2068 lines
66 KiB
C
Raw Normal View History

2024-03-04 21:15:51 +01:00
// Formatting library for C++ - chrono support
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_CHRONO_H_
#define FMT_CHRONO_H_
#include <algorithm>
#include <chrono>
#include <ctime>
#include <iterator>
#include <locale>
#include <ostream>
#include <type_traits>
#include "format.h"
FMT_BEGIN_NAMESPACE
// Enable tzset.
#ifndef FMT_USE_TZSET
// UWP doesn't provide _tzset.
# if FMT_HAS_INCLUDE("winapifamily.h")
# include <winapifamily.h>
# endif
# if defined(_WIN32) && (!defined(WINAPI_FAMILY) || \
(WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP))
# define FMT_USE_TZSET 1
# else
# define FMT_USE_TZSET 0
# endif
#endif
// Enable safe chrono durations, unless explicitly disabled.
#ifndef FMT_SAFE_DURATION_CAST
# define FMT_SAFE_DURATION_CAST 1
#endif
#if FMT_SAFE_DURATION_CAST
// For conversion between std::chrono::durations without undefined
// behaviour or erroneous results.
// This is a stripped down version of duration_cast, for inclusion in fmt.
// See https://github.com/pauldreik/safe_duration_cast
//
// Copyright Paul Dreik 2019
namespace safe_duration_cast {
template <typename To, typename From,
FMT_ENABLE_IF(!std::is_same<From, To>::value &&
std::numeric_limits<From>::is_signed ==
std::numeric_limits<To>::is_signed)>
FMT_CONSTEXPR To lossless_integral_conversion(const From from, int& ec) {
ec = 0;
using F = std::numeric_limits<From>;
using T = std::numeric_limits<To>;
static_assert(F::is_integer, "From must be integral");
static_assert(T::is_integer, "To must be integral");
// A and B are both signed, or both unsigned.
if (detail::const_check(F::digits <= T::digits)) {
// From fits in To without any problem.
} else {
// From does not always fit in To, resort to a dynamic check.
if (from < (T::min)() || from > (T::max)()) {
// outside range.
ec = 1;
return {};
}
}
return static_cast<To>(from);
}
/**
* converts From to To, without loss. If the dynamic value of from
* can't be converted to To without loss, ec is set.
*/
template <typename To, typename From,
FMT_ENABLE_IF(!std::is_same<From, To>::value &&
std::numeric_limits<From>::is_signed !=
std::numeric_limits<To>::is_signed)>
FMT_CONSTEXPR To lossless_integral_conversion(const From from, int& ec) {
ec = 0;
using F = std::numeric_limits<From>;
using T = std::numeric_limits<To>;
static_assert(F::is_integer, "From must be integral");
static_assert(T::is_integer, "To must be integral");
if (detail::const_check(F::is_signed && !T::is_signed)) {
// From may be negative, not allowed!
if (fmt::detail::is_negative(from)) {
ec = 1;
return {};
}
// From is positive. Can it always fit in To?
if (detail::const_check(F::digits > T::digits) &&
from > static_cast<From>(detail::max_value<To>())) {
ec = 1;
return {};
}
}
if (detail::const_check(!F::is_signed && T::is_signed &&
F::digits >= T::digits) &&
from > static_cast<From>(detail::max_value<To>())) {
ec = 1;
return {};
}
return static_cast<To>(from); // Lossless conversion.
}
template <typename To, typename From,
FMT_ENABLE_IF(std::is_same<From, To>::value)>
FMT_CONSTEXPR To lossless_integral_conversion(const From from, int& ec) {
ec = 0;
return from;
} // function
// clang-format off
/**
* converts From to To if possible, otherwise ec is set.
*
* input | output
* ---------------------------------|---------------
* NaN | NaN
* Inf | Inf
* normal, fits in output | converted (possibly lossy)
* normal, does not fit in output | ec is set
* subnormal | best effort
* -Inf | -Inf
*/
// clang-format on
template <typename To, typename From,
FMT_ENABLE_IF(!std::is_same<From, To>::value)>
FMT_CONSTEXPR To safe_float_conversion(const From from, int& ec) {
ec = 0;
using T = std::numeric_limits<To>;
static_assert(std::is_floating_point<From>::value, "From must be floating");
static_assert(std::is_floating_point<To>::value, "To must be floating");
// catch the only happy case
if (std::isfinite(from)) {
if (from >= T::lowest() && from <= (T::max)()) {
return static_cast<To>(from);
}
// not within range.
