2020-02-09 16:53:22 -04:00
|
|
|
// Copyright 2020 yuzu Emulator Project
|
|
|
|
// Licensed under GPLv2 or any later version
|
|
|
|
// Refer to the license.txt file included.
|
|
|
|
|
2021-01-01 23:28:55 +01:00
|
|
|
#include <array>
|
2020-02-09 16:53:22 -04:00
|
|
|
#include <chrono>
|
2021-01-01 23:28:55 +01:00
|
|
|
#include <limits>
|
2020-06-27 18:20:06 -04:00
|
|
|
#include <mutex>
|
2020-02-09 16:53:22 -04:00
|
|
|
#include <thread>
|
|
|
|
|
|
|
|
#ifdef _MSC_VER
|
|
|
|
#include <intrin.h>
|
2021-01-01 23:28:55 +01:00
|
|
|
|
|
|
|
#pragma intrinsic(__umulh)
|
|
|
|
#pragma intrinsic(_udiv128)
|
2020-02-09 16:53:22 -04:00
|
|
|
#else
|
|
|
|
#include <x86intrin.h>
|
|
|
|
#endif
|
|
|
|
|
2020-02-10 11:20:40 -04:00
|
|
|
#include "common/uint128.h"
|
2020-02-09 16:53:22 -04:00
|
|
|
#include "common/x64/native_clock.h"
|
|
|
|
|
2021-01-01 23:28:55 +01:00
|
|
|
namespace {
|
|
|
|
|
|
|
|
[[nodiscard]] u64 GetFixedPoint64Factor(u64 numerator, u64 divisor) {
|
|
|
|
#ifdef __SIZEOF_INT128__
|
|
|
|
const auto base = static_cast<unsigned __int128>(numerator) << 64ULL;
|
|
|
|
return static_cast<u64>(base / divisor);
|
|
|
|
#elif defined(_M_X64) || defined(_M_ARM64)
|
|
|
|
std::array<u64, 2> r = {0, numerator};
|
|
|
|
u64 remainder;
|
|
|
|
#if _MSC_VER < 1923
|
|
|
|
return udiv128(r[1], r[0], divisor, &remainder);
|
|
|
|
#else
|
|
|
|
return _udiv128(r[1], r[0], divisor, &remainder);
|
|
|
|
#endif
|
|
|
|
#else
|
|
|
|
// This one is bit more inaccurate.
|
|
|
|
return MultiplyAndDivide64(std::numeric_limits<u64>::max(), numerator, divisor);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
[[nodiscard]] u64 MultiplyHigh(u64 a, u64 b) {
|
|
|
|
#ifdef __SIZEOF_INT128__
|
|
|
|
return (static_cast<unsigned __int128>(a) * static_cast<unsigned __int128>(b)) >> 64;
|
|
|
|
#elif defined(_M_X64) || defined(_M_ARM64)
|
|
|
|
return __umulh(a, b); // MSVC
|
|
|
|
#else
|
|
|
|
// Generic fallback
|
|
|
|
const u64 a_lo = u32(a);
|
|
|
|
const u64 a_hi = a >> 32;
|
|
|
|
const u64 b_lo = u32(b);
|
|
|
|
const u64 b_hi = b >> 32;
|
|
|
|
|
|
|
|
const u64 a_x_b_hi = a_hi * b_hi;
|
|
|
|
const u64 a_x_b_mid = a_hi * b_lo;
|
|
|
|
const u64 b_x_a_mid = b_hi * a_lo;
|
|
|
|
const u64 a_x_b_lo = a_lo * b_lo;
|
|
|
|
|
|
|
|
const u64 carry_bit = (static_cast<u64>(static_cast<u32>(a_x_b_mid)) +
|
|
|
|
static_cast<u64>(static_cast<u32>(b_x_a_mid)) + (a_x_b_lo >> 32)) >>
|
|
|
|
32;
|
|
|
|
|
|
|
|
const u64 multhi = a_x_b_hi + (a_x_b_mid >> 32) + (b_x_a_mid >> 32) + carry_bit;
|
|
|
|
|
|
|
|
return multhi;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
2020-02-09 16:53:22 -04:00
|
|
|
namespace Common {
|
|
|
|
|
|
|
|
u64 EstimateRDTSCFrequency() {
|
|
|
|
const auto milli_10 = std::chrono::milliseconds{10};
|
|
|
|
// get current time
|
|
|
|
_mm_mfence();
|
|
|
|
const u64 tscStart = __rdtsc();
|
|
|
|
const auto startTime = std::chrono::high_resolution_clock::now();
|
|
|
|
// wait roughly 3 seconds
|
|
|
|
while (true) {
|
|
|
|
auto milli = std::chrono::duration_cast<std::chrono::milliseconds>(
|
|
|
|
std::chrono::high_resolution_clock::now() - startTime);
|
|
|
|
if (milli.count() >= 3000)
|
|
|
|
break;
|
|
|
|
std::this_thread::sleep_for(milli_10);
|
|
|
|
}
|
|
|
|
const auto endTime = std::chrono::high_resolution_clock::now();
|
|
|
|
_mm_mfence();
|
|
|
|
const u64 tscEnd = __rdtsc();
|
|
|
|
// calculate difference
|
|
|
|
const u64 timer_diff =
|
|
|
|
std::chrono::duration_cast<std::chrono::nanoseconds>(endTime - startTime).count();
