yuzu/src/core/crypto/key_manager.cpp

1052 lines
43 KiB
C++
Raw Normal View History

2018-07-28 06:55:23 +03:00
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <array>
#include <bitset>
#include <cctype>
2018-07-28 06:55:23 +03:00
#include <fstream>
#include <locale>
#include <map>
2018-07-28 06:55:23 +03:00
#include <sstream>
#include <string_view>
#include <tuple>
#include <vector>
#include <mbedtls/bignum.h>
#include <mbedtls/cipher.h>
#include <mbedtls/cmac.h>
#include <mbedtls/sha256.h>
#include "common/common_funcs.h"
#include "common/common_paths.h"
#include "common/file_util.h"
#include "common/hex_util.h"
#include "common/logging/log.h"
#include "core/crypto/aes_util.h"
2018-07-28 06:55:23 +03:00
#include "core/crypto/key_manager.h"
#include "core/crypto/partition_data_manager.h"
#include "core/file_sys/content_archive.h"
#include "core/file_sys/nca_metadata.h"
#include "core/file_sys/partition_filesystem.h"
#include "core/file_sys/registered_cache.h"
#include "core/hle/service/filesystem/filesystem.h"
#include "core/loader/loader.h"
#include "core/settings.h"
2018-07-28 06:55:23 +03:00
namespace Core::Crypto {
2018-07-28 06:55:23 +03:00
2018-09-24 03:51:44 +03:00
constexpr u64 CURRENT_CRYPTO_REVISION = 0x5;
using namespace Common;
const std::array<SHA256Hash, 2> eticket_source_hashes{
"B71DB271DC338DF380AA2C4335EF8873B1AFD408E80B3582D8719FC81C5E511C"_array32, // eticket_rsa_kek_source
"E8965A187D30E57869F562D04383C996DE487BBA5761363D2D4D32391866A85C"_array32, // eticket_rsa_kekek_source
};
const std::map<std::pair<S128KeyType, u64>, std::string> KEYS_VARIABLE_LENGTH{
{{S128KeyType::Master, 0}, "master_key_"},
{{S128KeyType::Package1, 0}, "package1_key_"},
{{S128KeyType::Package2, 0}, "package2_key_"},
{{S128KeyType::Titlekek, 0}, "titlekek_"},
{{S128KeyType::Source, static_cast<u64>(SourceKeyType::Keyblob)}, "keyblob_key_source_"},
{{S128KeyType::Keyblob, 0}, "keyblob_key_"},
{{S128KeyType::KeyblobMAC, 0}, "keyblob_mac_key_"},
};
Key128 GenerateKeyEncryptionKey(Key128 source, Key128 master, Key128 kek_seed, Key128 key_seed) {
Key128 out{};
AESCipher<Key128> cipher1(master, Mode::ECB);
cipher1.Transcode(kek_seed.data(), kek_seed.size(), out.data(), Op::Decrypt);
AESCipher<Key128> cipher2(out, Mode::ECB);
cipher2.Transcode(source.data(), source.size(), out.data(), Op::Decrypt);
if (key_seed != Key128{}) {
AESCipher<Key128> cipher3(out, Mode::ECB);
cipher3.Transcode(key_seed.data(), key_seed.size(), out.data(), Op::Decrypt);
}
return out;
}
Key128 DeriveKeyblobKey(const Key128& sbk, const Key128& tsec, Key128 source) {
2018-09-24 03:51:44 +03:00
AESCipher<Key128> sbk_cipher(sbk, Mode::ECB);
AESCipher<Key128> tsec_cipher(tsec, Mode::ECB);
tsec_cipher.Transcode(source.data(), source.size(), source.data(), Op::Decrypt);
sbk_cipher.Transcode(source.data(), source.size(), source.data(), Op::Decrypt);
return source;
}
Key128 DeriveMasterKey(const std::array<u8, 0x90>& keyblob, const Key128& master_source) {
Key128 master_root;
std::memcpy(master_root.data(), keyblob.data(), sizeof(Key128));
AESCipher<Key128> master_cipher(master_root, Mode::ECB);
Key128 master{};
master_cipher.Transcode(master_source.data(), master_source.size(), master.data(), Op::Decrypt);
return master;
}
std::array<u8, 144> DecryptKeyblob(const std::array<u8, 176>& encrypted_keyblob,
const Key128& key) {
std::array<u8, 0x90> keyblob;
AESCipher<Key128> cipher(key, Mode::CTR);
cipher.SetIV(std::vector<u8>(encrypted_keyblob.data() + 0x10, encrypted_keyblob.data() + 0x20));
cipher.Transcode(encrypted_keyblob.data() + 0x20, keyblob.size(), keyblob.data(), Op::Decrypt);
return keyblob;
}
void KeyManager::DeriveGeneralPurposeKeys(std::size_t crypto_revision) {
const auto kek_generation_source =
GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKekGeneration));
const auto key_generation_source =
GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKeyGeneration));
if (HasKey(S128KeyType::Master, crypto_revision)) {
for (auto kak_type :
{KeyAreaKeyType::Application, KeyAreaKeyType::Ocean, KeyAreaKeyType::System}) {
if (HasKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::KeyAreaKey),
static_cast<u64>(kak_type))) {
const auto source =
GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::KeyAreaKey),
static_cast<u64>(kak_type));
const auto kek =
GenerateKeyEncryptionKey(source, GetKey(S128KeyType::Master, crypto_revision),
kek_generation_source, key_generation_source);
SetKey(S128KeyType::KeyArea, kek, crypto_revision, static_cast<u64>(kak_type));
}
}
AESCipher<Key128> master_cipher(GetKey(S128KeyType::Master, crypto_revision), Mode::ECB);
for (auto key_type : {SourceKeyType::Titlekek, SourceKeyType::Package2}) {
if (HasKey(S128KeyType::Source, static_cast<u64>(key_type))) {
Key128 key{};
master_cipher.Transcode(
GetKey(S128KeyType::Source, static_cast<u64>(key_type)).data(), key.size(),
key.data(), Op::Decrypt);
SetKey(key_type == SourceKeyType::Titlekek ? S128KeyType::Titlekek