ec = 1;
return {};
}
// nan and inf will be preserved
return static_cast<To>(from);
} // function
template <typename To, typename From,
FMT_ENABLE_IF(std::is_same<From, To>::value)>
FMT_CONSTEXPR To safe_float_conversion(const From from, int& ec) {
ec = 0;
static_assert(std::is_floating_point<From>::value, "From must be floating");
return from;
}
/**
* safe duration cast between integral durations
*/
template <typename To, typename FromRep, typename FromPeriod,
FMT_ENABLE_IF(std::is_integral<FromRep>::value),
FMT_ENABLE_IF(std::is_integral<typename To::rep>::value)>
To safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from,
int& ec) {
using From = std::chrono::duration<FromRep, FromPeriod>;
ec = 0;
// the basic idea is that we need to convert from count() in the from type
// to count() in the To type, by multiplying it with this:
struct Factor
: std::ratio_divide<typename From::period, typename To::period> {};
static_assert(Factor::num > 0, "num must be positive");
static_assert(Factor::den > 0, "den must be positive");
// the conversion is like this: multiply from.count() with Factor::num
// /Factor::den and convert it to To::rep, all this without
// overflow/underflow. let's start by finding a suitable type that can hold
// both To, From and Factor::num
using IntermediateRep =
typename std::common_type<typename From::rep, typename To::rep,
decltype(Factor::num)>::type;
// safe conversion to IntermediateRep
IntermediateRep count =
lossless_integral_conversion<IntermediateRep>(from.count(), ec);
if (ec) return {};
// multiply with Factor::num without overflow or underflow
if (detail::const_check(Factor::num != 1)) {
const auto max1 = detail::max_value<IntermediateRep>() / Factor::num;
if (count > max1) {
ec = 1;
return {};
}
const auto min1 =
(std::numeric_limits<IntermediateRep>::min)() / Factor::num;
if (count < min1) {
ec = 1;
return {};
}
count *= Factor::num;
}
if (detail::const_check(Factor::den != 1)) count /= Factor::den;
auto tocount = lossless_integral_conversion<typename To::rep>(count, ec);
return ec ? To() : To(tocount);
}
/**
* safe duration_cast between floating point durations
*/
template <typename To, typename FromRep, typename FromPeriod,
FMT_ENABLE_IF(std::is_floating_point<FromRep>::value),
FMT_ENABLE_IF(std::is_floating_point<typename To::rep>::value)>
To safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from,
int& ec) {
using From = std::chrono::duration<FromRep, FromPeriod>;
ec = 0;
if (std::isnan(from.count())) {
// nan in, gives nan out. easy.
return To{std::numeric_limits<typename To::rep>::quiet_NaN()};
}
// maybe we should also check if from is denormal, and decide what to do about
// it.
// +-inf should be preserved.
if (std::isinf(from.count())) {
return To{from.count()};
}
// the basic idea is that we need to convert from count() in the from type
// to count() in the To type, by multiplying it with this:
struct Factor
: std::ratio_divide<typename From::period, typename To::period> {};
static_assert(Factor::num > 0, "num must be positive");
static_assert(Factor::den > 0, "den must be positive");
// the conversion is like this: multiply from.count() with Factor::num
// /Factor::den and convert it to To::rep, all this without
// overflow/underflow. let's start by finding a suitable type that can hold
// both To, From and Factor::num
using IntermediateRep =
typename std::common_type<typename From::rep, typename To::rep,
decltype(Factor::num)>::type;
// force conversion of From::rep -> IntermediateRep to be safe,
// even if it will never happen be narrowing in this context.
IntermediateRep count =
safe_float_conversion<IntermediateRep>(from.count(), ec);
if (ec) {
return {};
}
// multiply with Factor::num without overflow or underflow
if (detail::const_check(Factor::num != 1)) {
constexpr auto max1 = detail::max_value<IntermediateRep>() /
static_cast<IntermediateRep>(Factor::num);
if (count > max1) {
ec = 1;
return {};
}
constexpr auto min1 = std::numeric_limits<IntermediateRep>::lowest() /
static_cast<IntermediateRep>(Factor::num);
if (count < min1) {
ec = 1;
return {};
}
count *= static_cast<IntermediateRep>(Factor::num);
}
// this can't go wrong, right? den>0 is checked earlier.
if (detail::const_check(Factor::den != 1)) {
using common_t = typename std::common_type<IntermediateRep, intmax_t>::type;
count /= static_cast<common_t>(Factor::den);
}
// convert to the to type, safely
using ToRep = typename To::rep;
const ToRep tocount = safe_float_conversion<ToRep>(count, ec);
if (ec) {
return {};
}
return To{tocount};
}
} // namespace safe_duration_cast
#endif
// Prevents expansion of a preceding token as a function-style macro.
// Usage: f FMT_NOMACRO()
#define FMT_NOMACRO
namespace detail {
template <typename T = void> struct null {};
inline null<> localtime_r FMT_NOMACRO(...) { return null<>(); }
inline null<> localtime_s(...) { return null<>(); }
inline null<> gmtime_r(...) { return null<>(); }
inline null<> gmtime_s(...) { return null<>(); }
inline const std::locale& get_classic_locale() {
static const auto& locale = std::locale::classic();
return locale;
}
template <typename CodeUnit> struct codecvt_result {
static constexpr const size_t max_size = 32;
CodeUnit buf[max_size];
CodeUnit* end;
};
template <typename CodeUnit>
constexpr const size_t codecvt_result<CodeUnit>::max_size;
template <typename CodeUnit>
void write_codecvt(codecvt_result<CodeUnit>& out, string_view in_buf,
const std::locale& loc) {
using codecvt = std::codecvt<CodeUnit, char, std::mbstate_t>;
#if FMT_CLANG_VERSION
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wdeprecated"
auto& f = std::use_facet<codecvt>(loc);
# pragma clang diagnostic pop
#else
auto& f = std::use_facet<codecvt>(loc);
#endif
auto mb = std::mbstate_t();
const char* from_next = nullptr;
auto result = f.in(mb, in_buf.begin(), in_buf.end(), from_next,
std::begin(out.buf), std::end(out.buf), out.end);
if (result != std::codecvt_base::ok)
FMT_THROW(format_error("failed to format time"));
}
template <typename OutputIt>
auto write_encoded_tm_str(OutputIt out, string_view in, const std::locale& loc)
-> OutputIt {
if (detail::is_utf8() && loc != get_classic_locale()) {
// char16_t and char32_t codecvts are broken in MSVC (linkage errors) and
// gcc-4.