|
|
|
|
const u64 tsc_diff = tscEnd - tscStart;
|
2020-02-10 11:20:40 -04:00
|
|
|
const u64 tsc_freq = MultiplyAndDivide64(tsc_diff, 1000000000ULL, timer_diff);
|
2020-02-09 16:53:22 -04:00
|
|
|
return tsc_freq;
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace X64 {
|
2020-11-25 15:21:03 -05:00
|
|
|
NativeClock::NativeClock(u64 emulated_cpu_frequency_, u64 emulated_clock_frequency_,
|
|
|
|
u64 rtsc_frequency_)
|
|
|
|
: WallClock(emulated_cpu_frequency_, emulated_clock_frequency_, true), rtsc_frequency{
|
|
|
|
rtsc_frequency_} {
|
2020-02-09 16:53:22 -04:00
|
|
|
_mm_mfence();
|
|
|
|
last_measure = __rdtsc();
|
|
|
|
accumulated_ticks = 0U;
|
2021-01-01 23:28:55 +01:00
|
|
|
ns_rtsc_factor = GetFixedPoint64Factor(1000000000, rtsc_frequency);
|
|
|
|
us_rtsc_factor = GetFixedPoint64Factor(1000000, rtsc_frequency);
|
|
|
|
ms_rtsc_factor = GetFixedPoint64Factor(1000, rtsc_frequency);
|
|
|
|
clock_rtsc_factor = GetFixedPoint64Factor(emulated_clock_frequency, rtsc_frequency);
|
|
|
|
cpu_rtsc_factor = GetFixedPoint64Factor(emulated_cpu_frequency, rtsc_frequency);
|
2020-02-09 16:53:22 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
u64 NativeClock::GetRTSC() {
|
2020-06-27 18:20:06 -04:00
|
|
|
std::scoped_lock scope{rtsc_serialize};
|
2020-02-09 16:53:22 -04:00
|
|
|
_mm_mfence();
|
|
|
|
const u64 current_measure = __rdtsc();
|
|
|
|
u64 diff = current_measure - last_measure;
|
|
|
|
diff = diff & ~static_cast<u64>(static_cast<s64>(diff) >> 63); // max(diff, 0)
|
|
|
|
if (current_measure > last_measure) {
|
|
|
|
last_measure = current_measure;
|
|
|
|
}
|
|
|
|
accumulated_ticks += diff;
|
2020-03-21 12:23:13 -04:00
|
|
|
/// The clock cannot be more precise than the guest timer, remove the lower bits
|
|
|
|
return accumulated_ticks & inaccuracy_mask;
|
2020-02-09 16:53:22 -04:00
|
|
|
}
|
|
|
|
|
2020-02-25 12:28:55 -04:00
|
|
|
void NativeClock::Pause(bool is_paused) {
|
|
|
|
if (!is_paused) {
|
|
|
|
_mm_mfence();
|
|
|
|
last_measure = __rdtsc();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2020-02-09 16:53:22 -04:00
|
|
|
std::chrono::nanoseconds NativeClock::GetTimeNS() {
|
|
|
|
const u64 rtsc_value = GetRTSC();
|
2021-01-01 23:28:55 +01:00
|
|
|
return std::chrono::nanoseconds{MultiplyHigh(rtsc_value, ns_rtsc_factor)};
|
2020-02-09 16:53:22 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
std::chrono::microseconds NativeClock::GetTimeUS() {
|
|
|
|
const u64 rtsc_value = GetRTSC();
|
2021-01-01 23:28:55 +01:00
|
|
|
return std::chrono::microseconds{MultiplyHigh(rtsc_value, us_rtsc_factor)};
|
2020-02-09 16:53:22 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
std::chrono::milliseconds NativeClock::GetTimeMS() {
|
|
|
|
const u64 rtsc_value = GetRTSC();
|
2021-01-01 23:28:55 +01:00
|
|
|
return std::chrono::milliseconds{MultiplyHigh(rtsc_value, ms_rtsc_factor)};
|
2020-02-09 16:53:22 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
u64 NativeClock::GetClockCycles() {
|
|
|
|
const u64 rtsc_value = GetRTSC();
|
2021-01-01 23:28:55 +01:00
|
|
|
return MultiplyHigh(rtsc_value, clock_rtsc_factor);
|
2020-02-09 16:53:22 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
u64 NativeClock::GetCPUCycles() {
|
|
|
|
const u64 rtsc_value = GetRTSC();
|
2021-01-01 23:28:55 +01:00
|
|
|
return MultiplyHigh(rtsc_value, cpu_rtsc_factor);
|
2020-02-09 16:53:22 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace X64
|
|
|
|
|
|
|
|
} // namespace Common
|