yuzu/src/core/hle/kernel/thread.cpp
bunnei c3c43e32fc hle: kernel: thread: Replace ThreadStatus/ThreadSchedStatus with a single ThreadState.
- This is how the real kernel works, and is more accurate and simpler.
2021-01-11 14:23:16 -08:00

430 lines
15 KiB
C++

// Copyright 2014 Citra Emulator Project / PPSSPP Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <cinttypes>
#include <optional>
#include <vector>
#include "common/assert.h"
#include "common/common_types.h"
#include "common/fiber.h"
#include "common/logging/log.h"
#include "common/thread_queue_list.h"
#include "core/core.h"
#include "core/cpu_manager.h"
#include "core/hardware_properties.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/time_manager.h"
#include "core/hle/result.h"
#include "core/memory.h"
#ifdef ARCHITECTURE_x86_64
#include "core/arm/dynarmic/arm_dynarmic_32.h"
#include "core/arm/dynarmic/arm_dynarmic_64.h"
#endif
namespace Kernel {
bool Thread::IsSignaled() const {
return signaled;
}
Thread::Thread(KernelCore& kernel) : KSynchronizationObject{kernel} {}
Thread::~Thread() = default;
void Thread::Stop() {
{
KScopedSchedulerLock lock(kernel);
SetState(ThreadState::Terminated);
signaled = true;
NotifyAvailable();
kernel.GlobalHandleTable().Close(global_handle);
if (owner_process) {
owner_process->UnregisterThread(this);
// Mark the TLS slot in the thread's page as free.
owner_process->FreeTLSRegion(tls_address);
}
has_exited = true;
}
global_handle = 0;
}
void Thread::Wakeup() {
KScopedSchedulerLock lock(kernel);
switch (thread_state) {
case ThreadState::Runnable:
// If the thread is waiting on multiple wait objects, it might be awoken more than once
// before actually resuming. We can ignore subsequent wakeups if the thread status has
// already been set to ThreadStatus::Ready.
return;
case ThreadState::Terminated:
// This should never happen, as threads must complete before being stopped.
DEBUG_ASSERT_MSG(false, "Thread with object id {} cannot be resumed because it's DEAD.",
GetObjectId());
return;
}
SetState(ThreadState::Runnable);
}
void Thread::OnWakeUp() {
KScopedSchedulerLock lock(kernel);
SetState(ThreadState::Runnable);
}
ResultCode Thread::Start() {
KScopedSchedulerLock lock(kernel);
SetState(ThreadState::Runnable);
return RESULT_SUCCESS;
}
void Thread::CancelWait() {
KScopedSchedulerLock lock(kernel);
if (GetState() != ThreadState::Waiting || !is_cancellable) {
is_sync_cancelled = true;
return;
}
// TODO(Blinkhawk): Implement cancel of server session
is_sync_cancelled = false;
SetSynchronizationResults(nullptr, ERR_SYNCHRONIZATION_CANCELED);
SetState(ThreadState::Runnable);
}
static void ResetThreadContext32(Core::ARM_Interface::ThreadContext32& context, u32 stack_top,
u32 entry_point, u32 arg) {
context = {};
context.cpu_registers[0] = arg;
context.cpu_registers[15] = entry_point;
context.cpu_registers[13] = stack_top;
}
static void ResetThreadContext64(Core::ARM_Interface::ThreadContext64& context, VAddr stack_top,
VAddr entry_point, u64 arg) {
context = {};
context.cpu_registers[0] = arg;
context.pc = entry_point;
context.sp = stack_top;
// TODO(merry): Perform a hardware test to determine the below value.
context.fpcr = 0;
}
std::shared_ptr<Common::Fiber>& Thread::GetHostContext() {
return host_context;
}
ResultVal<std::shared_ptr<Thread>> Thread::Create(Core::System& system, ThreadType type_flags,
std::string name, VAddr entry_point, u32 priority,
u64 arg, s32 processor_id, VAddr stack_top,
Process* owner_process) {
std::function<void(void*)> init_func = Core::CpuManager::GetGuestThreadStartFunc();
void* init_func_parameter = system.GetCpuManager().GetStartFuncParamater();
return Create(system, type_flags, name, entry_point, priority, arg, processor_id, stack_top,
owner_process, std::move(init_func), init_func_parameter);
}
ResultVal<std::shared_ptr<Thread>> Thread::Create(Core::System& system, ThreadType type_flags,
std::string name, VAddr entry_point, u32 priority,
u64 arg, s32 processor_id, VAddr stack_top,
Process* owner_process,
std::function<void(void*)>&& thread_start_func,
void* thread_start_parameter) {
auto& kernel = system.Kernel();
// Check if priority is in ranged. Lowest priority -> highest priority id.
