Removes common_sizes.h in favor of having `_KiB`, `_MiB`, `_GiB`, etc
user-literals within literals.h.
To keep the global namespace clean, users will have to use:
```
using namespace Common::Literals;
```
to access these literals.
Use its std::stop_token to abort shader cache loading.
Using std::stop_token instead of std::atomic_bool allows the usage of
other utilities like std::stop_callback.
These changes should help in reducing crashes/drivers panics that may
occur due to synchronization issues between the shader completion and
later access of the decoded texture.
* common: fs: fs_types: Create filesystem types
Contains various filesystem types used by the Common::FS library
* common: fs: fs_util: Add std::string to std::u8string conversion utility
* common: fs: path_util: Add utlity functions for paths
Contains various utility functions for getting or manipulating filesystem paths used by the Common::FS library
* common: fs: file: Rewrite the IOFile implementation
* common: fs: Reimplement Common::FS library using std::filesystem
* common: fs: fs_paths: Add fs_paths to replace common_paths
* common: fs: path_util: Add the rest of the path functions
* common: Remove the previous Common::FS implementation
* general: Remove unused fs includes
* string_util: Remove unused function and include
* nvidia_flags: Migrate to the new Common::FS library
* settings: Migrate to the new Common::FS library
* logging: backend: Migrate to the new Common::FS library
* core: Migrate to the new Common::FS library
* perf_stats: Migrate to the new Common::FS library
* reporter: Migrate to the new Common::FS library
* telemetry_session: Migrate to the new Common::FS library
* key_manager: Migrate to the new Common::FS library
* bis_factory: Migrate to the new Common::FS library
* registered_cache: Migrate to the new Common::FS library
* xts_archive: Migrate to the new Common::FS library
* service: acc: Migrate to the new Common::FS library
* applets/profile: Migrate to the new Common::FS library
* applets/web: Migrate to the new Common::FS library
* service: filesystem: Migrate to the new Common::FS library
* loader: Migrate to the new Common::FS library
* gl_shader_disk_cache: Migrate to the new Common::FS library
* nsight_aftermath_tracker: Migrate to the new Common::FS library
* vulkan_library: Migrate to the new Common::FS library
* configure_debug: Migrate to the new Common::FS library
* game_list_worker: Migrate to the new Common::FS library
* config: Migrate to the new Common::FS library
* configure_filesystem: Migrate to the new Common::FS library
* configure_per_game_addons: Migrate to the new Common::FS library
* configure_profile_manager: Migrate to the new Common::FS library
* configure_ui: Migrate to the new Common::FS library
* input_profiles: Migrate to the new Common::FS library
* yuzu_cmd: config: Migrate to the new Common::FS library
* yuzu_cmd: Migrate to the new Common::FS library
* vfs_real: Migrate to the new Common::FS library
* vfs: Migrate to the new Common::FS library
* vfs_libzip: Migrate to the new Common::FS library
* service: bcat: Migrate to the new Common::FS library
* yuzu: main: Migrate to the new Common::FS library
* vfs_real: Delete the contents of an existing file in CreateFile
Current usages of CreateFile expect to delete the contents of an existing file, retain this behavior for now.
* input_profiles: Don't iterate the input profile dir if it does not exist
Silences an error produced in the log if the directory does not exist.
* game_list_worker: Skip parsing file if the returned VfsFile is nullptr
Prevents crashes in GetLoader when the virtual file is nullptr
* common: fs: Validate paths for path length
* service: filesystem: Open the mod load directory as read only
The FPS counter was based on metrics in the nvdisp swapbuffers call. This metric would be accurate if the gpu thread/renderer were synchronous with the nvdisp service, but that's no longer the case.
This commit moves the frame counting responsibility onto the concrete renderers after their frame draw calls. Resulting in more meaningful metrics.
The displayed FPS is now made up of the average framerate between the previous and most recent update, in order to avoid distracting FPS counter updates when framerate is oscillating between close values.
The status bar update frequency was also changed from 2 seconds to 500ms.
Currently, the Windows versions of the Intel OpenGL driver and the AMD
proprietary OpenGL driver do not properly support (or in fact degrade)
when asynchronous shader compilation is enabled. This blocks
specifically those drivers from using this feature. This affects
AMDGPU-PRO on Linux, and AMD's and Intel's OpenGL drivers on Windows.
ASTC texture decoding is currently handled by a CPU decoder for GPU's without native ASTC decoding support (most desktop GPUs). This is the cause for noticeable performance degradation in titles which use the format extensively.
This commit adds support to accelerate ASTC decoding using a compute shader on OpenGL for GPUs without native support.
In order to force the BGRA8 conversion on Nvidia using OpenGL, we need to forbid texture copies and views with other formats.
This commit also adds a boolean relating to this, as this needs to be done only for the OpenGL api, Vulkan must remain unchanged.
OpenGL does not natively support BGR internal formats, which causes many BGR textures to render incorrectly, with Red and Blue channels swapped.
This commit aims to address this by swizzling the blue and red channels on texture copies when a BGR format is encountered.
Some games benefit from skipping caches (Pokémon Sword), and others
don't (Animal Crossing: New Horizons). Add an heuristic to decide this
at runtime.
The cache hit ratio has to be ~98% or better to not skip the cache.
There are 16 frames of buffer.
This creates non-sRGB texture views for sRGB texture formats to allow for interfacing with these views in compute shaders using imageLoad and imageStore.
Co-Authored-By: Rodrigo Locatti <reinuseslisp@airmail.cc>
Fix a tragic off-by-one condition that causes Vulkan's stream buffer to
think it's always full, using fallback memory. The OpenGL was also
affected by this bug to a lesser extent.
This uses a ring buffer similar to OpenGL's stream buffer for small
uploads. This stops us from allocating several small buffers, reducing
memory fragmentation and cache locality.
It uses dedicated allocations when possible.