: S128KeyType::Package2,
key, crypto_revision);
}
}
}
}
Key128 DeriveKeyblobMACKey(const Key128& keyblob_key, const Key128& mac_source) {
AESCipher<Key128> mac_cipher(keyblob_key, Mode::ECB);
Key128 mac_key{};
mac_cipher.Transcode(mac_source.data(), mac_key.size(), mac_key.data(), Op::Decrypt);
return mac_key;
}
boost::optional<Key128> DeriveSDSeed() {
const FileUtil::IOFile save_43(FileUtil::GetUserPath(FileUtil::UserPath::NANDDir) +
"/system/save/8000000000000043",
"rb+");
if (!save_43.IsOpen())
return boost::none;
const FileUtil::IOFile sd_private(
FileUtil::GetUserPath(FileUtil::UserPath::SDMCDir) + "/Nintendo/Contents/private", "rb+");
if (!sd_private.IsOpen())
return boost::none;
std::array<u8, 0x10> private_seed{};
if (sd_private.ReadBytes(private_seed.data(), private_seed.size()) != private_seed.size()) {
return boost::none;
}
std::array<u8, 0x10> buffer{};
std::size_t offset = 0;
for (; offset + 0x10 < save_43.GetSize(); ++offset) {
if (!save_43.Seek(offset, SEEK_SET)) {
return boost::none;
}
save_43.ReadBytes(buffer.data(), buffer.size());
if (buffer == private_seed) {
break;
}
}
if (!save_43.Seek(offset + 0x10, SEEK_SET)) {
return boost::none;
}
Key128 seed{};
if (save_43.ReadBytes(seed.data(), seed.size()) != seed.size()) {
return boost::none;
}
return seed;
}
2018-09-24 03:31:00 +03:00
Loader::ResultStatus DeriveSDKeys(std::array<Key256, 2>& sd_keys, KeyManager& keys) {
if (!keys.HasKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::SDKek)))
return Loader::ResultStatus::ErrorMissingSDKEKSource;
2018-09-24 03:31:00 +03:00
if (!keys.HasKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKekGeneration)))
return Loader::ResultStatus::ErrorMissingAESKEKGenerationSource;
if (!keys.HasKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKeyGeneration)))
return Loader::ResultStatus::ErrorMissingAESKeyGenerationSource;
const auto sd_kek_source =
2018-09-24 03:31:00 +03:00
keys.GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::SDKek));
const auto aes_kek_gen =
2018-09-24 03:31:00 +03:00
keys.GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKekGeneration));
const auto aes_key_gen =
keys.GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKeyGeneration));
const auto master_00 = keys.GetKey(S128KeyType::Master);
const auto sd_kek =
GenerateKeyEncryptionKey(sd_kek_source, master_00, aes_kek_gen, aes_key_gen);
2018-09-24 03:31:00 +03:00
keys.SetKey(S128KeyType::SDKek, sd_kek);
if (!keys.HasKey(S128KeyType::SDSeed))
return Loader::ResultStatus::ErrorMissingSDSeed;
const auto sd_seed = keys.GetKey(S128KeyType::SDSeed);
if (!keys.HasKey(S256KeyType::SDKeySource, static_cast<u64>(SDKeyType::Save)))
return Loader::ResultStatus::ErrorMissingSDSaveKeySource;
if (!keys.HasKey(S256KeyType::SDKeySource, static_cast<u64>(SDKeyType::NCA)))
return Loader::ResultStatus::ErrorMissingSDNCAKeySource;
std::array<Key256, 2> sd_key_sources{
keys.GetKey(S256KeyType::SDKeySource, static_cast<u64>(SDKeyType::Save)),
keys.GetKey(S256KeyType::SDKeySource, static_cast<u64>(SDKeyType::NCA)),
};
// Combine sources and seed
for (auto& source : sd_key_sources) {
for (std::size_t i = 0; i < source.size(); ++i)
source[i] ^= sd_seed[i & 0xF];
}
AESCipher<Key128> cipher(sd_kek, Mode::ECB);
// The transform manipulates sd_keys as part of the Transcode, so the return/output is
// unnecessary. This does not alter sd_keys_sources.
std::transform(sd_key_sources.begin(), sd_key_sources.end(), sd_keys.begin(),
sd_key_sources.begin(), [&cipher](const Key256& source, Key256& out) {
cipher.Transcode(source.data(), source.size(), out.data(), Op::Decrypt);
return source; ///< Return unaltered source to satisfy output requirement.
});
keys.SetKey(S256KeyType::SDKey, sd_keys[0], static_cast<u64>(SDKeyType::Save));
keys.SetKey(S256KeyType::SDKey, sd_keys[1], static_cast<u64>(SDKeyType::NCA));
return Loader::ResultStatus::Success;
}
std::vector<TicketRaw> GetTicketblob(const FileUtil::IOFile& ticket_save) {
if (!ticket_save.IsOpen())
return {};
std::vector<u8> buffer(ticket_save.GetSize());
if (ticket_save.ReadBytes(buffer.data(), buffer.size()) != buffer.size()) {
return {};
}
std::vector<TicketRaw> out;
u32 magic{};
for (std::size_t offset = 0; offset + 0x4 < buffer.size(); ++offset) {
if (buffer[offset] == 0x4 && buffer[offset + 1] == 0x0 && buffer[offset + 2] == 0x1 &&
buffer[offset + 3] == 0x0) {
out.emplace_back();
auto& next = out.back();
std::memcpy(&next, buffer.data() + offset, sizeof(TicketRaw));
offset += next.size();
}
}
return out;
}
template <size_t size>
static std::array<u8, size> operator^(const std::array<u8, size>& lhs,
const std::array<u8, size>& rhs) {
std::array<u8, size> out{};
std::transform(lhs.begin(), lhs.end(), rhs.begin(), out.begin(), std::bit_xor<>());
return out;
}
template <size_t target_size, size_t in_size>
static std::array<u8, target_size> MGF1(const std::array<u8, in_size>& seed) {
// Avoids truncation overflow within the loop below.
