mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-24 06:16:30 +03:00
375 lines
12 KiB
C++
375 lines
12 KiB
C++
// Copyright 2013 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "base/message_loop/incoming_task_queue.h"
|
|
|
|
#include <limits>
|
|
#include <utility>
|
|
|
|
#include "base/location.h"
|
|
#include "base/message_loop/message_loop.h"
|
|
#include "base/synchronization/waitable_event.h"
|
|
#include "base/time/time.h"
|
|
#include "build/build_config.h"
|
|
|
|
namespace base {
|
|
namespace internal {
|
|
|
|
namespace {
|
|
|
|
#if DCHECK_IS_ON()
|
|
// Delays larger than this are often bogus, and a warning should be emitted in
|
|
// debug builds to warn developers. http://crbug.com/450045
|
|
constexpr TimeDelta kTaskDelayWarningThreshold = TimeDelta::FromDays(14);
|
|
#endif
|
|
|
|
// Returns true if MessagePump::ScheduleWork() must be called one
|
|
// time for every task that is added to the MessageLoop incoming queue.
|
|
bool AlwaysNotifyPump(MessageLoop::Type type) {
|
|
#if defined(OS_ANDROID)
|
|
// The Android UI message loop needs to get notified each time a task is
|
|
// added
|
|
// to the incoming queue.
|
|
return type == MessageLoop::TYPE_UI || type == MessageLoop::TYPE_JAVA;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
TimeTicks CalculateDelayedRuntime(TimeDelta delay) {
|
|
TimeTicks delayed_run_time;
|
|
if (delay > TimeDelta())
|
|
delayed_run_time = TimeTicks::Now() + delay;
|
|
else
|
|
DCHECK_EQ(delay.InMilliseconds(), 0) << "delay should not be negative";
|
|
return delayed_run_time;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
IncomingTaskQueue::IncomingTaskQueue(MessageLoop* message_loop)
|
|
: always_schedule_work_(AlwaysNotifyPump(message_loop->type())),
|
|
triage_tasks_(this),
|
|
delayed_tasks_(this),
|
|
deferred_tasks_(this),
|
|
message_loop_(message_loop) {
|
|
// The constructing sequence is not necessarily the running sequence in the
|
|
// case of base::Thread.
|
|
DETACH_FROM_SEQUENCE(sequence_checker_);
|
|
}
|
|
|
|
bool IncomingTaskQueue::AddToIncomingQueue(const Location& from_here,
|
|
OnceClosure task,
|
|
TimeDelta delay,
|
|
Nestable nestable) {
|
|
// Use CHECK instead of DCHECK to crash earlier. See http://crbug.com/711167
|
|
// for details.
|
|
CHECK(task);
|
|
DLOG_IF(WARNING, delay > kTaskDelayWarningThreshold)
|
|
<< "Requesting super-long task delay period of " << delay.InSeconds()
|
|
<< " seconds from here: " << from_here.ToString();
|
|
|
|
PendingTask pending_task(from_here, std::move(task),
|
|
CalculateDelayedRuntime(delay), nestable);
|
|
#if defined(OS_WIN)
|
|
// We consider the task needs a high resolution timer if the delay is
|
|
// more than 0 and less than 32ms. This caps the relative error to
|
|
// less than 50% : a 33ms wait can wake at 48ms since the default
|
|
// resolution on Windows is between 10 and 15ms.
