naiveproxy/src/base/scoped_generic.h
2024-02-17 02:00:50 +08:00

311 lines
11 KiB
C++

// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_SCOPED_GENERIC_H_
#define BASE_SCOPED_GENERIC_H_
#include <stdlib.h>
#include <concepts>
#include <type_traits>
#include "base/check.h"
#include "base/memory/raw_ptr.h"
namespace base {
// This class acts like unique_ptr with a custom deleter (although is slightly
// less fancy in some of the more escoteric respects) except that it keeps a
// copy of the object rather than a pointer, and we require that the contained
// object has some kind of "invalid" value.
//
// Defining a scoper based on this class allows you to get a scoper for
// non-pointer types without having to write custom code for set, reset, and
// move, etc. and get almost identical semantics that people are used to from
// unique_ptr.
//
// It is intended that you will typedef this class with an appropriate deleter
// to implement clean up tasks for objects that act like pointers from a
// resource management standpoint but aren't, such as file descriptors and
// various types of operating system handles. Using unique_ptr for these
// things requires that you keep a pointer to the handle valid for the lifetime
// of the scoper (which is easy to mess up).
//
// For an object to be able to be put into a ScopedGeneric, it must support
// standard copyable semantics and have a specific "invalid" value. The traits
// must define a free function and also the invalid value to assign for
// default-constructed and released objects.
//
// struct FooScopedTraits {
// // It's assumed that this is a fast inline function with little-to-no
// // penalty for duplicate calls. This must be a static function even
// // for stateful traits.
// static int InvalidValue() {
// return 0;
// }
//
// // This free function will not be called if f == InvalidValue()!
// static void Free(int f) {
// ::FreeFoo(f);
// }
// };
//
// using ScopedFoo = ScopedGeneric<int, FooScopedTraits>;
//
// A Traits type may choose to track ownership of objects in parallel with
// ScopedGeneric. To do so, it must implement the Acquire and Release methods,
// which will be called by ScopedGeneric during ownership transfers and extend
// the ScopedGenericOwnershipTracking tag type.
//
// struct BarScopedTraits : public ScopedGenericOwnershipTracking {
// using ScopedGenericType = ScopedGeneric<int, BarScopedTraits>;
// static int InvalidValue() {
// return 0;
// }
//
// static void Free(int b) {
// ::FreeBar(b);
// }
//
// static void Acquire(const ScopedGenericType& owner, int b) {
// ::TrackAcquisition(b, owner);
// }
//
// static void Release(const ScopedGenericType& owner, int b) {
// ::TrackRelease(b, owner);
// }
// };
//
// using ScopedBar = ScopedGeneric<int, BarScopedTraits>;
struct ScopedGenericOwnershipTracking {};
template<typename T, typename Traits>
class ScopedGeneric {
private:
// This must be first since it's used inline below.
//
// Use the empty base class optimization to allow us to have a D
// member, while avoiding any space overhead for it when D is an
// empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
// discussion of this technique.
struct Data : public Traits {
explicit Data(const T& in) : generic(in) {}
Data(const T& in, const Traits& other) : Traits(other), generic(in) {}
T generic;
};
public:
typedef T element_type;
typedef Traits traits_type;
ScopedGeneric() : data_(traits_type::InvalidValue()) {}
// Constructor. Takes responsibility for freeing the resource associated with
// the object T.
explicit ScopedGeneric(const element_type& value) : data_(value) {
TrackAcquire(data_.generic);
}
// Constructor. Allows initialization of a stateful traits object.
ScopedGeneric(const element_type& value, const traits_type& traits)
: data_(value, traits) {
TrackAcquire(data_.generic);
}
// Move constructor. Allows initialization from a ScopedGeneric rvalue.
ScopedGeneric(ScopedGeneric<T, Traits>&& rvalue)
: data_(rvalue.release(), rvalue.get_traits()) {
TrackAcquire(data_.generic);
}
ScopedGeneric(const ScopedGeneric&) = delete;
ScopedGeneric& operator=(const ScopedGeneric&) = delete;
virtual ~ScopedGeneric() {
CHECK(!receiving_); // ScopedGeneric destroyed with active receiver.
FreeIfNecessary();
}
// operator=. Allows assignment from a ScopedGeneric rvalue.
ScopedGeneric& operator=(ScopedGeneric<T, Traits>&& rvalue) {
reset(rvalue.release());
return *this;
}
// Frees the currently owned object, if any. Then takes ownership of a new
// object, if given. Self-resets are not allowd as on unique_ptr. See
// http://crbug.com/162971
void reset(const element_type& value = traits_type::InvalidValue()) {
if (data_.generic != traits_type::InvalidValue() && data_.generic == value)
abort();
FreeIfNecessary();
data_.generic = value;
TrackAcquire(value);
}
// Release the object. The return value is the current object held by this
// object. After this operation, this object will hold a null value, and
// will not own the object any more.