static_assert(target_size <= 0xFF);
std::array<u8, in_size + 4> seed_exp{};
std::memcpy(seed_exp.data(), seed.data(), in_size);
std::vector<u8> out;
size_t i = 0;
while (out.size() < target_size) {
out.resize(out.size() + 0x20);
seed_exp[in_size + 3] = static_cast<u8>(i);
mbedtls_sha256(seed_exp.data(), seed_exp.size(), out.data() + out.size() - 0x20, 0);
++i;
}
std::array<u8, target_size> target;
std::memcpy(target.data(), out.data(), target_size);
return target;
}
template <size_t size>
static boost::optional<u64> FindTicketOffset(const std::array<u8, size>& data) {
u64 offset = 0;
for (size_t i = 0x20; i < data.size() - 0x10; ++i) {
if (data[i] == 0x1) {
offset = i + 1;
break;
} else if (data[i] != 0x0) {
return boost::none;
}
}
return offset;
}
boost::optional<std::pair<Key128, Key128>> ParseTicket(const TicketRaw& ticket,
const RSAKeyPair<2048>& key) {
u32 cert_authority;
std::memcpy(&cert_authority, ticket.data() + 0x140, sizeof(cert_authority));
if (cert_authority == 0)
return boost::none;
if (cert_authority != Common::MakeMagic('R', 'o', 'o', 't')) {
LOG_INFO(Crypto,
"Attempting to parse ticket with non-standard certificate authority {:08X}.",
cert_authority);
}
Key128 rights_id;
std::memcpy(rights_id.data(), ticket.data() + 0x2A0, sizeof(Key128));
if (rights_id == Key128{})
return boost::none;
Key128 key_temp{};
if (!std::any_of(ticket.begin() + 0x190, ticket.begin() + 0x280, [](u8 b) { return b != 0; })) {
std::memcpy(key_temp.data(), ticket.data() + 0x180, key_temp.size());
return std::make_pair(rights_id, key_temp);
}
mbedtls_mpi D; // RSA Private Exponent
mbedtls_mpi N; // RSA Modulus
mbedtls_mpi S; // Input
mbedtls_mpi M; // Output
mbedtls_mpi_init(&D);
mbedtls_mpi_init(&N);
mbedtls_mpi_init(&S);
mbedtls_mpi_init(&M);
mbedtls_mpi_read_binary(&D, key.decryption_key.data(), key.decryption_key.size());
mbedtls_mpi_read_binary(&N, key.modulus.data(), key.modulus.size());
mbedtls_mpi_read_binary(&S, ticket.data() + 0x180, 0x100);
mbedtls_mpi_exp_mod(&M, &S, &D, &N, nullptr);
std::array<u8, 0x100> rsa_step;
mbedtls_mpi_write_binary(&M, rsa_step.data(), rsa_step.size());
u8 m_0 = rsa_step[0];
std::array<u8, 0x20> m_1;
std::memcpy(m_1.data(), rsa_step.data() + 0x01, m_1.size());
std::array<u8, 0xDF> m_2;
std::memcpy(m_2.data(), rsa_step.data() + 0x21, m_2.size());
if (m_0 != 0)
return boost::none;
m_1 = m_1 ^ MGF1<0x20>(m_2);
m_2 = m_2 ^ MGF1<0xDF>(m_1);
const auto offset = FindTicketOffset(m_2);
if (offset == boost::none)
return boost::none;
ASSERT(offset.get() > 0);
std::memcpy(key_temp.data(), m_2.data() + offset.get(), key_temp.size());
return std::make_pair(rights_id, key_temp);
}
KeyManager::KeyManager() {
// Initialize keys
const std::string hactool_keys_dir = FileUtil::GetHactoolConfigurationPath();
const std::string yuzu_keys_dir = FileUtil::GetUserPath(FileUtil::UserPath::KeysDir);
if (Settings::values.use_dev_keys) {
dev_mode = true;
AttemptLoadKeyFile(yuzu_keys_dir, hactool_keys_dir, "dev.keys", false);
AttemptLoadKeyFile(yuzu_keys_dir, yuzu_keys_dir, "dev.keys_autogenerated", false);
} else {
dev_mode = false;
AttemptLoadKeyFile(yuzu_keys_dir, hactool_keys_dir, "prod.keys", false);
AttemptLoadKeyFile(yuzu_keys_dir, yuzu_keys_dir, "prod.keys_autogenerated", false);
}
AttemptLoadKeyFile(yuzu_keys_dir, hactool_keys_dir, "title.keys", true);
AttemptLoadKeyFile(yuzu_keys_dir, yuzu_keys_dir, "title.keys_autogenerated", true);
AttemptLoadKeyFile(yuzu_keys_dir, hactool_keys_dir, "console.keys", false);
AttemptLoadKeyFile(yuzu_keys_dir, yuzu_keys_dir, "console.keys_autogenerated", false);
2018-07-28 06:55:23 +03:00
}
static bool ValidCryptoRevisionString(std::string_view base, size_t begin, size_t length) {
if (base.size() < begin + length)
return false;
return std::all_of(base.begin() + begin, base.begin() + begin + length,
[](u8 c) { return std::isdigit(c); });
}
void KeyManager::LoadFromFile(const std::string& filename, bool is_title_keys) {
2018-07-28 06:55:23 +03:00
std::ifstream file(filename);
if (!file.is_open())
return;
std::string line;
while (std::getline(file, line)) {
std::vector<std::string> out;
std::stringstream stream(line);
std::string item;
while (std::getline(stream, item, '='))
out.push_back(std::move(item));
if (out.size() != 2)
continue;
out[0].erase(std::remove(out[0].begin(), out[0].end(), ' '), out[0].end());
out[1].erase(std::remove(out[1].begin(), out[1].end(), ' '), out[1].end());
if (out[0].compare(0, 1, "#") == 0)
continue;
2018-07-28 06:55:23 +03:00
if (is_title_keys) {
auto rights_id_raw = Common::HexStringToArray<16>(out[0]);
u128 rights_id{};
std::memcpy(rights_id.data(), rights_id_raw.data(), rights_id_raw.size());
