yuzu/src/common/x64/emitter.h
Emmanuel Gil Peyrot ebdae19fd2 Remove empty newlines in #include blocks.
This makes clang-format useful on those.

Also add a bunch of forgotten transitive includes, which otherwise
prevented compilation.
2016-09-21 11:15:47 +09:00

1207 lines
41 KiB
C++

// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#pragma once
#include <cstddef>
#include "common/assert.h"
#include "common/bit_set.h"
#include "common/code_block.h"
#include "common/common_types.h"
#if defined(ARCHITECTURE_x86_64) && !defined(_ARCH_64)
#define _ARCH_64
#endif
#ifdef _ARCH_64
#define PTRBITS 64
#else
#define PTRBITS 32
#endif
namespace Gen {
enum X64Reg {
EAX = 0,
EBX = 3,
ECX = 1,
EDX = 2,
ESI = 6,
EDI = 7,
EBP = 5,
ESP = 4,
RAX = 0,
RBX = 3,
RCX = 1,
RDX = 2,
RSI = 6,
RDI = 7,
RBP = 5,
RSP = 4,
R8 = 8,
R9 = 9,
R10 = 10,
R11 = 11,
R12 = 12,
R13 = 13,
R14 = 14,
R15 = 15,
AL = 0,
BL = 3,
CL = 1,
DL = 2,
SIL = 6,
DIL = 7,
BPL = 5,
SPL = 4,
AH = 0x104,
BH = 0x107,
CH = 0x105,
DH = 0x106,
AX = 0,
BX = 3,
CX = 1,
DX = 2,
SI = 6,
DI = 7,
BP = 5,
SP = 4,
XMM0 = 0,
XMM1,
XMM2,
XMM3,
XMM4,
XMM5,
XMM6,
XMM7,
XMM8,
XMM9,
XMM10,
XMM11,
XMM12,
XMM13,
XMM14,
XMM15,
YMM0 = 0,
YMM1,
YMM2,
YMM3,
YMM4,
YMM5,
YMM6,
YMM7,
YMM8,
YMM9,
YMM10,
YMM11,
YMM12,
YMM13,
YMM14,
YMM15,
INVALID_REG = 0xFFFFFFFF
};
enum CCFlags {
CC_O = 0,
CC_NO = 1,
CC_B = 2,
CC_C = 2,
CC_NAE = 2,
CC_NB = 3,
CC_NC = 3,
CC_AE = 3,
CC_Z = 4,
CC_E = 4,
CC_NZ = 5,
CC_NE = 5,
CC_BE = 6,
CC_NA = 6,
CC_NBE = 7,
CC_A = 7,
CC_S = 8,
CC_NS = 9,
CC_P = 0xA,
CC_PE = 0xA,
CC_NP = 0xB,
CC_PO = 0xB,
CC_L = 0xC,
CC_NGE = 0xC,
CC_NL = 0xD,
CC_GE = 0xD,
CC_LE = 0xE,
CC_NG = 0xE,
CC_NLE = 0xF,
CC_G = 0xF
};
enum {
NUMGPRs = 16,
NUMXMMs = 16,
};
enum {
SCALE_NONE = 0,
SCALE_1 = 1,
SCALE_2 = 2,
SCALE_4 = 4,
SCALE_8 = 8,
SCALE_ATREG = 16,
// SCALE_NOBASE_1 is not supported and can be replaced with SCALE_ATREG
SCALE_NOBASE_2 = 34,
SCALE_NOBASE_4 = 36,
SCALE_NOBASE_8 = 40,
SCALE_RIP = 0xFF,
SCALE_IMM8 = 0xF0,
SCALE_IMM16 = 0xF1,
SCALE_IMM32 = 0xF2,
SCALE_IMM64 = 0xF3,
};
enum NormalOp {
nrmADD,
nrmADC,
nrmSUB,
nrmSBB,
nrmAND,
nrmOR,
nrmXOR,
nrmMOV,
nrmTEST,
nrmCMP,
nrmXCHG,
};
enum {
CMP_EQ = 0,
CMP_LT = 1,
CMP_LE = 2,
CMP_UNORD = 3,
CMP_NEQ = 4,
CMP_NLT = 5,
CMP_NLE = 6,
CMP_ORD = 7,
};
enum FloatOp {
floatLD = 0,
floatST = 2,
floatSTP = 3,
floatLD80 = 5,
floatSTP80 = 7,
floatINVALID = -1,
};
enum FloatRound {
FROUND_NEAREST = 0,
FROUND_FLOOR = 1,
FROUND_CEIL = 2,
FROUND_ZERO = 3,
FROUND_MXCSR = 4,
FROUND_RAISE_PRECISION = 0,
FROUND_IGNORE_PRECISION = 8,
};
class XEmitter;
// RIP addressing does not benefit from micro op fusion on Core arch
struct OpArg {
friend class XEmitter;
constexpr OpArg() = default; // dummy op arg, used for storage
constexpr OpArg(u64 offset_, int scale_, X64Reg rmReg = RAX, X64Reg scaledReg = RAX)
: scale(static_cast<u8>(scale_)), offsetOrBaseReg(static_cast<u16>(rmReg)),
indexReg(static_cast<u16>(scaledReg)), offset(offset_) {}
constexpr bool operator==(const OpArg& b) const {
return operandReg == b.operandReg && scale == b.scale &&
offsetOrBaseReg == b.offsetOrBaseReg && indexReg == b.indexReg && offset == b.offset;
}
void WriteRex(XEmitter* emit, int opBits, int bits, int customOp = -1) const;
void WriteVex(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm,
int W = 0) const;
void WriteRest(XEmitter* emit, int extraBytes = 0, X64Reg operandReg = INVALID_REG,
bool warn_64bit_offset = true) const;
void WriteSingleByteOp(XEmitter* emit, u8 op, X64Reg operandReg, int bits);
