yuzu/src/common/profiler.cpp

186 lines
5.8 KiB
C++
Raw Normal View History

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
2015-06-21 01:36:19 +03:00
#include <algorithm>
#include <cstddef>
#include <vector>
#include "common/assert.h"
#include "common/profiler.h"
#include "common/profiler_reporting.h"
2015-06-21 01:36:19 +03:00
#include "common/synchronized_wrapper.h"
#if defined(_MSC_VER) && _MSC_VER <= 1800 // MSVC 2013.
2015-06-21 01:36:19 +03:00
#define WIN32_LEAN_AND_MEAN
#include <Windows.h> // For QueryPerformanceCounter/Frequency
#endif
namespace Common {
namespace Profiling {
#if ENABLE_PROFILING
thread_local Timer* Timer::current_timer = nullptr;
#endif
#if defined(_MSC_VER) && _MSC_VER <= 1800 // MSVC 2013
QPCClock::time_point QPCClock::now() {
static LARGE_INTEGER freq;
// Use this dummy local static to ensure this gets initialized once.
static BOOL dummy = QueryPerformanceFrequency(&freq);
LARGE_INTEGER ticks;
QueryPerformanceCounter(&ticks);
// This is prone to overflow when multiplying, which is why I'm using micro instead of nano. The
// correct way to approach this would be to just return ticks as a time_point and then subtract
// and do this conversion when creating a duration from two time_points, however, as far as I
// could tell the C++ requirements for these types are incompatible with this approach.
return time_point(duration(ticks.QuadPart * std::micro::den / freq.QuadPart));
}
#endif
TimingCategory::TimingCategory(const char* name, TimingCategory* parent)
: accumulated_duration(0) {
ProfilingManager& manager = GetProfilingManager();
category_id = manager.RegisterTimingCategory(this, name);
if (parent != nullptr)
manager.SetTimingCategoryParent(category_id, parent->category_id);
}
ProfilingManager::ProfilingManager()
: last_frame_end(Clock::now()), this_frame_start(Clock::now()) {
}
unsigned int ProfilingManager::RegisterTimingCategory(TimingCategory* category, const char* name) {
TimingCategoryInfo info;
info.category = category;
info.name = name;
info.parent = TimingCategoryInfo::NO_PARENT;
unsigned int id = (unsigned int)timing_categories.size();
timing_categories.push_back(std::move(info));
return id;
}
void ProfilingManager::SetTimingCategoryParent(unsigned int category, unsigned int parent) {
ASSERT(category < timing_categories.size());
ASSERT(parent < timing_categories.size());
timing_categories[category].parent = parent;
}
void ProfilingManager::BeginFrame() {
this_frame_start = Clock::now();
}
void ProfilingManager::FinishFrame() {
Clock::time_point now = Clock::now();
results.interframe_time = now - last_frame_end;
results.frame_time = now - this_frame_start;
results.time_per_category.resize(timing_categories.size());
for (size_t i = 0; i < timing_categories.size(); ++i) {
results.time_per_category[i] = timing_categories[i].category->GetAccumulatedTime();
}
last_frame_end = now;
}
TimingResultsAggregator::TimingResultsAggregator(size_t window_size)
: max_window_size(window_size), window_size(0) {
interframe_times.resize(window_size, Duration::zero());
frame_times.resize(window_size, Duration::zero());
}
void TimingResultsAggregator::Clear() {
window_size = cursor = 0;
}
void TimingResultsAggregator::SetNumberOfCategories(size_t n) {
size_t old_size = times_per_category.size();
if (n == old_size)
return;
times_per_category.resize(n);
for (size_t i = old_size; i < n; ++i) {
times_per_category[i].resize(max_window_size, Duration::zero());
}
}
void TimingResultsAggregator::AddFrame(const ProfilingFrameResult& frame_result) {
SetNumberOfCategories(frame_result.time_per_category.size());
interframe_times[cursor] = frame_result.interframe_time;
frame_times[cursor] = frame_result.frame_time;
for (size_t i = 0; i < frame_result.time_per_category.size(); ++i) {
times_per_category[i][cursor] = frame_result.time_per_category[i];
}
++cursor;
if (cursor == max_window_size)
cursor = 0;
if (window_size < max_window_size)
++window_size;
}
static AggregatedDuration AggregateField(const std::vector<Duration>& v, size_t len) {
AggregatedDuration result;
result.avg = Duration::zero();
result.min = result.max = (len == 0 ? Duration::zero() : v[0]);
for (size_t i = 0; i < len; ++i) {
Duration value = v[i];
result.avg += value;
result.min = std::min(result.min, value);
result.max = std::max(result.max, value);
}
if (len != 0)
result.avg /= len;
return result;
}
static float tof(Common::Profiling::Duration dur) {
using FloatMs = std::chrono::duration<float, std::chrono::milliseconds::period>;
return std::chrono::duration_cast<FloatMs>(dur).count();
}
AggregatedFrameResult TimingResultsAggregator::GetAggregatedResults() const {
AggregatedFrameResult result;
result.interframe_time = AggregateField(interframe_times, window_size);
result.frame_time = AggregateField(frame_times, window_size);
if (result.interframe_time.avg != Duration::zero()) {
result.fps = 1000.0f / tof(result.interframe_time.avg);
} else {
result.fps = 0.0f;
}
result.time_per_category.resize(times_per_category.size());
for (size_t i = 0; i < times_per_category.size(); ++i) {
result.time_per_category[i] = AggregateField(times_per_category[i], window_size);
}
return result;
}
ProfilingManager& GetProfilingManager() {
// Takes advantage of "magic" static initialization for race-free initialization.
static ProfilingManager manager;
return manager;
}
SynchronizedRef<TimingResultsAggregator> GetTimingResultsAggregator() {
static SynchronizedWrapper<TimingResultsAggregator> aggregator(30);
return SynchronizedRef<TimingResultsAggregator>(aggregator);
}
} // namespace Profiling
} // namespace Common