if (priority > THREADPRIO_LOWEST && ((type_flags & THREADTYPE_IDLE) == 0)) {
LOG_ERROR(Kernel_SVC, "Invalid thread priority: {}", priority);
return ERR_INVALID_THREAD_PRIORITY;
}
if (processor_id > THREADPROCESSORID_MAX) {
LOG_ERROR(Kernel_SVC, "Invalid processor id: {}", processor_id);
return ERR_INVALID_PROCESSOR_ID;
}
if (owner_process) {
if (!system.Memory().IsValidVirtualAddress(*owner_process, entry_point)) {
LOG_ERROR(Kernel_SVC, "(name={}): invalid entry {:016X}", name, entry_point);
// TODO (bunnei): Find the correct error code to use here
return RESULT_UNKNOWN;
}
}
std::shared_ptr<Thread> thread = std::make_shared<Thread>(kernel);
thread->thread_id = kernel.CreateNewThreadID();
thread->thread_state = ThreadState::Initialized;
thread->entry_point = entry_point;
thread->stack_top = stack_top;
thread->disable_count = 1;
thread->tpidr_el0 = 0;
thread->nominal_priority = thread->current_priority = priority;
thread->schedule_count = -1;
thread->last_scheduled_tick = 0;
thread->processor_id = processor_id;
thread->ideal_core = processor_id;
thread->affinity_mask.SetAffinity(processor_id, true);
thread->mutex_wait_address = 0;
thread->condvar_wait_address = 0;
thread->wait_handle = 0;
thread->name = std::move(name);
thread->global_handle = kernel.GlobalHandleTable().Create(thread).Unwrap();
thread->owner_process = owner_process;
thread->type = type_flags;
thread->signaled = false;
if ((type_flags & THREADTYPE_IDLE) == 0) {
auto& scheduler = kernel.GlobalSchedulerContext();
scheduler.AddThread(thread);
}
if (owner_process) {
thread->tls_address = thread->owner_process->CreateTLSRegion();
thread->owner_process->RegisterThread(thread.get());
} else {
thread->tls_address = 0;
}
// TODO(peachum): move to ScheduleThread() when scheduler is added so selected core is used
// to initialize the context
if ((type_flags & THREADTYPE_HLE) == 0) {
ResetThreadContext32(thread->context_32, static_cast<u32>(stack_top),
static_cast<u32>(entry_point), static_cast<u32>(arg));
ResetThreadContext64(thread->context_64, stack_top, entry_point, arg);
}
thread->host_context =
std::make_shared<Common::Fiber>(std::move(thread_start_func), thread_start_parameter);
return MakeResult<std::shared_ptr<Thread>>(std::move(thread));
}
void Thread::SetPriority(u32 priority) {
KScopedSchedulerLock lock(kernel);
ASSERT_MSG(priority <= THREADPRIO_LOWEST && priority >= THREADPRIO_HIGHEST,
"Invalid priority value.");
nominal_priority = priority;
UpdatePriority();
}
void Thread::SetSynchronizationResults(KSynchronizationObject* object, ResultCode result) {
signaling_object = object;
signaling_result = result;
}
VAddr Thread::GetCommandBufferAddress() const {
// Offset from the start of TLS at which the IPC command buffer begins.
constexpr u64 command_header_offset = 0x80;
return GetTLSAddress() + command_header_offset;
}
void Thread::SetState(ThreadState new_status) {
if (new_status == thread_state) {
return;
}
if (new_status != ThreadState::Waiting) {
SetWaitingCondVar(false);
}
SetSchedulingStatus(new_status);
thread_state = new_status;
}
void Thread::AddMutexWaiter(std::shared_ptr<Thread> thread) {
if (thread->lock_owner.get() == this) {
// If the thread is already waiting for this thread to release the mutex, ensure that the
// waiters list is consistent and return without doing anything.
const auto iter = std::find(wait_mutex_threads.begin(), wait_mutex_threads.end(), thread);
ASSERT(iter != wait_mutex_threads.end());
return;
}
// A thread can't wait on two different mutexes at the same time.
ASSERT(thread->lock_owner == nullptr);
// Ensure that the thread is not already in the list of mutex waiters
const auto iter = std::find(wait_mutex_threads.begin(), wait_mutex_threads.end(), thread);
ASSERT(iter == wait_mutex_threads.end());
// Keep the list in an ordered fashion
const auto insertion_point = std::find_if(
wait_mutex_threads.begin(), wait_mutex_threads.end(),
[&thread](const auto& entry) { return entry->GetPriority() > thread->GetPriority(); });
wait_mutex_threads.insert(insertion_point, thread);
thread->lock_owner = SharedFrom(this);
UpdatePriority();
}
void Thread::RemoveMutexWaiter(std::shared_ptr<Thread> thread) {
ASSERT(thread->lock_owner.get() == this);
// Ensure that the thread is in the list of mutex waiters
const auto iter = std::find(wait_mutex_threads.begin(), wait_mutex_threads.end(), thread);
ASSERT(iter != wait_mutex_threads.end());
wait_mutex_threads.erase(iter);
thread->lock_owner = nullptr;
UpdatePriority();
}
void Thread::UpdatePriority() {
// If any of the threads waiting on the mutex have a higher priority
// (taking into account priority inheritance), then this thread inherits
// that thread's priority.