[[nodiscard]] element_type release() {
element_type old_generic = data_.generic;
data_.generic = traits_type::InvalidValue();
TrackRelease(old_generic);
return old_generic;
}
// A helper class that provides a T* that can be used to take ownership of
// a value returned from a function via out-parameter. When the Receiver is
// destructed (which should usually be at the end of the statement in which
// receive is called), ScopedGeneric::reset() will be called with the
// Receiver's value.
//
// In the simple case of a function that assigns the value before it returns,
// C++'s lifetime extension can be used as follows:
//
// ScopedFoo foo;
// bool result = GetFoo(ScopedFoo::Receiver(foo).get());
//
// Note that the lifetime of the Receiver is extended until the semicolon,
// and ScopedGeneric is assigned the value upon destruction of the Receiver,
// so the following code would not work:
//
// // BROKEN!
// ScopedFoo foo;
// UseFoo(&foo, GetFoo(ScopedFoo::Receiver(foo).get()));
//
// In more complicated scenarios, you may need to provide an explicit scope
// for the Receiver, as in the following:
//
// std::vector<ScopedFoo> foos(64);
//
// {
// std::vector<ScopedFoo::Receiver> foo_receivers;
// for (auto foo : foos) {
// foo_receivers_.emplace_back(foo);
// }
// for (auto receiver : foo_receivers) {
// SubmitGetFooRequest(receiver.get());
// }
// WaitForFooRequests();
// }
// UseFoos(foos);
class Receiver {
public:
explicit Receiver(ScopedGeneric& parent) : scoped_generic_(&parent) {
// Check if we attempted to construct a Receiver for ScopedGeneric with an
// existing Receiver.
CHECK(!scoped_generic_->receiving_);
scoped_generic_->receiving_ = true;
}
Receiver(const Receiver&) = delete;
Receiver& operator=(const Receiver&) = delete;
Receiver(Receiver&& move) {
CHECK(!used_); // Moving into already-used Receiver.
CHECK(!move.used_); // Moving from already-used Receiver.
scoped_generic_ = move.scoped_generic_;
move.scoped_generic_ = nullptr;
}
Receiver& operator=(Receiver&& move) {
CHECK(!used_); // Moving into already-used Receiver.
CHECK(!move.used_); // Moving from already-used Receiver.
scoped_generic_ = move.scoped_generic_;
move.scoped_generic_ = nullptr;
}
~Receiver() {
if (scoped_generic_) {
CHECK(scoped_generic_->receiving_);
scoped_generic_->reset(value_);
scoped_generic_->receiving_ = false;
}
}
// We hand out a pointer to a field in Receiver instead of directly to
// ScopedGeneric's internal storage in order to make it so that users can't
// accidentally silently break ScopedGeneric's invariants. This way, an
// incorrect use-after-scope-exit is more detectable by ASan or static
// analysis tools, as the pointer is only valid for the lifetime of the
// Receiver, not the ScopedGeneric.
T* get() {
used_ = true;
return &value_;
}
private:
T value_ = Traits::InvalidValue();
raw_ptr<ScopedGeneric<T, Traits>> scoped_generic_;
bool used_ = false;
};
const element_type& get() const { return data_.generic; }
// Returns true if this object doesn't hold the special null value for the
// associated data type.
bool is_valid() const { return data_.generic != traits_type::InvalidValue(); }
bool operator==(const element_type& value) const {
return data_.generic == value;
}
bool operator!=(const element_type& value) const {
return data_.generic != value;
}
Traits& get_traits() { return data_; }
const Traits& get_traits() const { return data_; }
private:
void FreeIfNecessary() {
if (data_.generic != traits_type::InvalidValue()) {
TrackRelease(data_.generic);
data_.Free(data_.generic);
data_.generic = traits_type::InvalidValue();
}
}
void TrackAcquire(const T& value) {
if constexpr (std::derived_from<Traits, ScopedGenericOwnershipTracking>) {
if (value != traits_type::InvalidValue()) {
data_.Acquire(static_cast<const ScopedGeneric&>(*this), value);
}
}
}
void TrackRelease(const T& value) {
if constexpr (std::derived_from<Traits, ScopedGenericOwnershipTracking>) {
if (value != traits_type::InvalidValue()) {
data_.Release(static_cast<const ScopedGeneric&>(*this), value);
}
}
}
// Forbid comparison. If U != T, it totally doesn't make sense, and if U ==
// T, it still doesn't make sense because you should never have the same
// object owned by two different ScopedGenerics.
template <typename T2, typename Traits2> bool operator==(
const ScopedGeneric<T2, Traits2>& p2) const;
template <typename T2, typename Traits2> bool operator!=(
const ScopedGeneric<T2, Traits2>& p2) const;
Data data_;
bool receiving_ = false;
};
template<class T, class Traits>
void swap(const ScopedGeneric<T, Traits>& a,
const ScopedGeneric<T, Traits>& b) {
a.swap(b);
}
template<class T, class Traits>
bool operator==(const T& value, const ScopedGeneric<T, Traits>& scoped) {
return value == scoped.get();
}
template<class T, class Traits>
bool operator!=(const T& value, const ScopedGeneric<T, Traits>& scoped) {
return value != scoped.get();
}
} // namespace base
#endif // BASE_SCOPED_GENERIC_H_