Key128 key = Common::HexStringToArray<16>(out[1]);
s128_keys[{S128KeyType::Titlekey, rights_id[1], rights_id[0]}] = key;
2018-07-28 06:55:23 +03:00
} else {
std::transform(out[0].begin(), out[0].end(), out[0].begin(), ::tolower);
if (s128_file_id.find(out[0]) != s128_file_id.end()) {
const auto index = s128_file_id.at(out[0]);
Key128 key = Common::HexStringToArray<16>(out[1]);
s128_keys[{index.type, index.field1, index.field2}] = key;
2018-07-28 06:55:23 +03:00
} else if (s256_file_id.find(out[0]) != s256_file_id.end()) {
const auto index = s256_file_id.at(out[0]);
Key256 key = Common::HexStringToArray<32>(out[1]);
s256_keys[{index.type, index.field1, index.field2}] = key;
} else if (out[0].compare(0, 8, "keyblob_") == 0 &&
out[0].compare(0, 9, "keyblob_k") != 0) {
if (!ValidCryptoRevisionString(out[0], 8, 2))
continue;
const auto index = std::stoul(out[0].substr(8, 2), nullptr, 16);
keyblobs[index] = Common::HexStringToArray<0x90>(out[1]);
} else if (out[0].compare(0, 18, "encrypted_keyblob_") == 0) {
if (!ValidCryptoRevisionString(out[0], 18, 2))
continue;
const auto index = std::stoul(out[0].substr(18, 2), nullptr, 16);
encrypted_keyblobs[index] = Common::HexStringToArray<0xB0>(out[1]);
} else {
for (const auto& kv : KEYS_VARIABLE_LENGTH) {
if (!ValidCryptoRevisionString(out[0], kv.second.size(), 2))
continue;
if (out[0].compare(0, kv.second.size(), kv.second) == 0) {
const auto index =
std::stoul(out[0].substr(kv.second.size(), 2), nullptr, 16);
const auto sub = kv.first.second;
if (sub == 0) {
s128_keys[{kv.first.first, index, 0}] =
Common::HexStringToArray<16>(out[1]);
} else {
s128_keys[{kv.first.first, kv.first.second, index}] =
Common::HexStringToArray<16>(out[1]);
}
break;
}
}
static constexpr std::array<const char*, 3> kak_names = {
"key_area_key_application_", "key_area_key_ocean_", "key_area_key_system_"};
for (size_t j = 0; j < kak_names.size(); ++j) {
const auto& match = kak_names[j];
if (out[0].compare(0, std::strlen(match), match) == 0) {
const auto index =
std::stoul(out[0].substr(std::strlen(match), 2), nullptr, 16);
s128_keys[{S128KeyType::KeyArea, index, j}] =
Common::HexStringToArray<16>(out[1]);
}
}
2018-07-28 06:55:23 +03:00
}
}
}
}
void KeyManager::AttemptLoadKeyFile(const std::string& dir1, const std::string& dir2,
const std::string& filename, bool title) {
if (FileUtil::Exists(dir1 + DIR_SEP + filename))
LoadFromFile(dir1 + DIR_SEP + filename, title);
else if (FileUtil::Exists(dir2 + DIR_SEP + filename))
LoadFromFile(dir2 + DIR_SEP + filename, title);
}
bool KeyManager::BaseDeriveNecessary() const {
const auto check_key_existence = [this](auto key_type, u64 index1 = 0, u64 index2 = 0) {
return !HasKey(key_type, index1, index2);
};
if (check_key_existence(S256KeyType::Header))
return true;
for (size_t i = 0; i < CURRENT_CRYPTO_REVISION; ++i) {
if (check_key_existence(S128KeyType::Master, i) ||
check_key_existence(S128KeyType::KeyArea, i,
static_cast<u64>(KeyAreaKeyType::Application)) ||
check_key_existence(S128KeyType::KeyArea, i, static_cast<u64>(KeyAreaKeyType::Ocean)) ||
check_key_existence(S128KeyType::KeyArea, i,
static_cast<u64>(KeyAreaKeyType::System)) ||
check_key_existence(S128KeyType::Titlekek, i))
return true;
}
return false;
}
bool KeyManager::HasKey(S128KeyType id, u64 field1, u64 field2) const {
2018-07-28 06:55:23 +03:00
return s128_keys.find({id, field1, field2}) != s128_keys.end();
}
bool KeyManager::HasKey(S256KeyType id, u64 field1, u64 field2) const {
2018-07-28 06:55:23 +03:00
return s256_keys.find({id, field1, field2}) != s256_keys.end();
}
Key128 KeyManager::GetKey(S128KeyType id, u64 field1, u64 field2) const {
2018-07-28 06:55:23 +03:00
if (!HasKey(id, field1, field2))
return {};
return s128_keys.at({id, field1, field2});
2018-07-28 06:55:23 +03:00
}
Key256 KeyManager::GetKey(S256KeyType id, u64 field1, u64 field2) const {
2018-07-28 06:55:23 +03:00
if (!HasKey(id, field1, field2))
return {};
return s256_keys.at({id, field1, field2});
2018-07-28 06:55:23 +03:00
}
2018-09-24 03:57:20 +03:00
Key256 KeyManager::GetBISKey(u8 partition_id) const {
Key256 out{};
for (const auto& bis_type : {BISKeyType::Crypto, BISKeyType::Tweak}) {
if (HasKey(S128KeyType::BIS, partition_id, static_cast<u64>(bis_type))) {
std::memcpy(
out.data() + sizeof(Key128) * static_cast<u64>(bis_type),
s128_keys.at({S128KeyType::BIS, partition_id, static_cast<u64>(bis_type)}).data(),
sizeof(Key128));
}
}
return out;
}
template <size_t Size>
void KeyManager::WriteKeyToFile(KeyCategory category, std::string_view keyname,
const std::array<u8, Size>& key) {
const std::string yuzu_keys_dir = FileUtil::GetUserPath(FileUtil::UserPath::KeysDir);