#if FMT_MSC_VER != 0 || \
(defined(__GLIBCXX__) && !defined(_GLIBCXX_USE_DUAL_ABI))
// The _GLIBCXX_USE_DUAL_ABI macro is always defined in libstdc++ from gcc-5
// and newer.
using code_unit = wchar_t;
#else
using code_unit = char32_t;
#endif
using unit_t = codecvt_result<code_unit>;
unit_t unit;
write_codecvt(unit, in, loc);
// In UTF-8 is used one to four one-byte code units.
auto&& buf = basic_memory_buffer<char, unit_t::max_size * 4>();
for (code_unit* p = unit.buf; p != unit.end; ++p) {
uint32_t c = static_cast<uint32_t>(*p);
if (sizeof(code_unit) == 2 && c >= 0xd800 && c <= 0xdfff) {
// surrogate pair
++p;
if (p == unit.end || (c & 0xfc00) != 0xd800 ||
(*p & 0xfc00) != 0xdc00) {
FMT_THROW(format_error("failed to format time"));
}
c = (c << 10) + static_cast<uint32_t>(*p) - 0x35fdc00;
}
if (c < 0x80) {
buf.push_back(static_cast<char>(c));
} else if (c < 0x800) {
buf.push_back(static_cast<char>(0xc0 | (c >> 6)));
buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
} else if ((c >= 0x800 && c <= 0xd7ff) || (c >= 0xe000 && c <= 0xffff)) {
buf.push_back(static_cast<char>(0xe0 | (c >> 12)));
buf.push_back(static_cast<char>(0x80 | ((c & 0xfff) >> 6)));
buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
} else if (c >= 0x10000 && c <= 0x10ffff) {
buf.push_back(static_cast<char>(0xf0 | (c >> 18)));
buf.push_back(static_cast<char>(0x80 | ((c & 0x3ffff) >> 12)));
buf.push_back(static_cast<char>(0x80 | ((c & 0xfff) >> 6)));
buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
} else {
FMT_THROW(format_error("failed to format time"));
}
}
return copy_str<char>(buf.data(), buf.data() + buf.size(), out);
}
return copy_str<char>(in.data(), in.data() + in.size(), out);
}
template <typename Char, typename OutputIt,
FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
auto write_tm_str(OutputIt out, string_view sv, const std::locale& loc)
-> OutputIt {
codecvt_result<Char> unit;
write_codecvt(unit, sv, loc);
return copy_str<Char>(unit.buf, unit.end, out);
}
template <typename Char, typename OutputIt,
FMT_ENABLE_IF(std::is_same<Char, char>::value)>
auto write_tm_str(OutputIt out, string_view sv, const std::locale& loc)
-> OutputIt {
return write_encoded_tm_str(out, sv, loc);
}
template <typename Char>
inline void do_write(buffer<Char>& buf, const std::tm& time,
const std::locale& loc, char format, char modifier) {
auto&& format_buf = formatbuf<std::basic_streambuf<Char>>(buf);
auto&& os = std::basic_ostream<Char>(&format_buf);
os.imbue(loc);
using iterator = std::ostreambuf_iterator<Char>;
const auto& facet = std::use_facet<std::time_put<Char, iterator>>(loc);
auto end = facet.put(os, os, Char(' '), &time, format, modifier);
if (end.failed()) FMT_THROW(format_error("failed to format time"));
}
template <typename Char, typename OutputIt,
FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
auto write(OutputIt out, const std::tm& time, const std::locale& loc,
char format, char modifier = 0) -> OutputIt {
auto&& buf = get_buffer<Char>(out);
do_write<Char>(buf, time, loc, format, modifier);
return buf.out();
}
template <typename Char, typename OutputIt,
FMT_ENABLE_IF(std::is_same<Char, char>::value)>
auto write(OutputIt out, const std::tm& time, const std::locale& loc,
char format, char modifier = 0) -> OutputIt {
auto&& buf = basic_memory_buffer<Char>();
do_write<char>(buf, time, loc, format, modifier);
return write_encoded_tm_str(out, string_view(buf.data(), buf.size()), loc);
}
} // namespace detail
FMT_MODULE_EXPORT_BEGIN
/**
Converts given time since epoch as ``std::time_t`` value into calendar time,
expressed in local time. Unlike ``std::localtime``, this function is
thread-safe on most platforms.
*/
inline std::tm localtime(std::time_t time) {
struct dispatcher {
std::time_t time_;
std::tm tm_;
dispatcher(std::time_t t) : time_(t) {}
bool run() {
using namespace fmt::detail;
return handle(localtime_r(&time_, &tm_));
}
bool handle(std::tm* tm) { return tm != nullptr; }
bool handle(detail::null<>) {
using namespace fmt::detail;
return fallback(localtime_s(&tm_, &time_));
}
bool fallback(int res) { return res == 0; }
#if !FMT_MSC_VER
bool fallback(detail::null<>) {
using namespace fmt::detail;
std::tm* tm = std::localtime(&time_);
if (tm) tm_ = *tm;
return tm != nullptr;
}
#endif
};
dispatcher lt(time);
// Too big time values may be unsupported.
if (!lt.run()) FMT_THROW(format_error("time_t value out of range"));
return lt.tm_;
}
inline std::tm localtime(
std::chrono::time_point<std::chrono::system_clock> time_point) {
return localtime(std::chrono::system_clock::to_time_t(time_point));
}
/**
Converts given time since epoch as ``std::time_t`` value into calendar time,
expressed in Coordinated Universal Time (UTC). Unlike ``std::gmtime``, this
function is thread-safe on most platforms.