void WriteNormalOp(XEmitter* emit, bool toRM, NormalOp op, const OpArg& operand,
int bits) const;
constexpr bool IsImm() const {
return scale == SCALE_IMM8 || scale == SCALE_IMM16 || scale == SCALE_IMM32 ||
scale == SCALE_IMM64;
}
constexpr bool IsSimpleReg() const {
return scale == SCALE_NONE;
}
constexpr bool IsSimpleReg(X64Reg reg) const {
return IsSimpleReg() && GetSimpleReg() == reg;
}
int GetImmBits() const {
switch (scale) {
case SCALE_IMM8:
return 8;
case SCALE_IMM16:
return 16;
case SCALE_IMM32:
return 32;
case SCALE_IMM64:
return 64;
default:
return -1;
}
}
void SetImmBits(int bits) {
switch (bits) {
case 8:
scale = SCALE_IMM8;
break;
case 16:
scale = SCALE_IMM16;
break;
case 32:
scale = SCALE_IMM32;
break;
case 64:
scale = SCALE_IMM64;
break;
}
}
constexpr X64Reg GetSimpleReg() const {
return scale == SCALE_NONE ? static_cast<X64Reg>(offsetOrBaseReg) : INVALID_REG;
}
constexpr u32 GetImmValue() const {
return static_cast<u32>(offset);
}
// For loops.
void IncreaseOffset(int sz) {
offset += sz;
}
private:
u8 scale = 0;
u16 offsetOrBaseReg = 0;
u16 indexReg = 0;
u64 offset = 0; // use RIP-relative as much as possible - 64-bit immediates are not available.
u16 operandReg = 0;
};
template <typename T>
inline OpArg M(const T* ptr) {
return OpArg(reinterpret_cast<u64>(ptr), static_cast<int>(SCALE_RIP));
}
constexpr OpArg R(X64Reg value) {
return OpArg(0, SCALE_NONE, value);
}
constexpr OpArg MatR(X64Reg value) {
return OpArg(0, SCALE_ATREG, value);
}
constexpr OpArg MDisp(X64Reg value, int offset) {
return OpArg(static_cast<u32>(offset), SCALE_ATREG, value);
}
constexpr OpArg MComplex(X64Reg base, X64Reg scaled, int scale, int offset) {
return OpArg(offset, scale, base, scaled);
}
constexpr OpArg MScaled(X64Reg scaled, int scale, int offset) {
return scale == SCALE_1 ? OpArg(offset, SCALE_ATREG, scaled)
: OpArg(offset, scale | 0x20, RAX, scaled);
}
constexpr OpArg MRegSum(X64Reg base, X64Reg offset) {
return MComplex(base, offset, 1, 0);
}
constexpr OpArg Imm8(u8 imm) {
return OpArg(imm, SCALE_IMM8);
}
constexpr OpArg Imm16(u16 imm) {
return OpArg(imm, SCALE_IMM16);
} // rarely used
constexpr OpArg Imm32(u32 imm) {
return OpArg(imm, SCALE_IMM32);
}
constexpr OpArg Imm64(u64 imm) {
return OpArg(imm, SCALE_IMM64);
}
constexpr OpArg UImmAuto(u32 imm) {
return OpArg(imm, imm >= 128 ? SCALE_IMM32 : SCALE_IMM8);
}
constexpr OpArg SImmAuto(s32 imm) {
return OpArg(imm, (imm >= 128 || imm < -128) ? SCALE_IMM32 : SCALE_IMM8);
}
template <typename T>
OpArg ImmPtr(const T* imm) {
#ifdef _ARCH_64
return Imm64(reinterpret_cast<u64>(imm));
#else
return Imm32(reinterpret_cast<u32>(imm));
#endif
}
inline u32 PtrOffset(const void* ptr, const void* base) {
#ifdef _ARCH_64
s64 distance = (s64)ptr - (s64)base;
if (distance >= 0x80000000LL || distance < -0x80000000LL) {
ASSERT_MSG(0, "pointer offset out of range");
return 0;
}
return (u32)distance;
#else
return (u32)ptr - (u32)base;
#endif
}
// usage: int a[]; ARRAY_OFFSET(a,10)
#define ARRAY_OFFSET(array, index) ((u32)((u64) & (array)[index] - (u64) & (array)[0]))
// usage: struct {int e;} s; STRUCT_OFFSET(s,e)
#define STRUCT_OFFSET(str, elem) ((u32)((u64) & (str).elem - (u64) & (str)))
struct FixupBranch {
u8* ptr;
int type; // 0 = 8bit 1 = 32bit
};
enum SSECompare {
EQ = 0,
LT,
LE,
UNORD,
NEQ,
NLT,
NLE,
ORD,
};
class XEmitter {
friend struct OpArg; // for Write8 etc
private:
u8* code;
bool flags_locked;
void CheckFlags();
void Rex(int w, int r, int x, int b);
void WriteSimple1Byte(int bits, u8 byte, X64Reg reg);
void WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg);
void WriteMulDivType(int bits, OpArg src, int ext);
void WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep = false);
void WriteShift(int bits, OpArg dest, const OpArg& shift, int ext);
void WriteBitTest(int bits, const OpArg& dest, const OpArg& index, int ext);
void WriteMXCSR(OpArg arg, int ext);
void WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
void WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes = 0);
void WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes = 0);
void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes = 0);
void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
int extrabytes = 0);
void WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
int extrabytes = 0);
void WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
int extrabytes = 0);
void WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
int extrabytes = 0);
void WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, const OpArg& arg);
void WriteNormalOp(XEmitter* emit, int bits, NormalOp op, const OpArg& a1, const OpArg& a2);
void ABI_CalculateFrameSize(BitSet32 mask, size_t rsp_alignment, size_t needed_frame_size,
size_t* shadowp, size_t* subtractionp, size_t* xmm_offsetp);
protected:
void Write8(u8 value);
void Write16(u16 value);
void Write32(u32 value);
void Write64(u64 value);
public:
XEmitter() {
code = nullptr;
flags_locked = false;
}
XEmitter(u8* code_ptr) {
code = code_ptr;
flags_locked = false;
}
virtual ~XEmitter() {}
void WriteModRM(int mod, int rm, int reg);
void WriteSIB(int scale, int index, int base);
void SetCodePtr(u8* ptr);
void ReserveCodeSpace(int bytes);
const u8* AlignCode4();
const u8* AlignCode16();
const u8* AlignCodePage();
const u8* GetCodePtr() const;
u8* GetWritableCodePtr();
void LockFlags() {
flags_locked = true;
}
void UnlockFlags() {
flags_locked = false;
}
// Looking for one of these? It's BANNED!! Some instructions are slow on modern CPU
// INC, DEC, LOOP, LOOPNE, LOOPE, ENTER, LEAVE, XCHG, XLAT, REP MOVSB/MOVSD, REP SCASD + other
// string instr.,
// INC and DEC are slow on Intel Core, but not on AMD. They create a
// false flag dependency because they only update a subset of the flags.
// XCHG is SLOW and should be avoided.
// Debug breakpoint
void INT3();
// Do nothing
void NOP(size_t count = 1);
// Save energy in wait-loops on P4 only. Probably not too useful.
void PAUSE();
// Flag control
void STC();
void CLC();
void CMC();
// These two can not be executed in 64-bit mode on early Intel 64-bit CPU:s, only on Core2 and
// AMD!
void LAHF(); // 3 cycle vector path
void SAHF(); // direct path fast
// Stack control
void PUSH(X64Reg reg);
void POP(X64Reg reg);
void PUSH(int bits, const OpArg& reg);
void POP(int bits, const OpArg& reg);
void PUSHF();
void POPF();
// Flow control
void RET();
void RET_FAST();
void UD2();
FixupBranch J(bool force5bytes = false);
void JMP(const u8* addr, bool force5Bytes = false);
void JMPptr(const OpArg& arg);
void JMPself(); // infinite loop!
#ifdef CALL
#undef CALL
#endif
void CALL(const void* fnptr);
FixupBranch CALL();
void CALLptr(OpArg arg);
FixupBranch J_CC(CCFlags conditionCode, bool force5bytes = false);
void J_CC(CCFlags conditionCode, const u8* addr, bool force5Bytes = false);
void SetJumpTarget(const FixupBranch& branch);
void SetJumpTarget(const FixupBranch& branch, const u8* target);
void SETcc(CCFlags flag, OpArg dest);
// Note: CMOV brings small if any benefit on current cpus.
void CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag);
// Fences
void LFENCE();
void MFENCE();
void SFENCE();
// Bit scan
void BSF(int bits, X64Reg dest, const OpArg& src); // Bottom bit to top bit
void BSR(int bits, X64Reg dest, const OpArg& src); // Top bit to bottom bit
// Cache control
enum PrefetchLevel {
PF_NTA, // Non-temporal (data used once and only once)
PF_T0, // All cache levels
PF_T1, // Levels 2+ (aliased to T0 on AMD)
PF_T2, // Levels 3+ (aliased to T0 on AMD)
};
void PREFETCH(PrefetchLevel level, OpArg arg);
void MOVNTI(int bits, const OpArg& dest, X64Reg src);
void MOVNTDQ(const OpArg& arg, X64Reg regOp);
void MOVNTPS(const OpArg& arg, X64Reg regOp);
void MOVNTPD(const OpArg& arg, X64Reg regOp);
// Multiplication / division
void MUL(int bits, const OpArg& src); // UNSIGNED
void IMUL(int bits, const OpArg& src); // SIGNED
void IMUL(int bits, X64Reg regOp, const OpArg& src);
void IMUL(int bits, X64Reg regOp, const OpArg& src, const OpArg& imm);
void DIV(int bits, const OpArg& src);
void IDIV(int bits, const OpArg& src);
// Shift
void ROL(int bits, const OpArg& dest, const OpArg& shift);
void ROR(int bits, const OpArg& dest, const OpArg& shift);
void RCL(int bits, const OpArg& dest, const OpArg& shift);
void RCR(int bits, const OpArg& dest, const OpArg& shift);
void SHL(int bits, const OpArg& dest, const OpArg& shift);
void SHR(int bits, const OpArg& dest, const OpArg& shift);
void SAR(int bits, const OpArg& dest, const OpArg& shift);
// Bit Test
void BT(int bits, const OpArg& dest, const OpArg& index);
void BTS(int bits, const OpArg& dest, const OpArg& index);
void BTR(int bits, const OpArg& dest, const OpArg& index);
void BTC(int bits, const OpArg& dest, const OpArg& index);
// Double-Precision Shift
void SHRD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift);
void SHLD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift);
// Extend EAX into EDX in various ways
void CWD(int bits = 16);
void CDQ() {
CWD(32);
}
void CQO() {
CWD(64);
}
void CBW(int bits = 8);
void CWDE() {
CBW(16);
}
void CDQE() {
CBW(32);
}
// Load effective address
void LEA(int bits, X64Reg dest, OpArg src);
// Integer arithmetic
void NEG(int bits, const OpArg& src);
void ADD(int bits, const OpArg& a1, const OpArg& a2);
void ADC(int bits, const OpArg& a1, const OpArg& a2);
void SUB(int bits, const OpArg& a1, const OpArg& a2);
void SBB(int bits, const OpArg& a1, const OpArg& a2);
void AND(int bits, const OpArg& a1, const OpArg& a2);
void CMP(int bits, const OpArg& a1, const OpArg& a2);
// Bit operations
void NOT(int bits, const OpArg& src);
void OR(int bits, const OpArg& a1, const OpArg& a2);
void XOR(int bits, const OpArg& a1, const OpArg& a2);
void MOV(int bits, const OpArg& a1, const OpArg& a2);
void TEST(int bits, const OpArg& a1, const OpArg& a2);
// Are these useful at all? Consider removing.
void XCHG(int bits, const OpArg& a1, const OpArg& a2);
void XCHG_AHAL();
// Byte swapping (32 and 64-bit only).
void BSWAP(int bits, X64Reg reg);
// Sign/zero extension
void MOVSX(int dbits, int sbits, X64Reg dest,
OpArg src); // automatically uses MOVSXD if necessary
void MOVZX(int dbits, int sbits, X64Reg dest, OpArg src);
// Available only on Atom or >= Haswell so far. Test with GetCPUCaps().movbe.
void MOVBE(int dbits, const OpArg& dest, const OpArg& src);
// Available only on AMD >= Phenom or Intel >= Haswell
void LZCNT(int bits, X64Reg dest, const OpArg& src);
// Note: this one is actually part of BMI1
void TZCNT(int bits, X64Reg dest, const OpArg& src);
// WARNING - These two take 11-13 cycles and are VectorPath! (AMD64)
void STMXCSR(const OpArg& memloc);
void LDMXCSR(const OpArg& memloc);
// Prefixes
void LOCK();
void REP();
void REPNE();
void FSOverride();
void GSOverride();
// x87
enum x87StatusWordBits {
x87_InvalidOperation = 0x1,
x87_DenormalizedOperand = 0x2,
x87_DivisionByZero = 0x4,
x87_Overflow = 0x8,
x87_Underflow = 0x10,
x87_Precision = 0x20,
x87_StackFault = 0x40,
x87_ErrorSummary = 0x80,
x87_C0 = 0x100,
x87_C1 = 0x200,
x87_C2 = 0x400,
x87_TopOfStack = 0x2000 | 0x1000 | 0x800,
x87_C3 = 0x4000,
x87_FPUBusy = 0x8000,
};
void FLD(int bits, const OpArg& src);
void FST(int bits, const OpArg& dest);
void FSTP(int bits, const OpArg& dest);
void FNSTSW_AX();
void FWAIT();
// SSE/SSE2: Floating point arithmetic
void ADDSS(X64Reg regOp, const OpArg& arg);
void ADDSD(X64Reg regOp, const OpArg& arg);
void SUBSS(X64Reg regOp, const OpArg& arg);
void SUBSD(X64Reg regOp, const OpArg& arg);
void MULSS(X64Reg regOp, const OpArg& arg);
void MULSD(X64Reg regOp, const OpArg& arg);
void DIVSS(X64Reg regOp, const OpArg& arg);
void DIVSD(X64Reg regOp, const OpArg& arg);
void MINSS(X64Reg regOp, const OpArg& arg);
void MINSD(X64Reg regOp, const OpArg& arg);
void MAXSS(X64Reg regOp, const OpArg& arg);