|
|
if (delay > TimeDelta() &&
|
|
delay.InMilliseconds() < (2 * Time::kMinLowResolutionThresholdMs)) {
|
|
pending_task.is_high_res = true;
|
|
}
|
|
#endif
|
|
return PostPendingTask(&pending_task);
|
|
}
|
|
|
|
bool IncomingTaskQueue::IsIdleForTesting() {
|
|
AutoLock lock(incoming_queue_lock_);
|
|
return incoming_queue_.empty();
|
|
}
|
|
|
|
void IncomingTaskQueue::WillDestroyCurrentMessageLoop() {
|
|
{
|
|
AutoLock auto_lock(incoming_queue_lock_);
|
|
accept_new_tasks_ = false;
|
|
}
|
|
{
|
|
AutoLock auto_lock(message_loop_lock_);
|
|
message_loop_ = nullptr;
|
|
}
|
|
}
|
|
|
|
void IncomingTaskQueue::StartScheduling() {
|
|
bool schedule_work;
|
|
{
|
|
AutoLock lock(incoming_queue_lock_);
|
|
DCHECK(!is_ready_for_scheduling_);
|
|
DCHECK(!message_loop_scheduled_);
|
|
is_ready_for_scheduling_ = true;
|
|
schedule_work = !incoming_queue_.empty();
|
|
}
|
|
if (schedule_work) {
|
|
DCHECK(message_loop_);
|
|
// Don't need to lock |message_loop_lock_| here because this function is
|
|
// called by MessageLoop on its thread.
|
|
message_loop_->ScheduleWork();
|
|
}
|
|
}
|
|
|
|
IncomingTaskQueue::~IncomingTaskQueue() {
|
|
// Verify that WillDestroyCurrentMessageLoop() has been called.
|
|
DCHECK(!message_loop_);
|
|
}
|
|
|
|
void IncomingTaskQueue::RunTask(PendingTask* pending_task) {
|
|
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
|
|
task_annotator_.RunTask("MessageLoop::PostTask", pending_task);
|
|
}
|
|
|
|
IncomingTaskQueue::TriageQueue::TriageQueue(IncomingTaskQueue* outer)
|
|
: outer_(outer) {}
|
|
|
|
IncomingTaskQueue::TriageQueue::~TriageQueue() = default;
|
|
|
|
const PendingTask& IncomingTaskQueue::TriageQueue::Peek() {
|
|
DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);
|
|
ReloadFromIncomingQueueIfEmpty();
|
|
DCHECK(!queue_.empty());
|
|
return queue_.front();
|
|
}
|
|
|
|
PendingTask IncomingTaskQueue::TriageQueue::Pop() {
|
|
DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);
|
|
ReloadFromIncomingQueueIfEmpty();
|
|
DCHECK(!queue_.empty());
|
|
PendingTask pending_task = std::move(queue_.front());
|
|
queue_.pop();
|
|
|
|
if (pending_task.is_high_res)
|
|
--outer_->pending_high_res_tasks_;
|
|
|
|
return pending_task;
|
|
}
|
|
|
|
bool IncomingTaskQueue::TriageQueue::HasTasks() {
|
|
DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);
|
|
ReloadFromIncomingQueueIfEmpty();
|
|
return !queue_.empty();
|
|
}
|
|
|
|
void IncomingTaskQueue::TriageQueue::Clear() {
|
|
DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);
|
|
// Previously, MessageLoop would delete all tasks including delayed and
|
|
// deferred tasks in a single round before attempting to reload from the
|
|
// incoming queue to see if more tasks remained. This gave it a chance to
|
|
// assess whether or not clearing should continue. As a result, while
|
|
// reloading is automatic for getting and seeing if tasks exist, it is not
|
|
// automatic for Clear().
|
|
while (!queue_.empty()) {
|
|
PendingTask pending_task = std::move(queue_.front());
|
|
queue_.pop();
|
|
|
|
if (pending_task.is_high_res)
|
|
--outer_->pending_high_res_tasks_;
|
|
|
|
if (!pending_task.delayed_run_time.is_null()) {
|
|
outer_->delayed_tasks().Push(std::move(pending_task));
|
|
}
|
|
}
|
|
}
|
|
|
|
void IncomingTaskQueue::TriageQueue::ReloadFromIncomingQueueIfEmpty() {
|
|
if (queue_.empty()) {
|
|
// TODO(robliao): Since these high resolution tasks aren't yet in the
|
|
// delayed queue, they technically shouldn't trigger high resolution timers
|
|
// until they are.