*/
inline std::tm gmtime(std::time_t time) {
struct dispatcher {
std::time_t time_;
std::tm tm_;
dispatcher(std::time_t t) : time_(t) {}
bool run() {
using namespace fmt::detail;
return handle(gmtime_r(&time_, &tm_));
}
bool handle(std::tm* tm) { return tm != nullptr; }
bool handle(detail::null<>) {
using namespace fmt::detail;
return fallback(gmtime_s(&tm_, &time_));
}
bool fallback(int res) { return res == 0; }
#if !FMT_MSC_VER
bool fallback(detail::null<>) {
std::tm* tm = std::gmtime(&time_);
if (tm) tm_ = *tm;
return tm != nullptr;
}
#endif
};
dispatcher gt(time);
// Too big time values may be unsupported.
if (!gt.run()) FMT_THROW(format_error("time_t value out of range"));
return gt.tm_;
}
inline std::tm gmtime(
std::chrono::time_point<std::chrono::system_clock> time_point) {
return gmtime(std::chrono::system_clock::to_time_t(time_point));
}
FMT_BEGIN_DETAIL_NAMESPACE
// Writes two-digit numbers a, b and c separated by sep to buf.
// The method by Pavel Novikov based on
// https://johnnylee-sde.github.io/Fast-unsigned-integer-to-time-string/.
inline void write_digit2_separated(char* buf, unsigned a, unsigned b,
unsigned c, char sep) {
unsigned long long digits =
a | (b << 24) | (static_cast<unsigned long long>(c) << 48);
// Convert each value to BCD.
// We have x = a * 10 + b and we want to convert it to BCD y = a * 16 + b.
// The difference is
// y - x = a * 6
// a can be found from x:
// a = floor(x / 10)
// then
// y = x + a * 6 = x + floor(x / 10) * 6
// floor(x / 10) is (x * 205) >> 11 (needs 16 bits).
digits += (((digits * 205) >> 11) & 0x000f00000f00000f) * 6;
// Put low nibbles to high bytes and high nibbles to low bytes.
digits = ((digits & 0x00f00000f00000f0) >> 4) |
((digits & 0x000f00000f00000f) << 8);
auto usep = static_cast<unsigned long long>(sep);
// Add ASCII '0' to each digit byte and insert separators.
digits |= 0x3030003030003030 | (usep << 16) | (usep << 40);
constexpr const size_t len = 8;
if (const_check(is_big_endian())) {
char tmp[len];
memcpy(tmp, &digits, len);
std::reverse_copy(tmp, tmp + len, buf);
} else {
memcpy(buf, &digits, len);
}
}
template <typename Period> FMT_CONSTEXPR inline const char* get_units() {
if (std::is_same<Period, std::atto>::value) return "as";
if (std::is_same<Period, std::femto>::value) return "fs";
if (std::is_same<Period, std::pico>::value) return "ps";
if (std::is_same<Period, std::nano>::value) return "ns";
if (std::is_same<Period, std::micro>::value) return "µs";
if (std::is_same<Period, std::milli>::value) return "ms";
if (std::is_same<Period, std::centi>::value) return "cs";
if (std::is_same<Period, std::deci>::value) return "ds";
if (std::is_same<Period, std::ratio<1>>::value) return "s";
if (std::is_same<Period, std::deca>::value) return "das";
if (std::is_same<Period, std::hecto>::value) return "hs";
if (std::is_same<Period, std::kilo>::value) return "ks";
if (std::is_same<Period, std::mega>::value) return "Ms";
if (std::is_same<Period, std::giga>::value) return "Gs";
if (std::is_same<Period, std::tera>::value) return "Ts";
if (std::is_same<Period, std::peta>::value) return "Ps";
if (std::is_same<Period, std::exa>::value) return "Es";
if (std::is_same<Period, std::ratio<60>>::value) return "m";
if (std::is_same<Period, std::ratio<3600>>::value) return "h";
return nullptr;
}
enum class numeric_system {
standard,
// Alternative numeric system, e.g. 十二 instead of 12 in ja_JP locale.
alternative
};
// Parses a put_time-like format string and invokes handler actions.
