This source file was utilizing its own version of the NSO header.
Instead of keeping this around, we can have the patch manager also use
the version of the header that we have defined in loader/nso.h
The total struct itself is 0x100 (256) bytes in size, so we should be
providing that amount of data.
Without the data, this can result in omitted data from the final loaded
NSO file.
Makes it more evident that one is for actual code and one is for actual
data. Mutable and static are less than ideal terms here, because
read-only data is technically not mutable, but we were mapping it with
that label.
In 93da8e0abfcdcc6e3cb5488a0db12373429f1377, the page table construct
was moved to the common library (which utilized these inclusions). Since
the move, nothing requires these headers to be included within the
memory header.
- GPU will be released on shutdown, before pages are unmapped.
- On subsequent runs, current_page_table will be not nullptr, but GPU might not be valid yet.
Given this is utilized by the loaders, this allows avoiding inclusion of
the kernel process definitions where avoidable.
This also keeps the loading format for all executable data separate from
the kernel objects.
Neither the NRO or NSO loaders actually make use of the functions or
members provided by the Linker interface, so we can just remove the
inheritance altogether.
This function passes in the desired main applet and library applet
volume levels. We can then just pass those values back within the
relevant volume getter functions, allowing us to unstub those as well.
The initial values for the library and main applet volumes differ. The
main applet volume is 0.25 by default, while the library applet volume
is initialized to 1.0 by default in the services themselves.
Rather than make a global accessor for this sort of thing. We can make
it a part of the thread interface itself. This allows getting rid of a
hidden global accessor in the kernel code.
This condition was checking against the nominal thread priority, whereas
the kernel itself checks against the current priority instead. We were
also assigning the nominal priority, when we should be assigning
current_priority, which takes priority inheritance into account.
This can lead to the incorrect priority being assigned to a thread.
Given we recursively update the relevant threads, we don't need to go
through the whole mutex waiter list. This matches what the kernel does
as well (only accessing the first entry within the waiting list).