicks values that can represent up to ~1142 years of uptime
// in the remaining bits. Should never be directly accessed from outside the
// class. Starts out at Max() to provide a base-line deadline that will not be
// reached during normal execution.
//
// Binary format: 0xFFDDDDDDDDDDDDDDDD
// F = Flags
// D = Deadline
std::atomic<BitsType> bits_{static_cast<uint64_t>(Max().ToInternalValue())};
RepeatingCallback<uint64_t(void)> switch_bits_callback_for_testing_;
THREAD_CHECKER(thread_checker_);
FRIEND_TEST_ALL_PREFIXES(HangWatchDeadlineTest, BitsPreservedThroughExtract);
};
// Contains the information necessary for hang watching a specific
// thread. Instances of this class are accessed concurrently by the associated
// thread and the HangWatcher. The HangWatcher owns instances of this
// class and outside of it they are accessed through
// GetHangWatchStateForCurrentThread().
class BASE_EXPORT HangWatchState {
public:
// |thread_type| is the type of thread the watch state will
// be associated with. It's the responsibility of the creating
// code to choose the correct type.
explicit HangWatchState(HangWatcher::ThreadType thread_type);
~HangWatchState();
HangWatchState(const HangWatchState&) = delete;
HangWatchState& operator=(const HangWatchState&) = delete;
// Allocates a new state object bound to the calling thread and returns an
// owning pointer to it.
static std::unique_ptr<HangWatchState> CreateHangWatchStateForCurrentThread(
HangWatcher::ThreadType thread_type);
// Retrieves the hang watch state associated with the calling thread.
// Returns nullptr if no HangWatchState exists for the current thread (see
// CreateHangWatchStateForCurrentThread()).
static HangWatchState* GetHangWatchStateForCurrentThread();
// Returns the current deadline. Use this function if you need to
// store the value. To test if the deadline has expired use IsOverDeadline().
// WARNING: The deadline and flags can change concurrently. If you need to
// inspect both you need to use GetFlagsAndDeadline() to get a coherent
// race-free view of the state.
TimeTicks GetDeadline() const;
// Returns a mask containing the hang watching flags and the value as a pair.
// Use to inspect the flags and deadline and optionally call
// SetShouldBlockOnHang(flags, deadline).
std::pair<uint64_t, TimeTicks> GetFlagsAndDeadline() const;
// Sets the deadline to a new value.
void SetDeadline(TimeTicks deadline);
// Mark this thread as ignored for hang watching. This means existing
// WatchHangsInScope will not trigger hangs.
void SetIgnoreCurrentWatchHangsInScope();
// Reactivate hang watching on this thread. Should be called when all
// WatchHangsInScope instances that were ignored have completed.
void UnsetIgnoreCurrentWatchHangsInScope();
// Mark the current state as having to block in its destruction until hang
// capture completes.
bool SetShouldBlockOnHang(uint64_t old_flags, TimeTicks old_deadline);
// Returns true if |flag| is set and false if not. WARNING: The deadline and
// flags can change concurrently. If you need to inspect both you need to use
// GetFlagsAndDeadline() to get a coherent race-free view of the state.
bool IsFlagSet(HangWatchDeadline::Flag flag);
// Tests whether the associated thread's execution has gone over the deadline.
bool IsOverDeadline() const;
#if DCHECK_IS_ON()
// Saves the supplied WatchHangsInScope as the currently active
// WatchHangsInScope.
void SetCurrentWatchHangsInScope(WatchHangsInScope* scope);
// Retrieve the currently active scope.
WatchHangsInScope* GetCurrentWatchHangsInScope();
#endif
PlatformThreadId GetThreadID() const;
// Retrieve the current hang watch deadline directly. For testing only.
HangWatchDeadline* GetHangWatchDeadlineForTesting();
// Returns the current nesting level.
int nesting_level() { return nesting_level_; }
// Increase the nesting level by 1;
void IncrementNestingLevel();
// Reduce the nesting level by 1;
void DecrementNestingLevel();
// Returns the type of the thread under watch.
HangWatcher::ThreadType thread_type() const { return thread_type_; }
private:
// The thread that creates the instance should be the class that updates
// the deadline.
THREAD_CHECKER(thread_checker_);
const AutoReset<HangWatchState*> resetter_;
// If the deadline fails to be updated before TimeTicks::Now() ever
// reaches the value contained in it this constistutes a hang.
HangWatchDeadline deadline_;
// A unique ID of the thread under watch. Used for logging in crash reports
// only.
PlatformThreadId thread_id_;
// Number of active HangWatchScopeEnables on this thread.
int nesting_level_ = 0;
// The type of the thread under watch.
const HangWatcher::ThreadType thread_type_;
#if DCHECK_IS_ON()
// Used to keep track of the current WatchHangsInScope and detect improper
// usage. Scopes should always be destructed in reverse order from the one
// they were constructed in. Example of improper use:
//
// {
// std::unique_ptr<Scope> scope = std::make_unique<Scope>(...);
// Scope other_scope;
// |scope| gets deallocated first, violating reverse destruction order.
// scope.reset();
// }
raw_ptr<WatchHangsInScope> current_watch_hangs_in_scope_{nullptr};
#endif
};
} // namespace internal
} // namespace base
#endif // BASE_THREADING_HANG_WATCHER_H_