template <typename Char, typename Handler>
FMT_CONSTEXPR const Char* parse_chrono_format(const Char* begin,
const Char* end,
Handler&& handler) {
auto ptr = begin;
while (ptr != end) {
auto c = *ptr;
if (c == '}') break;
if (c != '%') {
++ptr;
continue;
}
if (begin != ptr) handler.on_text(begin, ptr);
++ptr; // consume '%'
if (ptr == end) FMT_THROW(format_error("invalid format"));
c = *ptr++;
switch (c) {
case '%':
handler.on_text(ptr - 1, ptr);
break;
case 'n': {
const Char newline[] = {'\n'};
handler.on_text(newline, newline + 1);
break;
}
case 't': {
const Char tab[] = {'\t'};
handler.on_text(tab, tab + 1);
break;
}
// Year:
case 'Y':
handler.on_year(numeric_system::standard);
break;
case 'y':
handler.on_short_year(numeric_system::standard);
break;
case 'C':
handler.on_century(numeric_system::standard);
break;
case 'G':
handler.on_iso_week_based_year();
break;
case 'g':
handler.on_iso_week_based_short_year();
break;
// Day of the week:
case 'a':
handler.on_abbr_weekday();
break;
case 'A':
handler.on_full_weekday();
break;
case 'w':
handler.on_dec0_weekday(numeric_system::standard);
break;
case 'u':
handler.on_dec1_weekday(numeric_system::standard);
break;
// Month:
case 'b':
case 'h':
handler.on_abbr_month();
break;
case 'B':
handler.on_full_month();
break;
case 'm':
handler.on_dec_month(numeric_system::standard);
break;
// Day of the year/month:
case 'U':
handler.on_dec0_week_of_year(numeric_system::standard);
break;
case 'W':
handler.on_dec1_week_of_year(numeric_system::standard);
break;
case 'V':
handler.on_iso_week_of_year(numeric_system::standard);
break;
case 'j':
handler.on_day_of_year();
break;
case 'd':
handler.on_day_of_month(numeric_system::standard);
break;
case 'e':
handler.on_day_of_month_space(numeric_system::standard);
break;
// Hour, minute, second:
case 'H':
handler.on_24_hour(numeric_system::standard);
break;
case 'I':
handler.on_12_hour(numeric_system::standard);
break;
case 'M':
handler.on_minute(numeric_system::standard);
break;
case 'S':
handler.on_second(numeric_system::standard);
break;
// Other:
case 'c':
handler.on_datetime(numeric_system::standard);
break;
case 'x':
handler.on_loc_date(numeric_system::standard);
break;
case 'X':
handler.on_loc_time(numeric_system::standard);
break;
case 'D':
handler.on_us_date();
break;
case 'F':
handler.on_iso_date();
break;
case 'r':
handler.on_12_hour_time();
break;
case 'R':
handler.on_24_hour_time();
break;
case 'T':
handler.on_iso_time();
break;
case 'p':
handler.on_am_pm();
break;
case 'Q':
handler.on_duration_value();
break;
case 'q':
handler.on_duration_unit();
break;
case 'z':
handler.on_utc_offset();
break;
case 'Z':
handler.on_tz_name();
break;
// Alternative representation:
case 'E': {
if (ptr == end) FMT_THROW(format_error("invalid format"));
c = *ptr++;
switch (c) {
case 'Y':
handler.on_year(numeric_system::alternative);
break;
case 'y':
handler.on_offset_year();
break;
case 'C':
handler.on_century(numeric_system::alternative);
break;
case 'c':
handler.on_datetime(numeric_system::alternative);
break;
case 'x':
handler.on_loc_date(numeric_system::alternative);
break;
case 'X':
handler.on_loc_time(numeric_system::alternative);
break;
default:
FMT_THROW(format_error("invalid format"));
}
break;
}
case 'O':
if (ptr == end) FMT_THROW(format_error("invalid format"));
c = *ptr++;
switch (c) {
case 'y':
handler.on_short_year(numeric_system::alternative);
break;
case 'm':
handler.on_dec_month(numeric_system::alternative);
break;
case 'U':
handler.on_dec0_week_of_year(numeric_system::alternative);
break;
case 'W':
handler.on_dec1_week_of_year(numeric_system::alternative);
break;
case 'V':
handler.on_iso_week_of_year(numeric_system::alternative);
break;
case 'd':
handler.on_day_of_month(numeric_system::alternative);
break;
case 'e':
handler.on_day_of_month_space(numeric_system::alternative);
break;
case 'w':
handler.on_dec0_weekday(numeric_system::alternative);
break;
case 'u':
handler.on_dec1_weekday(numeric_system::alternative);
break;
case 'H':
handler.on_24_hour(numeric_system::alternative);
break;
case 'I':
handler.on_12_hour(numeric_system::alternative);
break;
case 'M':
handler.on_minute(numeric_system::alternative);
break;
case 'S':
handler.on_second(numeric_system::alternative);
break;
default:
FMT_THROW(format_error("invalid format"));
}
break;
default:
FMT_THROW(format_error("invalid format"));
}
begin = ptr;
}
if (begin != ptr) handler.on_text(begin, ptr);
return ptr;
}
template <typename Derived> struct null_chrono_spec_handler {
FMT_CONSTEXPR void unsupported() {
static_cast<Derived*>(this)->unsupported();
}
FMT_CONSTEXPR void on_year(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_short_year(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_offset_year() { unsupported(); }
FMT_CONSTEXPR void on_century(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_iso_week_based_year() { unsupported(); }
FMT_CONSTEXPR void on_iso_week_based_short_year() { unsupported(); }
FMT_CONSTEXPR void on_abbr_weekday() { unsupported(); }
FMT_CONSTEXPR void on_full_weekday() { unsupported(); }
FMT_CONSTEXPR void on_dec0_weekday(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_dec1_weekday(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_abbr_month() { unsupported(); }
FMT_CONSTEXPR void on_full_month() { unsupported(); }
FMT_CONSTEXPR void on_dec_month(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_dec0_week_of_year(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_dec1_week_of_year(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_iso_week_of_year(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_day_of_year() { unsupported(); }