void MAXSD(X64Reg regOp, const OpArg& arg);
void SQRTSS(X64Reg regOp, const OpArg& arg);
void SQRTSD(X64Reg regOp, const OpArg& arg);
void RCPSS(X64Reg regOp, const OpArg& arg);
void RSQRTSS(X64Reg regOp, const OpArg& arg);
// SSE/SSE2: Floating point bitwise (yes)
void CMPSS(X64Reg regOp, const OpArg& arg, u8 compare);
void CMPSD(X64Reg regOp, const OpArg& arg, u8 compare);
void CMPEQSS(X64Reg regOp, const OpArg& arg) {
CMPSS(regOp, arg, CMP_EQ);
}
void CMPLTSS(X64Reg regOp, const OpArg& arg) {
CMPSS(regOp, arg, CMP_LT);
}
void CMPLESS(X64Reg regOp, const OpArg& arg) {
CMPSS(regOp, arg, CMP_LE);
}
void CMPUNORDSS(X64Reg regOp, const OpArg& arg) {
CMPSS(regOp, arg, CMP_UNORD);
}
void CMPNEQSS(X64Reg regOp, const OpArg& arg) {
CMPSS(regOp, arg, CMP_NEQ);
}
void CMPNLTSS(X64Reg regOp, const OpArg& arg) {
CMPSS(regOp, arg, CMP_NLT);
}
void CMPORDSS(X64Reg regOp, const OpArg& arg) {
CMPSS(regOp, arg, CMP_ORD);
}
// SSE/SSE2: Floating point packed arithmetic (x4 for float, x2 for double)
void ADDPS(X64Reg regOp, const OpArg& arg);
void ADDPD(X64Reg regOp, const OpArg& arg);
void SUBPS(X64Reg regOp, const OpArg& arg);
void SUBPD(X64Reg regOp, const OpArg& arg);
void CMPPS(X64Reg regOp, const OpArg& arg, u8 compare);
void CMPPD(X64Reg regOp, const OpArg& arg, u8 compare);
void MULPS(X64Reg regOp, const OpArg& arg);
void MULPD(X64Reg regOp, const OpArg& arg);
void DIVPS(X64Reg regOp, const OpArg& arg);
void DIVPD(X64Reg regOp, const OpArg& arg);
void MINPS(X64Reg regOp, const OpArg& arg);
void MINPD(X64Reg regOp, const OpArg& arg);
void MAXPS(X64Reg regOp, const OpArg& arg);
void MAXPD(X64Reg regOp, const OpArg& arg);
void SQRTPS(X64Reg regOp, const OpArg& arg);
void SQRTPD(X64Reg regOp, const OpArg& arg);
void RCPPS(X64Reg regOp, const OpArg& arg);
void RSQRTPS(X64Reg regOp, const OpArg& arg);
// SSE/SSE2: Floating point packed bitwise (x4 for float, x2 for double)
void ANDPS(X64Reg regOp, const OpArg& arg);
void ANDPD(X64Reg regOp, const OpArg& arg);
void ANDNPS(X64Reg regOp, const OpArg& arg);
void ANDNPD(X64Reg regOp, const OpArg& arg);
void ORPS(X64Reg regOp, const OpArg& arg);
void ORPD(X64Reg regOp, const OpArg& arg);
void XORPS(X64Reg regOp, const OpArg& arg);
void XORPD(X64Reg regOp, const OpArg& arg);
// SSE/SSE2: Shuffle components. These are tricky - see Intel documentation.
void SHUFPS(X64Reg regOp, const OpArg& arg, u8 shuffle);
void SHUFPD(X64Reg regOp, const OpArg& arg, u8 shuffle);
// SSE/SSE2: Useful alternative to shuffle in some cases.
void MOVDDUP(X64Reg regOp, const OpArg& arg);
// SSE3: Horizontal operations in SIMD registers. Very slow! shufps-based code beats it handily
// on Ivy.
void HADDPS(X64Reg dest, const OpArg& src);
// SSE4: Further horizontal operations - dot products. These are weirdly flexible, the arg
// contains both a read mask and a write "mask".
void DPPS(X64Reg dest, const OpArg& src, u8 arg);
void UNPCKLPS(X64Reg dest, const OpArg& src);
void UNPCKHPS(X64Reg dest, const OpArg& src);
void UNPCKLPD(X64Reg dest, const OpArg& src);
void UNPCKHPD(X64Reg dest, const OpArg& src);
// SSE/SSE2: Compares.
void COMISS(X64Reg regOp, const OpArg& arg);
void COMISD(X64Reg regOp, const OpArg& arg);
void UCOMISS(X64Reg regOp, const OpArg& arg);
void UCOMISD(X64Reg regOp, const OpArg& arg);
// SSE/SSE2: Moves. Use the right data type for your data, in most cases.
void MOVAPS(X64Reg regOp, const OpArg& arg);
void MOVAPD(X64Reg regOp, const OpArg& arg);
void MOVAPS(const OpArg& arg, X64Reg regOp);
void MOVAPD(const OpArg& arg, X64Reg regOp);
void MOVUPS(X64Reg regOp, const OpArg& arg);
void MOVUPD(X64Reg regOp, const OpArg& arg);
void MOVUPS(const OpArg& arg, X64Reg regOp);
void MOVUPD(const OpArg& arg, X64Reg regOp);
void MOVDQA(X64Reg regOp, const OpArg& arg);
void MOVDQA(const OpArg& arg, X64Reg regOp);
void MOVDQU(X64Reg regOp, const OpArg& arg);
void MOVDQU(const OpArg& arg, X64Reg regOp);
void MOVSS(X64Reg regOp, const OpArg& arg);
void MOVSD(X64Reg regOp, const OpArg& arg);
void MOVSS(const OpArg& arg, X64Reg regOp);
void MOVSD(const OpArg& arg, X64Reg regOp);
void MOVLPS(X64Reg regOp, const OpArg& arg);
void MOVLPD(X64Reg regOp, const OpArg& arg);
void MOVLPS(const OpArg& arg, X64Reg regOp);
void MOVLPD(const OpArg& arg, X64Reg regOp);
void MOVHPS(X64Reg regOp, const OpArg& arg);
void MOVHPD(X64Reg regOp, const OpArg& arg);
void MOVHPS(const OpArg& arg, X64Reg regOp);
void MOVHPD(const OpArg& arg, X64Reg regOp);
void MOVHLPS(X64Reg regOp1, X64Reg regOp2);
void MOVLHPS(X64Reg regOp1, X64Reg regOp2);
void MOVD_xmm(X64Reg dest, const OpArg& arg);
void MOVQ_xmm(X64Reg dest, OpArg arg);
void MOVD_xmm(const OpArg& arg, X64Reg src);
void MOVQ_xmm(OpArg arg, X64Reg src);
// SSE/SSE2: Generates a mask from the high bits of the components of the packed register in
// question.