u32 new_priority = nominal_priority;
if (!wait_mutex_threads.empty()) {
if (wait_mutex_threads.front()->current_priority < new_priority) {
new_priority = wait_mutex_threads.front()->current_priority;
}
}
if (new_priority == current_priority) {
return;
}
if (GetState() == ThreadState::Waiting && is_waiting_on_condvar) {
owner_process->RemoveConditionVariableThread(SharedFrom(this));
}
SetCurrentPriority(new_priority);
if (GetState() == ThreadState::Waiting && is_waiting_on_condvar) {
owner_process->InsertConditionVariableThread(SharedFrom(this));
}
if (!lock_owner) {
return;
}
// Ensure that the thread is within the correct location in the waiting list.
auto old_owner = lock_owner;
lock_owner->RemoveMutexWaiter(SharedFrom(this));
old_owner->AddMutexWaiter(SharedFrom(this));
// Recursively update the priority of the thread that depends on the priority of this one.
lock_owner->UpdatePriority();
}
ResultCode Thread::SetActivity(ThreadActivity value) {
KScopedSchedulerLock lock(kernel);
auto sched_status = GetState();
if (sched_status != ThreadState::Runnable && sched_status != ThreadState::Waiting) {
return ERR_INVALID_STATE;
}
if (IsTerminationRequested()) {
return RESULT_SUCCESS;
}
if (value == ThreadActivity::Paused) {
if ((pausing_state & static_cast<u32>(ThreadSchedFlags::ThreadPauseFlag)) != 0) {
return ERR_INVALID_STATE;
}
AddSchedulingFlag(ThreadSchedFlags::ThreadPauseFlag);
} else {
if ((pausing_state & static_cast<u32>(ThreadSchedFlags::ThreadPauseFlag)) == 0) {
return ERR_INVALID_STATE;
}
RemoveSchedulingFlag(ThreadSchedFlags::ThreadPauseFlag);
}
return RESULT_SUCCESS;
}
ResultCode Thread::Sleep(s64 nanoseconds) {
Handle event_handle{};
{
KScopedSchedulerLockAndSleep lock(kernel, event_handle, this, nanoseconds);
SetState(ThreadState::Waiting);
}
if (event_handle != InvalidHandle) {
auto& time_manager = kernel.TimeManager();
time_manager.UnscheduleTimeEvent(event_handle);
}
return RESULT_SUCCESS;
}
void Thread::AddSchedulingFlag(ThreadSchedFlags flag) {
const auto old_state = GetRawState();
pausing_state |= static_cast<u32>(flag);
const auto base_scheduling = GetState();
thread_state = base_scheduling | static_cast<ThreadState>(pausing_state);
KScheduler::OnThreadStateChanged(kernel, this, old_state);
}
void Thread::RemoveSchedulingFlag(ThreadSchedFlags flag) {
const auto old_state = GetRawState();
pausing_state &= ~static_cast<u32>(flag);
const auto base_scheduling = GetState();
thread_state = base_scheduling | static_cast<ThreadState>(pausing_state);
KScheduler::OnThreadStateChanged(kernel, this, old_state);
}
void Thread::SetSchedulingStatus(ThreadState new_status) {
const auto old_state = GetRawState();
thread_state = (thread_state & ThreadState::HighMask) | new_status;
KScheduler::OnThreadStateChanged(kernel, this, old_state);
}
void Thread::SetCurrentPriority(u32 new_priority) {
const u32 old_priority = std::exchange(current_priority, new_priority);
KScheduler::OnThreadPriorityChanged(kernel, this, kernel.CurrentScheduler()->GetCurrentThread(),
old_priority);
}
ResultCode Thread::SetCoreAndAffinityMask(s32 new_core, u64 new_affinity_mask) {
KScopedSchedulerLock lock(kernel);
const auto HighestSetCore = [](u64 mask, u32 max_cores) {
for (s32 core = static_cast<s32>(max_cores - 1); core >= 0; core--) {
if (((mask >> core) & 1) != 0) {
return core;
}
}
return -1;
};
const bool use_override = affinity_override_count != 0;
if (new_core == THREADPROCESSORID_DONT_UPDATE) {
new_core = use_override ? ideal_core_override : ideal_core;
if ((new_affinity_mask & (1ULL << new_core)) == 0) {
LOG_ERROR(Kernel, "New affinity mask is incorrect! new_core={}, new_affinity_mask={}",
new_core, new_affinity_mask);
return ERR_INVALID_COMBINATION;
}
}
if (use_override) {
ideal_core_override = new_core;
} else {
const auto old_affinity_mask = affinity_mask;
affinity_mask.SetAffinityMask(new_affinity_mask);
ideal_core = new_core;
if (old_affinity_mask.GetAffinityMask() != new_affinity_mask) {
const s32 old_core = processor_id;
if (processor_id >= 0 && !affinity_mask.GetAffinity(processor_id)) {
if (static_cast<s32>(ideal_core) < 0) {
processor_id = HighestSetCore(affinity_mask.GetAffinityMask(),
Core::Hardware::NUM_CPU_CORES);
} else {
processor_id = ideal_core;
}
}
KScheduler::OnThreadAffinityMaskChanged(kernel, this, old_affinity_mask, old_core);
}
}
return RESULT_SUCCESS;
}
} // namespace Kernel