std::string filename = "title.keys_autogenerated";
if (category == KeyCategory::Standard)
filename = dev_mode ? "dev.keys_autogenerated" : "prod.keys_autogenerated";
else if (category == KeyCategory::Console)
filename = "console.keys_autogenerated";
const auto add_info_text = !FileUtil::Exists(yuzu_keys_dir + DIR_SEP + filename);
FileUtil::CreateFullPath(yuzu_keys_dir + DIR_SEP + filename);
std::ofstream file(yuzu_keys_dir + DIR_SEP + filename, std::ios::app);
if (!file.is_open())
return;
if (add_info_text) {
file
<< "# This file is autogenerated by Yuzu\n"
<< "# It serves to store keys that were automatically generated from the normal keys\n"
<< "# If you are experiencing issues involving keys, it may help to delete this file\n";
}
file << fmt::format("\n{} = {}", keyname, Common::HexArrayToString(key));
AttemptLoadKeyFile(yuzu_keys_dir, yuzu_keys_dir, filename, category == KeyCategory::Title);
}
2018-07-28 06:55:23 +03:00
void KeyManager::SetKey(S128KeyType id, Key128 key, u64 field1, u64 field2) {
if (s128_keys.find({id, field1, field2}) != s128_keys.end())
return;
if (id == S128KeyType::Titlekey) {
Key128 rights_id;
std::memcpy(rights_id.data(), &field2, sizeof(u64));
std::memcpy(rights_id.data() + sizeof(u64), &field1, sizeof(u64));
WriteKeyToFile(KeyCategory::Title, Common::HexArrayToString(rights_id), key);
}
auto category = KeyCategory::Standard;
if (id == S128KeyType::Keyblob || id == S128KeyType::KeyblobMAC || id == S128KeyType::TSEC ||
id == S128KeyType::SecureBoot || id == S128KeyType::SDSeed || id == S128KeyType::BIS) {
category = KeyCategory::Console;
}
const auto iter2 = std::find_if(
s128_file_id.begin(), s128_file_id.end(),
[&id, &field1, &field2](const std::pair<std::string, KeyIndex<S128KeyType>> elem) {
return std::tie(elem.second.type, elem.second.field1, elem.second.field2) ==
std::tie(id, field1, field2);
});
if (iter2 != s128_file_id.end())
WriteKeyToFile(category, iter2->first, key);
// Variable cases
if (id == S128KeyType::KeyArea) {
static constexpr std::array<const char*, 3> kak_names = {"key_area_key_application_{:02X}",
"key_area_key_ocean_{:02X}",
"key_area_key_system_{:02X}"};
WriteKeyToFile(category, fmt::format(kak_names.at(field2), field1), key);
} else if (id == S128KeyType::Master) {
WriteKeyToFile(category, fmt::format("master_key_{:02X}", field1), key);
} else if (id == S128KeyType::Package1) {
WriteKeyToFile(category, fmt::format("package1_key_{:02X}", field1), key);
} else if (id == S128KeyType::Package2) {
WriteKeyToFile(category, fmt::format("package2_key_{:02X}", field1), key);
} else if (id == S128KeyType::Titlekek) {
WriteKeyToFile(category, fmt::format("titlekek_{:02X}", field1), key);
} else if (id == S128KeyType::Keyblob) {
WriteKeyToFile(category, fmt::format("keyblob_key_{:02X}", field1), key);
} else if (id == S128KeyType::KeyblobMAC) {
WriteKeyToFile(category, fmt::format("keyblob_mac_key_{:02X}", field1), key);
} else if (id == S128KeyType::Source && field1 == static_cast<u64>(SourceKeyType::Keyblob)) {
WriteKeyToFile(category, fmt::format("keyblob_key_source_{:02X}", field2), key);
}
2018-07-28 06:55:23 +03:00
s128_keys[{id, field1, field2}] = key;
}
void KeyManager::SetKey(S256KeyType id, Key256 key, u64 field1, u64 field2) {
if (s256_keys.find({id, field1, field2}) != s256_keys.end())
return;
const auto iter = std::find_if(
s256_file_id.begin(), s256_file_id.end(),
[&id, &field1, &field2](const std::pair<std::string, KeyIndex<S256KeyType>> elem) {
return std::tie(elem.second.type, elem.second.field1, elem.second.field2) ==
std::tie(id, field1, field2);
});
if (iter != s256_file_id.end())
WriteKeyToFile(KeyCategory::Standard, iter->first, key);
2018-07-28 06:55:23 +03:00
s256_keys[{id, field1, field2}] = key;
}
bool KeyManager::KeyFileExists(bool title) {
const std::string hactool_keys_dir = FileUtil::GetHactoolConfigurationPath();
const std::string yuzu_keys_dir = FileUtil::GetUserPath(FileUtil::UserPath::KeysDir);
if (title) {
return FileUtil::Exists(hactool_keys_dir + DIR_SEP + "title.keys") ||
FileUtil::Exists(yuzu_keys_dir + DIR_SEP + "title.keys");
}
if (Settings::values.use_dev_keys) {
return FileUtil::Exists(hactool_keys_dir + DIR_SEP + "dev.keys") ||
FileUtil::Exists(yuzu_keys_dir + DIR_SEP + "dev.keys");
}
return FileUtil::Exists(hactool_keys_dir + DIR_SEP + "prod.keys") ||
FileUtil::Exists(yuzu_keys_dir + DIR_SEP + "prod.keys");
}
void KeyManager::DeriveSDSeedLazy() {
if (HasKey(S128KeyType::SDSeed))
return;
const auto res = DeriveSDSeed();
if (res != boost::none)
SetKey(S128KeyType::SDSeed, res.get());
}
static Key128 CalculateCMAC(const u8* source, size_t size, const Key128& key) {
Key128 out{};