void MOVMSKPS(X64Reg dest, const OpArg& arg);
void MOVMSKPD(X64Reg dest, const OpArg& arg);
// SSE2: Selective byte store, mask in src register. EDI/RDI specifies store address. This is a
// weird one.
void MASKMOVDQU(X64Reg dest, X64Reg src);
void LDDQU(X64Reg dest, const OpArg& src);
// SSE/SSE2: Data type conversions.
void CVTPS2PD(X64Reg dest, const OpArg& src);
void CVTPD2PS(X64Reg dest, const OpArg& src);
void CVTSS2SD(X64Reg dest, const OpArg& src);
void CVTSI2SS(X64Reg dest, const OpArg& src);
void CVTSD2SS(X64Reg dest, const OpArg& src);
void CVTSI2SD(X64Reg dest, const OpArg& src);
void CVTDQ2PD(X64Reg regOp, const OpArg& arg);
void CVTPD2DQ(X64Reg regOp, const OpArg& arg);
void CVTDQ2PS(X64Reg regOp, const OpArg& arg);
void CVTPS2DQ(X64Reg regOp, const OpArg& arg);
void CVTTPS2DQ(X64Reg regOp, const OpArg& arg);
void CVTTPD2DQ(X64Reg regOp, const OpArg& arg);
// Destinations are X64 regs (rax, rbx, ...) for these instructions.
void CVTSS2SI(X64Reg xregdest, const OpArg& src);
void CVTSD2SI(X64Reg xregdest, const OpArg& src);
void CVTTSS2SI(X64Reg xregdest, const OpArg& arg);
void CVTTSD2SI(X64Reg xregdest, const OpArg& arg);
// SSE2: Packed integer instructions
void PACKSSDW(X64Reg dest, const OpArg& arg);
void PACKSSWB(X64Reg dest, const OpArg& arg);
void PACKUSDW(X64Reg dest, const OpArg& arg);
void PACKUSWB(X64Reg dest, const OpArg& arg);
void PUNPCKLBW(X64Reg dest, const OpArg& arg);
void PUNPCKLWD(X64Reg dest, const OpArg& arg);
void PUNPCKLDQ(X64Reg dest, const OpArg& arg);
void PUNPCKLQDQ(X64Reg dest, const OpArg& arg);
void PTEST(X64Reg dest, const OpArg& arg);
void PAND(X64Reg dest, const OpArg& arg);
void PANDN(X64Reg dest, const OpArg& arg);
void PXOR(X64Reg dest, const OpArg& arg);
void POR(X64Reg dest, const OpArg& arg);
void PADDB(X64Reg dest, const OpArg& arg);
void PADDW(X64Reg dest, const OpArg& arg);
void PADDD(X64Reg dest, const OpArg& arg);
void PADDQ(X64Reg dest, const OpArg& arg);
void PADDSB(X64Reg dest, const OpArg& arg);
void PADDSW(X64Reg dest, const OpArg& arg);
void PADDUSB(X64Reg dest, const OpArg& arg);
void PADDUSW(X64Reg dest, const OpArg& arg);
void PSUBB(X64Reg dest, const OpArg& arg);
void PSUBW(X64Reg dest, const OpArg& arg);
void PSUBD(X64Reg dest, const OpArg& arg);
void PSUBQ(X64Reg dest, const OpArg& arg);
void PSUBSB(X64Reg dest, const OpArg& arg);
void PSUBSW(X64Reg dest, const OpArg& arg);
void PSUBUSB(X64Reg dest, const OpArg& arg);
void PSUBUSW(X64Reg dest, const OpArg& arg);
void PAVGB(X64Reg dest, const OpArg& arg);
void PAVGW(X64Reg dest, const OpArg& arg);
void PCMPEQB(X64Reg dest, const OpArg& arg);
void PCMPEQW(X64Reg dest, const OpArg& arg);
void PCMPEQD(X64Reg dest, const OpArg& arg);
void PCMPGTB(X64Reg dest, const OpArg& arg);
void PCMPGTW(X64Reg dest, const OpArg& arg);
void PCMPGTD(X64Reg dest, const OpArg& arg);
void PEXTRW(X64Reg dest, const OpArg& arg, u8 subreg);
void PINSRW(X64Reg dest, const OpArg& arg, u8 subreg);
void PMADDWD(X64Reg dest, const OpArg& arg);
void PSADBW(X64Reg dest, const OpArg& arg);
void PMAXSW(X64Reg dest, const OpArg& arg);
void PMAXUB(X64Reg dest, const OpArg& arg);
void PMINSW(X64Reg dest, const OpArg& arg);
void PMINUB(X64Reg dest, const OpArg& arg);
// SSE4: More MAX/MIN instructions.