FMT_CONSTEXPR void on_day_of_month(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_day_of_month_space(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_24_hour(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_12_hour(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_minute(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_second(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_datetime(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_loc_date(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_loc_time(numeric_system) { unsupported(); }
FMT_CONSTEXPR void on_us_date() { unsupported(); }
FMT_CONSTEXPR void on_iso_date() { unsupported(); }
FMT_CONSTEXPR void on_12_hour_time() { unsupported(); }
FMT_CONSTEXPR void on_24_hour_time() { unsupported(); }
FMT_CONSTEXPR void on_iso_time() { unsupported(); }
FMT_CONSTEXPR void on_am_pm() { unsupported(); }
FMT_CONSTEXPR void on_duration_value() { unsupported(); }
FMT_CONSTEXPR void on_duration_unit() { unsupported(); }
FMT_CONSTEXPR void on_utc_offset() { unsupported(); }
FMT_CONSTEXPR void on_tz_name() { unsupported(); }
};
struct tm_format_checker : null_chrono_spec_handler<tm_format_checker> {
FMT_NORETURN void unsupported() { FMT_THROW(format_error("no format")); }
template <typename Char>
FMT_CONSTEXPR void on_text(const Char*, const Char*) {}
FMT_CONSTEXPR void on_year(numeric_system) {}
FMT_CONSTEXPR void on_short_year(numeric_system) {}
FMT_CONSTEXPR void on_offset_year() {}
FMT_CONSTEXPR void on_century(numeric_system) {}
FMT_CONSTEXPR void on_iso_week_based_year() {}
FMT_CONSTEXPR void on_iso_week_based_short_year() {}
FMT_CONSTEXPR void on_abbr_weekday() {}
FMT_CONSTEXPR void on_full_weekday() {}
FMT_CONSTEXPR void on_dec0_weekday(numeric_system) {}
FMT_CONSTEXPR void on_dec1_weekday(numeric_system) {}
FMT_CONSTEXPR void on_abbr_month() {}
FMT_CONSTEXPR void on_full_month() {}
FMT_CONSTEXPR void on_dec_month(numeric_system) {}
FMT_CONSTEXPR void on_dec0_week_of_year(numeric_system) {}
FMT_CONSTEXPR void on_dec1_week_of_year(numeric_system) {}
FMT_CONSTEXPR void on_iso_week_of_year(numeric_system) {}
FMT_CONSTEXPR void on_day_of_year() {}
FMT_CONSTEXPR void on_day_of_month(numeric_system) {}
FMT_CONSTEXPR void on_day_of_month_space(numeric_system) {}
FMT_CONSTEXPR void on_24_hour(numeric_system) {}
FMT_CONSTEXPR void on_12_hour(numeric_system) {}
FMT_CONSTEXPR void on_minute(numeric_system) {}
FMT_CONSTEXPR void on_second(numeric_system) {}
FMT_CONSTEXPR void on_datetime(numeric_system) {}
FMT_CONSTEXPR void on_loc_date(numeric_system) {}
FMT_CONSTEXPR void on_loc_time(numeric_system) {}
FMT_CONSTEXPR void on_us_date() {}
FMT_CONSTEXPR void on_iso_date() {}
FMT_CONSTEXPR void on_12_hour_time() {}
FMT_CONSTEXPR void on_24_hour_time() {}
FMT_CONSTEXPR void on_iso_time() {}
FMT_CONSTEXPR void on_am_pm() {}
FMT_CONSTEXPR void on_utc_offset() {}
FMT_CONSTEXPR void on_tz_name() {}
};
inline const char* tm_wday_full_name(int wday) {
static constexpr const char* full_name_list[] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"};
return wday >= 0 && wday <= 6 ? full_name_list[wday] : "?";
}
inline const char* tm_wday_short_name(int wday) {
static constexpr const char* short_name_list[] = {"Sun", "Mon", "Tue", "Wed",
"Thu", "Fri", "Sat"};
return wday >= 0 && wday <= 6 ? short_name_list[wday] : "???";
}
inline const char* tm_mon_full_name(int mon) {
static constexpr const char* full_name_list[] = {
"January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December"};
return mon >= 0 && mon <= 11 ? full_name_list[mon] : "?";
}
inline const char* tm_mon_short_name(int mon) {
static constexpr const char* short_name_list[] = {
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec",
};
return mon >= 0 && mon <= 11 ? short_name_list[mon] : "???";
}
template <typename T, typename = void>
struct has_member_data_tm_gmtoff : std::false_type {};
template <typename T>
struct has_member_data_tm_gmtoff<T, void_t<decltype(T::tm_gmtoff)>>
: std::true_type {};
template <typename T, typename = void>
struct has_member_data_tm_zone : std::false_type {};
template <typename T>
struct has_member_data_tm_zone<T, void_t<decltype(T::tm_zone)>>
: std::true_type {};
#if FMT_USE_TZSET
inline void tzset_once() {
static bool init = []() -> bool {
_tzset();
return true;
}();
ignore_unused(init);
}
#endif
template <typename OutputIt, typename Char> class tm_writer {
private:
static constexpr int days_per_week = 7;
const std::locale& loc_;
const bool is_classic_;
OutputIt out_;
const std::tm& tm_;
auto tm_sec() const noexcept -> int {
FMT_ASSERT(tm_.tm_sec >= 0 && tm_.tm_sec <= 61, "");
return tm_.tm_sec;
}
auto tm_min() const noexcept -> int {
FMT_ASSERT(tm_.tm_min >= 0 && tm_.tm_min <= 59, "");
return tm_.tm_min;
}
auto tm_hour() const noexcept -> int {
FMT_ASSERT(tm_.tm_hour >= 0 && tm_.tm_hour <= 23, "");
return tm_.tm_hour;
}
auto tm_mday() const noexcept -> int {
FMT_ASSERT(tm_.tm_mday >= 1 && tm_.tm_mday <= 31, "");
return tm_.tm_mday;
}
auto tm_mon() const noexcept -> int {
FMT_ASSERT(tm_.tm_mon >= 0 && tm_.tm_mon <= 11, "");
return tm_.tm_mon;
}
auto tm_year() const noexcept -> long long { return 1900ll + tm_.tm_year; }
auto tm_wday() const noexcept -> int {
FMT_ASSERT(tm_.tm_wday >= 0 && tm_.tm_wday <= 6, "");
return tm_.tm_wday;
}
auto tm_yday() const noexcept -> int {
FMT_ASSERT(tm_.tm_yday >= 0 && tm_.tm_yday <= 365, "");
return tm_.tm_yday;
}
auto tm_hour12() const noexcept -> int {
const auto h = tm_hour();
const auto z = h < 12 ? h : h - 12;
return z == 0 ? 12 : z;
}
// POSIX and the C Standard are unclear or inconsistent about what %C and %y
// do if the year is negative or exceeds 9999. Use the convention that %C
// concatenated with %y yields the same output as %Y, and that %Y contains at
// least 4 characters, with more only if necessary.