mbedtls_cipher_cmac(mbedtls_cipher_info_from_type(MBEDTLS_CIPHER_AES_128_ECB), key.data(),
key.size() * 8, source, size, out.data());
return out;
}
void KeyManager::DeriveBase() {
if (!BaseDeriveNecessary())
return;
if (!HasKey(S128KeyType::SecureBoot) || !HasKey(S128KeyType::TSEC))
return;
const auto has_bis = [this](u64 id) {
return HasKey(S128KeyType::BIS, id, static_cast<u64>(BISKeyType::Crypto)) &&
HasKey(S128KeyType::BIS, id, static_cast<u64>(BISKeyType::Tweak));
};
const auto copy_bis = [this](u64 id_from, u64 id_to) {
SetKey(S128KeyType::BIS,
GetKey(S128KeyType::BIS, id_from, static_cast<u64>(BISKeyType::Crypto)), id_to,
static_cast<u64>(BISKeyType::Crypto));
SetKey(S128KeyType::BIS,
GetKey(S128KeyType::BIS, id_from, static_cast<u64>(BISKeyType::Tweak)), id_to,
static_cast<u64>(BISKeyType::Tweak));
};
if (has_bis(2) && !has_bis(3))
copy_bis(2, 3);
else if (has_bis(3) && !has_bis(2))
copy_bis(3, 2);
std::bitset<32> revisions(0xFFFFFFFF);
for (size_t i = 0; i < revisions.size(); ++i) {
if (!HasKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::Keyblob), i) ||
encrypted_keyblobs[i] == std::array<u8, 0xB0>{}) {
revisions.reset(i);
}
}
if (!revisions.any())
return;
const auto sbk = GetKey(S128KeyType::SecureBoot);
const auto tsec = GetKey(S128KeyType::TSEC);
for (size_t i = 0; i < revisions.size(); ++i) {
if (!revisions[i])
continue;
// Derive keyblob key
const auto key = DeriveKeyblobKey(
sbk, tsec, GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::Keyblob), i));
SetKey(S128KeyType::Keyblob, key, i);
// Derive keyblob MAC key
if (!HasKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::KeyblobMAC)))
continue;
const auto mac_key = DeriveKeyblobMACKey(
key, GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::KeyblobMAC)));
SetKey(S128KeyType::KeyblobMAC, mac_key, i);
Key128 cmac = CalculateCMAC(encrypted_keyblobs[i].data() + 0x10, 0xA0, mac_key);
if (std::memcmp(cmac.data(), encrypted_keyblobs[i].data(), cmac.size()) != 0)
continue;
// Decrypt keyblob
if (keyblobs[i] == std::array<u8, 0x90>{}) {
keyblobs[i] = DecryptKeyblob(encrypted_keyblobs[i], key);
WriteKeyToFile<0x90>(KeyCategory::Console, fmt::format("keyblob_{:02X}", i),
keyblobs[i]);
}
Key128 package1;
std::memcpy(package1.data(), keyblobs[i].data() + 0x80, sizeof(Key128));
SetKey(S128KeyType::Package1, package1, i);
// Derive master key
if (HasKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::Master))) {
SetKey(S128KeyType::Master,
DeriveMasterKey(keyblobs[i], GetKey(S128KeyType::Source,
static_cast<u64>(SourceKeyType::Master))),
i);
}
}
revisions.set();
for (size_t i = 0; i < revisions.size(); ++i) {
if (!HasKey(S128KeyType::Master, i))
revisions.reset(i);
}
if (!revisions.any())
return;
for (size_t i = 0; i < revisions.size(); ++i) {
if (!revisions[i])
continue;
// Derive general purpose keys
DeriveGeneralPurposeKeys(i);
}
if (HasKey(S128KeyType::Master, 0) &&
HasKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKeyGeneration)) &&
HasKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKekGeneration)) &&
HasKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::HeaderKek)) &&
HasKey(S256KeyType::HeaderSource)) {
const auto header_kek = GenerateKeyEncryptionKey(
GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::HeaderKek)),
GetKey(S128KeyType::Master, 0),
GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKekGeneration)),
GetKey(S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKeyGeneration)));
SetKey(S128KeyType::HeaderKek, header_kek);
AESCipher<Key128> header_cipher(header_kek, Mode::ECB);
Key256 out = GetKey(S256KeyType::HeaderSource);
header_cipher.Transcode(out.data(), out.size(), out.data(), Op::Decrypt);
SetKey(S256KeyType::Header, out);
}
}
void KeyManager::DeriveETicket(PartitionDataManager& data) {
// ETicket keys
const auto es = Service::FileSystem::GetUnionContents()->GetEntry(
0x0100000000000033, FileSys::ContentRecordType::Program);
if (es == nullptr)
return;
const auto exefs = es->GetExeFS();
if (exefs == nullptr)
return;
const auto main = exefs->GetFile("main");
if (main == nullptr)
return;
const auto bytes = main->ReadAllBytes();
const auto eticket_kek = FindKeyFromHex16(bytes, eticket_source_hashes[0]);
const auto eticket_kekek = FindKeyFromHex16(bytes, eticket_source_hashes[1]);
const auto seed3 = data.GetRSAKekSeed3();
const auto mask0 = data.GetRSAKekMask0();
if (eticket_kek != Key128{})
SetKey(S128KeyType::Source, eticket_kek, static_cast<size_t>(SourceKeyType::ETicketKek));
if (eticket_kekek != Key128{}) {
SetKey(S128KeyType::Source, eticket_kekek,
static_cast<size_t>(SourceKeyType::ETicketKekek));
}
if (seed3 != Key128{})