void PMINSB(X64Reg dest, const OpArg& arg);
void PMINSD(X64Reg dest, const OpArg& arg);
void PMINUW(X64Reg dest, const OpArg& arg);
void PMINUD(X64Reg dest, const OpArg& arg);
void PMAXSB(X64Reg dest, const OpArg& arg);
void PMAXSD(X64Reg dest, const OpArg& arg);
void PMAXUW(X64Reg dest, const OpArg& arg);
void PMAXUD(X64Reg dest, const OpArg& arg);
void PMOVMSKB(X64Reg dest, const OpArg& arg);
void PSHUFD(X64Reg dest, const OpArg& arg, u8 shuffle);
void PSHUFB(X64Reg dest, const OpArg& arg);
void PSHUFLW(X64Reg dest, const OpArg& arg, u8 shuffle);
void PSHUFHW(X64Reg dest, const OpArg& arg, u8 shuffle);
void PSRLW(X64Reg reg, int shift);
void PSRLD(X64Reg reg, int shift);
void PSRLQ(X64Reg reg, int shift);
void PSRLQ(X64Reg reg, const OpArg& arg);
void PSRLDQ(X64Reg reg, int shift);
void PSLLW(X64Reg reg, int shift);
void PSLLD(X64Reg reg, int shift);
void PSLLQ(X64Reg reg, int shift);
void PSLLDQ(X64Reg reg, int shift);
void PSRAW(X64Reg reg, int shift);
void PSRAD(X64Reg reg, int shift);
// SSE4: data type conversions
void PMOVSXBW(X64Reg dest, const OpArg& arg);
void PMOVSXBD(X64Reg dest, const OpArg& arg);
void PMOVSXBQ(X64Reg dest, const OpArg& arg);
void PMOVSXWD(X64Reg dest, const OpArg& arg);
void PMOVSXWQ(X64Reg dest, const OpArg& arg);
void PMOVSXDQ(X64Reg dest, const OpArg& arg);
void PMOVZXBW(X64Reg dest, const OpArg& arg);
void PMOVZXBD(X64Reg dest, const OpArg& arg);
void PMOVZXBQ(X64Reg dest, const OpArg& arg);
void PMOVZXWD(X64Reg dest, const OpArg& arg);
void PMOVZXWQ(X64Reg dest, const OpArg& arg);
void PMOVZXDQ(X64Reg dest, const OpArg& arg);
// SSE4: variable blend instructions (xmm0 implicit argument)
void PBLENDVB(X64Reg dest, const OpArg& arg);
void BLENDVPS(X64Reg dest, const OpArg& arg);
void BLENDVPD(X64Reg dest, const OpArg& arg);
void BLENDPS(X64Reg dest, const OpArg& arg, u8 blend);
void BLENDPD(X64Reg dest, const OpArg& arg, u8 blend);
// SSE4: rounding (see FloatRound for mode or use ROUNDNEARSS, etc. helpers.)
void ROUNDSS(X64Reg dest, const OpArg& arg, u8 mode);
void ROUNDSD(X64Reg dest, const OpArg& arg, u8 mode);
void ROUNDPS(X64Reg dest, const OpArg& arg, u8 mode);
void ROUNDPD(X64Reg dest, const OpArg& arg, u8 mode);
void ROUNDNEARSS(X64Reg dest, const OpArg& arg) {
ROUNDSS(dest, arg, FROUND_NEAREST);
}
void ROUNDFLOORSS(X64Reg dest, const OpArg& arg) {
ROUNDSS(dest, arg, FROUND_FLOOR);
}
void ROUNDCEILSS(X64Reg dest, const OpArg& arg) {
ROUNDSS(dest, arg, FROUND_CEIL);
}
void ROUNDZEROSS(X64Reg dest, const OpArg& arg) {
ROUNDSS(dest, arg, FROUND_ZERO);
}
void ROUNDNEARSD(X64Reg dest, const OpArg& arg) {
ROUNDSD(dest, arg, FROUND_NEAREST);
}
void ROUNDFLOORSD(X64Reg dest, const OpArg& arg) {
ROUNDSD(dest, arg, FROUND_FLOOR);
}
void ROUNDCEILSD(X64Reg dest, const OpArg& arg) {
ROUNDSD(dest, arg, FROUND_CEIL);
}
void ROUNDZEROSD(X64Reg dest, const OpArg& arg) {
ROUNDSD(dest, arg, FROUND_ZERO);
}
void ROUNDNEARPS(X64Reg dest, const OpArg& arg) {
ROUNDPS(dest, arg, FROUND_NEAREST);
}
void ROUNDFLOORPS(X64Reg dest, const OpArg& arg) {
ROUNDPS(dest, arg, FROUND_FLOOR);
}
void ROUNDCEILPS(X64Reg dest, const OpArg& arg) {
ROUNDPS(dest, arg, FROUND_CEIL);
}
void ROUNDZEROPS(X64Reg dest, const OpArg& arg) {
ROUNDPS(dest, arg, FROUND_ZERO);
}
void ROUNDNEARPD(X64Reg dest, const OpArg& arg) {
ROUNDPD(dest, arg, FROUND_NEAREST);
}
void ROUNDFLOORPD(X64Reg dest, const OpArg& arg) {
ROUNDPD(dest, arg, FROUND_FLOOR);
}
void ROUNDCEILPD(X64Reg dest, const OpArg& arg) {
ROUNDPD(dest, arg, FROUND_CEIL);
}
void ROUNDZEROPD(X64Reg dest, const OpArg& arg) {
ROUNDPD(dest, arg, FROUND_ZERO);
}
// AVX
void VADDSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VSUBSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VMULSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VDIVSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VADDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VSUBPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VMULPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VDIVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VSQRTSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VSHUFPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle);
void VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VANDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VANDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VANDNPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VANDNPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VXORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VXORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VPAND(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VPANDN(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VPOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VPXOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
// FMA3
void VFMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
// VEX GPR instructions
void SARX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
void SHLX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
void SHRX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
void RORX(int bits, X64Reg regOp, const OpArg& arg, u8 rotate);
void PEXT(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void PDEP(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void MULX(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void BZHI(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
void BLSR(int bits, X64Reg regOp, const OpArg& arg);
void BLSMSK(int bits, X64Reg regOp, const OpArg& arg);
void BLSI(int bits, X64Reg regOp, const OpArg& arg);
void BEXTR(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2);
void ANDN(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg);
void RDTSC();
// Utility functions
// The difference between this and CALL is that this aligns the stack
// where appropriate.