|
|
outer_->pending_high_res_tasks_ += outer_->ReloadWorkQueue(&queue_);
|
|
}
|
|
}
|
|
|
|
IncomingTaskQueue::DelayedQueue::DelayedQueue(IncomingTaskQueue* outer)
|
|
: outer_(outer) {}
|
|
|
|
IncomingTaskQueue::DelayedQueue::~DelayedQueue() = default;
|
|
|
|
void IncomingTaskQueue::DelayedQueue::Push(PendingTask pending_task) {
|
|
DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);
|
|
|
|
if (pending_task.is_high_res)
|
|
++outer_->pending_high_res_tasks_;
|
|
|
|
queue_.push(std::move(pending_task));
|
|
}
|
|
|
|
const PendingTask& IncomingTaskQueue::DelayedQueue::Peek() {
|
|
DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);
|
|
DCHECK(!queue_.empty());
|
|
return queue_.top();
|
|
}
|
|
|
|
PendingTask IncomingTaskQueue::DelayedQueue::Pop() {
|
|
DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);
|
|
DCHECK(!queue_.empty());
|
|
PendingTask delayed_task = std::move(const_cast<PendingTask&>(queue_.top()));
|
|
queue_.pop();
|
|
|
|
if (delayed_task.is_high_res)
|
|
--outer_->pending_high_res_tasks_;
|
|
|
|
return delayed_task;
|
|
}
|
|
|
|
bool IncomingTaskQueue::DelayedQueue::HasTasks() {
|
|
DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);
|
|
// TODO(robliao): The other queues don't check for IsCancelled(). Should they?
|
|
while (!queue_.empty() && Peek().task.IsCancelled())
|
|
Pop();
|
|
|
|
return !queue_.empty();
|
|
}
|
|
|
|
void IncomingTaskQueue::DelayedQueue::Clear() {
|
|
DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);
|
|
while (!queue_.empty())
|
|
Pop();
|
|
}
|
|
|
|
IncomingTaskQueue::DeferredQueue::DeferredQueue(IncomingTaskQueue* outer)
|
|
: outer_(outer) {}
|
|
|
|
IncomingTaskQueue::DeferredQueue::~DeferredQueue() = default;
|
|
|
|
void IncomingTaskQueue::DeferredQueue::Push(PendingTask pending_task) {
|
|
DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);
|
|
|
|
// TODO(robliao): These tasks should not count towards the high res task count
|
|
// since they are no longer in the delayed queue.
|
|
if (pending_task.is_high_res)
|
|
++outer_->pending_high_res_tasks_;
|
|
|
|
queue_.push(std::move(pending_task));
|
|
}
|
|
|
|
const PendingTask& IncomingTaskQueue::DeferredQueue::Peek() {
|
|
DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);
|
|
DCHECK(!queue_.empty());
|
|
return queue_.front();
|
|
}
|
|
|
|
PendingTask IncomingTaskQueue::DeferredQueue::Pop() {
|
|
DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);
|
|
DCHECK(!queue_.empty());
|
|
PendingTask deferred_task = std::move(queue_.front());
|
|
queue_.pop();
|
|
|
|
if (deferred_task.is_high_res)
|
|
--outer_->pending_high_res_tasks_;
|
|
|
|
return deferred_task;
|
|
}
|
|
|
|
bool IncomingTaskQueue::DeferredQueue::HasTasks() {
|
|
DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);
|
|
return !queue_.empty();
|
|
}
|
|
|
|
void IncomingTaskQueue::DeferredQueue::Clear() {
|
|
DCHECK_CALLED_ON_VALID_SEQUENCE(outer_->sequence_checker_);
|
|
while (!queue_.empty())
|
|
Pop();
|
|
}
|
|
|
|
bool IncomingTaskQueue::PostPendingTask(PendingTask* pending_task) {
|
|
// Warning: Don't try to short-circuit, and handle this thread's tasks more
|
|
// directly, as it could starve handling of foreign threads. Put every task
|
|
// into this queue.