SetKey(S128KeyType::RSAKek, seed3, static_cast<size_t>(RSAKekType::Seed3));
if (mask0 != Key128{})
SetKey(S128KeyType::RSAKek, mask0, static_cast<size_t>(RSAKekType::Mask0));
if (eticket_kek == Key128{} || eticket_kekek == Key128{} || seed3 == Key128{} ||
mask0 == Key128{}) {
return;
}
Key128 rsa_oaep_kek{};
std::transform(seed3.begin(), seed3.end(), mask0.begin(), rsa_oaep_kek.begin(),
std::bit_xor<>());
if (rsa_oaep_kek == Key128{})
return;
SetKey(S128KeyType::Source, rsa_oaep_kek,
static_cast<u64>(SourceKeyType::RSAOaepKekGeneration));
Key128 temp_kek{};
Key128 temp_kekek{};
Key128 eticket_final{};
// Derive ETicket RSA Kek
AESCipher<Key128> es_master(GetKey(S128KeyType::Master), Mode::ECB);
es_master.Transcode(rsa_oaep_kek.data(), rsa_oaep_kek.size(), temp_kek.data(), Op::Decrypt);
AESCipher<Key128> es_kekek(temp_kek, Mode::ECB);
es_kekek.Transcode(eticket_kekek.data(), eticket_kekek.size(), temp_kekek.data(), Op::Decrypt);
AESCipher<Key128> es_kek(temp_kekek, Mode::ECB);
es_kek.Transcode(eticket_kek.data(), eticket_kek.size(), eticket_final.data(), Op::Decrypt);
if (eticket_final == Key128{})
return;
SetKey(S128KeyType::ETicketRSAKek, eticket_final);
// Titlekeys
data.DecryptProdInfo(GetBISKey(0));
const auto eticket_extended_kek = data.GetETicketExtendedKek();
std::vector<u8> extended_iv(0x10);
std::memcpy(extended_iv.data(), eticket_extended_kek.data(), extended_iv.size());
std::array<u8, 0x230> extended_dec{};
AESCipher<Key128> rsa_1(eticket_final, Mode::CTR);
rsa_1.SetIV(extended_iv);
rsa_1.Transcode(eticket_extended_kek.data() + 0x10, eticket_extended_kek.size() - 0x10,
extended_dec.data(), Op::Decrypt);
RSAKeyPair<2048> rsa_key{};
std::memcpy(rsa_key.decryption_key.data(), extended_dec.data(), rsa_key.decryption_key.size());
std::memcpy(rsa_key.modulus.data(), extended_dec.data() + 0x100, rsa_key.modulus.size());
std::memcpy(rsa_key.exponent.data(), extended_dec.data() + 0x200, rsa_key.exponent.size());
const FileUtil::IOFile save1(FileUtil::GetUserPath(FileUtil::UserPath::NANDDir) +
"/system/save/80000000000000e1",
"rb+");
const FileUtil::IOFile save2(FileUtil::GetUserPath(FileUtil::UserPath::NANDDir) +
"/system/save/80000000000000e2",
"rb+");
const auto blob2 = GetTicketblob(save2);
auto res = GetTicketblob(save1);
res.insert(res.end(), blob2.begin(), blob2.end());
for (const auto& raw : res) {
const auto pair = ParseTicket(raw, rsa_key);
if (pair == boost::none)
continue;
const auto& [rid, key] = pair.value();
u128 rights_id;
std::memcpy(rights_id.data(), rid.data(), rid.size());
SetKey(S128KeyType::Titlekey, key, rights_id[1], rights_id[0]);
}
}
void KeyManager::SetKeyWrapped(S128KeyType id, Key128 key, u64 field1, u64 field2) {
if (key == Key128{})
return;
SetKey(id, key, field1, field2);
}
void KeyManager::SetKeyWrapped(S256KeyType id, Key256 key, u64 field1, u64 field2) {
if (key == Key256{})
return;
SetKey(id, key, field1, field2);
}
void KeyManager::PopulateFromPartitionData(PartitionDataManager& data) {
if (!BaseDeriveNecessary())
return;
if (!data.HasBoot0())
return;
for (size_t i = 0; i < encrypted_keyblobs.size(); ++i) {
if (encrypted_keyblobs[i] != std::array<u8, 0xB0>{})
continue;
encrypted_keyblobs[i] = data.GetEncryptedKeyblob(i);
WriteKeyToFile<0xB0>(KeyCategory::Console, fmt::format("encrypted_keyblob_{:02X}", i),
encrypted_keyblobs[i]);
}
SetKeyWrapped(S128KeyType::Source, data.GetPackage2KeySource(),
static_cast<u64>(SourceKeyType::Package2));
SetKeyWrapped(S128KeyType::Source, data.GetAESKekGenerationSource(),
static_cast<u64>(SourceKeyType::AESKekGeneration));
SetKeyWrapped(S128KeyType::Source, data.GetTitlekekSource(),
static_cast<u64>(SourceKeyType::Titlekek));
SetKeyWrapped(S128KeyType::Source, data.GetMasterKeySource(),
static_cast<u64>(SourceKeyType::Master));
SetKeyWrapped(S128KeyType::Source, data.GetKeyblobMACKeySource(),
static_cast<u64>(SourceKeyType::KeyblobMAC));
for (size_t i = 0; i < PartitionDataManager::MAX_KEYBLOB_SOURCE_HASH; ++i) {
SetKeyWrapped(S128KeyType::Source, data.GetKeyblobKeySource(i),
static_cast<u64>(SourceKeyType::Keyblob), i);
}
if (data.HasFuses())
SetKeyWrapped(S128KeyType::SecureBoot, data.GetSecureBootKey());
DeriveBase();
Key128 latest_master{};
for (s8 i = 0x1F; i >= 0; --i) {
if (GetKey(S128KeyType::Master, static_cast<u8>(i)) != Key128{}) {
latest_master = GetKey(S128KeyType::Master, static_cast<u8>(i));
break;
}
}
const auto masters = data.GetTZMasterKeys(latest_master);
for (size_t i = 0; i < masters.size(); ++i) {
if (masters[i] != Key128{} && !HasKey(S128KeyType::Master, i))
SetKey(S128KeyType::Master, masters[i], i);
}
DeriveBase();
if (!data.HasPackage2())
return;
std::array<Key128, 0x20> package2_keys{};