void ABI_CallFunction(const void* func);
template <typename T>
void ABI_CallFunction(T (*func)()) {
ABI_CallFunction((const void*)func);
}
void ABI_CallFunction(const u8* func) {
ABI_CallFunction((const void*)func);
}
void ABI_CallFunctionC16(const void* func, u16 param1);
void ABI_CallFunctionCC16(const void* func, u32 param1, u16 param2);
// These only support u32 parameters, but that's enough for a lot of uses.
// These will destroy the 1 or 2 first "parameter regs".
void ABI_CallFunctionC(const void* func, u32 param1);
void ABI_CallFunctionCC(const void* func, u32 param1, u32 param2);
void ABI_CallFunctionCCC(const void* func, u32 param1, u32 param2, u32 param3);
void ABI_CallFunctionCCP(const void* func, u32 param1, u32 param2, void* param3);
void ABI_CallFunctionCCCP(const void* func, u32 param1, u32 param2, u32 param3, void* param4);
void ABI_CallFunctionP(const void* func, void* param1);
void ABI_CallFunctionPA(const void* func, void* param1, const OpArg& arg2);
void ABI_CallFunctionPAA(const void* func, void* param1, const OpArg& arg2, const OpArg& arg3);
void ABI_CallFunctionPPC(const void* func, void* param1, void* param2, u32 param3);
void ABI_CallFunctionAC(const void* func, const OpArg& arg1, u32 param2);
void ABI_CallFunctionACC(const void* func, const OpArg& arg1, u32 param2, u32 param3);
void ABI_CallFunctionA(const void* func, const OpArg& arg1);
void ABI_CallFunctionAA(const void* func, const OpArg& arg1, const OpArg& arg2);
// Pass a register as a parameter.
void ABI_CallFunctionR(const void* func, X64Reg reg1);
void ABI_CallFunctionRR(const void* func, X64Reg reg1, X64Reg reg2);
template <typename Tr, typename T1>
void ABI_CallFunctionC(Tr (*func)(T1), u32 param1) {
ABI_CallFunctionC((const void*)func, param1);
}
/**
* Saves specified registers and adjusts the stack to be 16-byte aligned as required by the ABI
*
* @param mask Registers to push on the stack (high 16 bits are XMMs, low 16 bits are GPRs)
* @param rsp_alignment Current alignment of the stack pointer, must be 0 or 8
* @param needed_frame_size Additional space needed, e.g., for function arguments passed on the
* stack
* @return Size of the shadow space, i.e., offset of the frame
*/
size_t ABI_PushRegistersAndAdjustStack(BitSet32 mask, size_t rsp_alignment,
size_t needed_frame_size = 0);
/**
* Restores specified registers and adjusts the stack to its original alignment, i.e., the
* alignment before
* the matching PushRegistersAndAdjustStack.
*
* @param mask Registers to restores from the stack (high 16 bits are XMMs, low 16 bits are
* GPRs)
* @param rsp_alignment Original alignment before the matching PushRegistersAndAdjustStack, must
* be 0 or 8
* @param needed_frame_size Additional space that was needed
* @warning Stack must be currently 16-byte aligned
*/
void ABI_PopRegistersAndAdjustStack(BitSet32 mask, size_t rsp_alignment,
size_t needed_frame_size = 0);
#ifdef _M_IX86
static int ABI_GetNumXMMRegs() {
return 8;
}
#else
static int ABI_GetNumXMMRegs() {
return 16;
}
#endif
}; // class XEmitter
// Everything that needs to generate X86 code should inherit from this.
// You get memory management for free, plus, you can use all the MOV etc functions without
// having to prefix them with gen-> or something similar.
class XCodeBlock : public CodeBlock<XEmitter> {
public:
void PoisonMemory() override;
};
} // namespace