auto split_year_lower(long long year) const noexcept -> int {
auto l = year % 100;
if (l < 0) l = -l; // l in [0, 99]
return static_cast<int>(l);
}
// Algorithm:
// https://en.wikipedia.org/wiki/ISO_week_date#Calculating_the_week_number_from_a_month_and_day_of_the_month_or_ordinal_date
auto iso_year_weeks(long long curr_year) const noexcept -> int {
const auto prev_year = curr_year - 1;
const auto curr_p =
(curr_year + curr_year / 4 - curr_year / 100 + curr_year / 400) %
days_per_week;
const auto prev_p =
(prev_year + prev_year / 4 - prev_year / 100 + prev_year / 400) %
days_per_week;
return 52 + ((curr_p == 4 || prev_p == 3) ? 1 : 0);
}
auto iso_week_num(int tm_yday, int tm_wday) const noexcept -> int {
return (tm_yday + 11 - (tm_wday == 0 ? days_per_week : tm_wday)) /
days_per_week;
}
auto tm_iso_week_year() const noexcept -> long long {
const auto year = tm_year();
const auto w = iso_week_num(tm_yday(), tm_wday());
if (w < 1) return year - 1;
if (w > iso_year_weeks(year)) return year + 1;
return year;
}
auto tm_iso_week_of_year() const noexcept -> int {
const auto year = tm_year();
const auto w = iso_week_num(tm_yday(), tm_wday());
if (w < 1) return iso_year_weeks(year - 1);
if (w > iso_year_weeks(year)) return 1;
return w;
}
void write1(int value) {
*out_++ = static_cast<char>('0' + to_unsigned(value) % 10);
}
void write2(int value) {
const char* d = digits2(to_unsigned(value) % 100);
*out_++ = *d++;
*out_++ = *d;
}
void write_year_extended(long long year) {
// At least 4 characters.
int width = 4;
if (year < 0) {
*out_++ = '-';
year = 0 - year;
--width;
}
uint32_or_64_or_128_t<long long> n = to_unsigned(year);
const int num_digits = count_digits(n);
if (width > num_digits) out_ = std::fill_n(out_, width - num_digits, '0');
out_ = format_decimal<Char>(out_, n, num_digits).end;
}
void write_year(long long year) {
if (year >= 0 && year < 10000) {
write2(static_cast<int>(year / 100));
write2(static_cast<int>(year % 100));
} else {
write_year_extended(year);
}
}
void write_utc_offset(long offset) {
if (offset < 0) {
*out_++ = '-';
offset = -offset;
} else {
*out_++ = '+';
}
offset /= 60;
write2(static_cast<int>(offset / 60));
write2(static_cast<int>(offset % 60));
}
template <typename T, FMT_ENABLE_IF(has_member_data_tm_gmtoff<T>::value)>
void format_utc_offset_impl(const T& tm) {
write_utc_offset(tm.tm_gmtoff);
}
template <typename T, FMT_ENABLE_IF(!has_member_data_tm_gmtoff<T>::value)>
void format_utc_offset_impl(const T& tm) {
#if defined(_WIN32) && defined(_UCRT)
# if FMT_USE_TZSET
tzset_once();
# endif
long offset = 0;
_get_timezone(&offset);
if (tm.tm_isdst) {
long dstbias = 0;
_get_dstbias(&dstbias);
offset += dstbias;
}
write_utc_offset(-offset);
#else
ignore_unused(tm);
format_localized('z');
#endif
}
template <typename T, FMT_ENABLE_IF(has_member_data_tm_zone<T>::value)>
void format_tz_name_impl(const T& tm) {
if (is_classic_)
out_ = write_tm_str<Char>(out_, tm.tm_zone, loc_);
else
format_localized('Z');
}
template <typename T, FMT_ENABLE_IF(!has_member_data_tm_zone<T>::value)>
void format_tz_name_impl(const T&) {
format_localized('Z');
}
void format_localized(char format, char modifier = 0) {
out_ = write<Char>(out_, tm_, loc_, format, modifier);
}
public:
tm_writer(const std::locale& loc, OutputIt out, const std::tm& tm)
: loc_(loc),
is_classic_(loc_ == get_classic_locale()),
out_(out),
tm_(tm) {}
OutputIt out() const { return out_; }
FMT_CONSTEXPR void on_text(const Char* begin, const Char* end) {
out_ = copy_str<Char>(begin, end, out_);
}
void on_abbr_weekday() {
if (is_classic_)
out_ = write(out_, tm_wday_short_name(tm_wday()));
else
format_localized('a');
}
void on_full_weekday() {
if (is_classic_)
out_ = write(out_, tm_wday_full_name(tm_wday()));
else
format_localized('A');
}
void on_dec0_weekday(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard) return write1(tm_wday());
format_localized('w', 'O');
}
void on_dec1_weekday(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard) {
auto wday = tm_wday();
write1(wday == 0 ? days_per_week : wday);
} else {
format_localized('u', 'O');
}
}
void on_abbr_month() {
if (is_classic_)
out_ = write(out_, tm_mon_short_name(tm_mon()));
else
format_localized('b');
}
void on_full_month() {
if (is_classic_)