for (size_t i = 0; i < package2_keys.size(); ++i) {
if (HasKey(S128KeyType::Package2, i))
package2_keys[i] = GetKey(S128KeyType::Package2, i);
}
data.DecryptPackage2(package2_keys, Package2Type::NormalMain);
SetKeyWrapped(S128KeyType::Source, data.GetKeyAreaKeyApplicationSource(),
static_cast<u64>(SourceKeyType::KeyAreaKey),
static_cast<u64>(KeyAreaKeyType::Application));
SetKeyWrapped(S128KeyType::Source, data.GetKeyAreaKeyOceanSource(),
static_cast<u64>(SourceKeyType::KeyAreaKey),
static_cast<u64>(KeyAreaKeyType::Ocean));
SetKeyWrapped(S128KeyType::Source, data.GetKeyAreaKeySystemSource(),
static_cast<u64>(SourceKeyType::KeyAreaKey),
static_cast<u64>(KeyAreaKeyType::System));
SetKeyWrapped(S128KeyType::Source, data.GetSDKekSource(),
static_cast<u64>(SourceKeyType::SDKek));
SetKeyWrapped(S256KeyType::SDKeySource, data.GetSDSaveKeySource(),
static_cast<u64>(SDKeyType::Save));
SetKeyWrapped(S256KeyType::SDKeySource, data.GetSDNCAKeySource(),
static_cast<u64>(SDKeyType::NCA));
SetKeyWrapped(S128KeyType::Source, data.GetHeaderKekSource(),
static_cast<u64>(SourceKeyType::HeaderKek));
SetKeyWrapped(S256KeyType::HeaderSource, data.GetHeaderKeySource());
SetKeyWrapped(S128KeyType::Source, data.GetAESKeyGenerationSource(),
static_cast<u64>(SourceKeyType::AESKeyGeneration));
DeriveBase();
}
const boost::container::flat_map<std::string, KeyIndex<S128KeyType>> KeyManager::s128_file_id = {
{"eticket_rsa_kek", {S128KeyType::ETicketRSAKek, 0, 0}},
{"eticket_rsa_kek_source",
{S128KeyType::Source, static_cast<u64>(SourceKeyType::ETicketKek), 0}},
{"eticket_rsa_kekek_source",
{S128KeyType::Source, static_cast<u64>(SourceKeyType::ETicketKekek), 0}},
{"rsa_kek_mask_0", {S128KeyType::RSAKek, static_cast<u64>(RSAKekType::Mask0), 0}},
{"rsa_kek_seed_3", {S128KeyType::RSAKek, static_cast<u64>(RSAKekType::Seed3), 0}},
{"rsa_oaep_kek_generation_source",
{S128KeyType::Source, static_cast<u64>(SourceKeyType::RSAOaepKekGeneration), 0}},
{"sd_card_kek_source", {S128KeyType::Source, static_cast<u64>(SourceKeyType::SDKek), 0}},
{"aes_kek_generation_source",
{S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKekGeneration), 0}},
{"aes_key_generation_source",
{S128KeyType::Source, static_cast<u64>(SourceKeyType::AESKeyGeneration), 0}},
{"package2_key_source", {S128KeyType::Source, static_cast<u64>(SourceKeyType::Package2), 0}},
{"master_key_source", {S128KeyType::Source, static_cast<u64>(SourceKeyType::Master), 0}},
{"header_kek_source", {S128KeyType::Source, static_cast<u64>(SourceKeyType::HeaderKek), 0}},
{"key_area_key_application_source",
{S128KeyType::Source, static_cast<u64>(SourceKeyType::KeyAreaKey),
static_cast<u64>(KeyAreaKeyType::Application)}},
{"key_area_key_ocean_source",
{S128KeyType::Source, static_cast<u64>(SourceKeyType::KeyAreaKey),
static_cast<u64>(KeyAreaKeyType::Ocean)}},
{"key_area_key_system_source",
{S128KeyType::Source, static_cast<u64>(SourceKeyType::KeyAreaKey),
static_cast<u64>(KeyAreaKeyType::System)}},
{"titlekek_source", {S128KeyType::Source, static_cast<u64>(SourceKeyType::Titlekek), 0}},
{"keyblob_mac_key_source", {S128KeyType::Source, static_cast<u64>(SourceKeyType::KeyblobMAC)}},
{"tsec_key", {S128KeyType::TSEC, 0, 0}},
{"secure_boot_key", {S128KeyType::SecureBoot, 0, 0}},
{"sd_seed", {S128KeyType::SDSeed, 0, 0}},
{"bis_key_0_crypt", {S128KeyType::BIS, 0, static_cast<u64>(BISKeyType::Crypto)}},
{"bis_key_0_tweak", {S128KeyType::BIS, 0, static_cast<u64>(BISKeyType::Tweak)}},
{"bis_key_1_crypt", {S128KeyType::BIS, 1, static_cast<u64>(BISKeyType::Crypto)}},
{"bis_key_1_tweak", {S128KeyType::BIS, 1, static_cast<u64>(BISKeyType::Tweak)}},
{"bis_key_2_crypt", {S128KeyType::BIS, 2, static_cast<u64>(BISKeyType::Crypto)}},
{"bis_key_2_tweak", {S128KeyType::BIS, 2, static_cast<u64>(BISKeyType::Tweak)}},
{"bis_key_3_crypt", {S128KeyType::BIS, 3, static_cast<u64>(BISKeyType::Crypto)}},
{"bis_key_3_tweak", {S128KeyType::BIS, 3, static_cast<u64>(BISKeyType::Tweak)}},
{"header_kek", {S128KeyType::HeaderKek, 0, 0}},
{"sd_card_kek", {S128KeyType::SDKek, 0, 0}},
};
2018-07-28 06:55:23 +03:00
const boost::container::flat_map<std::string, KeyIndex<S256KeyType>> KeyManager::s256_file_id = {
{"header_key", {S256KeyType::Header, 0, 0}},
{"sd_card_save_key_source", {S256KeyType::SDKeySource, static_cast<u64>(SDKeyType::Save), 0}},
{"sd_card_nca_key_source", {S256KeyType::SDKeySource, static_cast<u64>(SDKeyType::NCA), 0}},
{"header_key_source", {S256KeyType::HeaderSource, 0, 0}},
{"sd_card_save_key", {S256KeyType::SDKey, static_cast<u64>(SDKeyType::Save), 0}},
{"sd_card_nca_key", {S256KeyType::SDKey, static_cast<u64>(SDKeyType::NCA), 0}},
};
} // namespace Core::Crypto