|
|
bool accept_new_tasks;
|
|
bool schedule_work = false;
|
|
{
|
|
AutoLock auto_lock(incoming_queue_lock_);
|
|
accept_new_tasks = accept_new_tasks_;
|
|
if (accept_new_tasks)
|
|
schedule_work = PostPendingTaskLockRequired(pending_task);
|
|
}
|
|
|
|
if (!accept_new_tasks) {
|
|
// Clear the pending task outside of |incoming_queue_lock_| to prevent any
|
|
// chance of self-deadlock if destroying a task also posts a task to this
|
|
// queue.
|
|
DCHECK(!schedule_work);
|
|
pending_task->task.Reset();
|
|
return false;
|
|
}
|
|
|
|
// Wake up the message loop and schedule work. This is done outside
|
|
// |incoming_queue_lock_| to allow for multiple post tasks to occur while
|
|
// ScheduleWork() is running. For platforms (e.g. Android) that require one
|
|
// call to ScheduleWork() for each task, all pending tasks may serialize
|
|
// within the ScheduleWork() call. As a result, holding a lock to maintain the
|
|
// lifetime of |message_loop_| is less of a concern.
|
|
if (schedule_work) {
|
|
// Ensures |message_loop_| isn't destroyed while running.
|
|
AutoLock auto_lock(message_loop_lock_);
|
|
if (message_loop_)
|
|
message_loop_->ScheduleWork();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool IncomingTaskQueue::PostPendingTaskLockRequired(PendingTask* pending_task) {
|
|
incoming_queue_lock_.AssertAcquired();
|
|
|
|
#if defined(OS_WIN)
|
|
if (pending_task->is_high_res)
|
|
++high_res_task_count_;
|
|
#endif
|
|
|
|
// Initialize the sequence number. The sequence number is used for delayed
|
|
// tasks (to facilitate FIFO sorting when two tasks have the same
|
|
// delayed_run_time value) and for identifying the task in about:tracing.
|
|
pending_task->sequence_num = next_sequence_num_++;
|
|
|
|
task_annotator_.DidQueueTask("MessageLoop::PostTask", *pending_task);
|
|
|
|
bool was_empty = incoming_queue_.empty();
|
|
incoming_queue_.push(std::move(*pending_task));
|
|
|
|
if (is_ready_for_scheduling_ &&
|
|
(always_schedule_work_ || (!message_loop_scheduled_ && was_empty))) {
|
|
// After we've scheduled the message loop, we do not need to do so again
|
|
// until we know it has processed all of the work in our queue and is
|
|
// waiting for more work again. The message loop will always attempt to
|
|
// reload from the incoming queue before waiting again so we clear this
|
|
// flag in ReloadWorkQueue().
|
|
message_loop_scheduled_ = true;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int IncomingTaskQueue::ReloadWorkQueue(TaskQueue* work_queue) {
|
|
// Make sure no tasks are lost.
|
|
DCHECK(work_queue->empty());
|
|
|
|
// Acquire all we can from the inter-thread queue with one lock acquisition.
|
|
AutoLock lock(incoming_queue_lock_);
|
|
if (incoming_queue_.empty()) {
|
|
// If the loop attempts to reload but there are no tasks in the incoming
|
|
// queue, that means it will go to sleep waiting for more work. If the
|
|
// incoming queue becomes nonempty we need to schedule it again.
|
|
message_loop_scheduled_ = false;
|
|
} else {
|
|
incoming_queue_.swap(*work_queue);
|
|
}
|
|
// Reset the count of high resolution tasks since our queue is now empty.
|
|
int high_res_tasks = high_res_task_count_;
|
|
high_res_task_count_ = 0;
|
|
return high_res_tasks;
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace base
|