out_ = write(out_, tm_mon_full_name(tm_mon()));
else
format_localized('B');
}
void on_datetime(numeric_system ns) {
if (is_classic_) {
on_abbr_weekday();
*out_++ = ' ';
on_abbr_month();
*out_++ = ' ';
on_day_of_month_space(numeric_system::standard);
*out_++ = ' ';
on_iso_time();
*out_++ = ' ';
on_year(numeric_system::standard);
} else {
format_localized('c', ns == numeric_system::standard ? '\0' : 'E');
}
}
void on_loc_date(numeric_system ns) {
if (is_classic_)
on_us_date();
else
format_localized('x', ns == numeric_system::standard ? '\0' : 'E');
}
void on_loc_time(numeric_system ns) {
if (is_classic_)
on_iso_time();
else
format_localized('X', ns == numeric_system::standard ? '\0' : 'E');
}
void on_us_date() {
char buf[8];
write_digit2_separated(buf, to_unsigned(tm_mon() + 1),
to_unsigned(tm_mday()),
to_unsigned(split_year_lower(tm_year())), '/');
out_ = copy_str<Char>(std::begin(buf), std::end(buf), out_);
}
void on_iso_date() {
auto year = tm_year();
char buf[10];
size_t offset = 0;
if (year >= 0 && year < 10000) {
copy2(buf, digits2(to_unsigned(year / 100)));
} else {
offset = 4;
write_year_extended(year);
year = 0;
}
write_digit2_separated(buf + 2, static_cast<unsigned>(year % 100),
to_unsigned(tm_mon() + 1), to_unsigned(tm_mday()),
'-');
out_ = copy_str<Char>(std::begin(buf) + offset, std::end(buf), out_);
}
void on_utc_offset() { format_utc_offset_impl(tm_); }
void on_tz_name() { format_tz_name_impl(tm_); }
void on_year(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard)
return write_year(tm_year());
format_localized('Y', 'E');
}
void on_short_year(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard)
return write2(split_year_lower(tm_year()));
format_localized('y', 'O');
}
void on_offset_year() {
if (is_classic_) return write2(split_year_lower(tm_year()));
format_localized('y', 'E');
}
void on_century(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard) {
auto year = tm_year();
auto upper = year / 100;
if (year >= -99 && year < 0) {
// Zero upper on negative year.
*out_++ = '-';
*out_++ = '0';
} else if (upper >= 0 && upper < 100) {
write2(static_cast<int>(upper));
} else {
out_ = write<Char>(out_, upper);
}
} else {
format_localized('C', 'E');
}
}
void on_dec_month(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard)
return write2(tm_mon() + 1);
format_localized('m', 'O');
}
void on_dec0_week_of_year(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard)
return write2((tm_yday() + days_per_week - tm_wday()) / days_per_week);
format_localized('U', 'O');
}
void on_dec1_week_of_year(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard) {
auto wday = tm_wday();
write2((tm_yday() + days_per_week -
(wday == 0 ? (days_per_week - 1) : (wday - 1))) /
days_per_week);
} else {
format_localized('W', 'O');
}
}
void on_iso_week_of_year(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard)
return write2(tm_iso_week_of_year());
format_localized('V', 'O');
}
void on_iso_week_based_year() { write_year(tm_iso_week_year()); }
void on_iso_week_based_short_year() {
write2(split_year_lower(tm_iso_week_year()));
}
void on_day_of_year() {
auto yday = tm_yday() + 1;
write1(yday / 100);
write2(yday % 100);
}
void on_day_of_month(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard) return write2(tm_mday());
format_localized('d', 'O');
}
void on_day_of_month_space(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard) {
auto mday = to_unsigned(tm_mday()) % 100;
const char* d2 = digits2(mday);
*out_++ = mday < 10 ? ' ' : d2[0];
*out_++ = d2[1];
} else {
format_localized('e', 'O');
}
}
void on_24_hour(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard) return write2(tm_hour());
format_localized('H', 'O');
}
void on_12_hour(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard)
return write2(tm_hour12());
format_localized('I', 'O');
}
void on_minute(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard) return write2(tm_min());
format_localized('M', 'O');
}
void on_second(numeric_system ns) {
if (is_classic_ || ns == numeric_system::standard) return write2(tm_sec());
format_localized('S', 'O');
}
void on_12_hour_time() {
if (is_classic_) {
char buf[8];
write_digit2_separated(buf, to_unsigned(tm_hour12()),
to_unsigned(tm_min()), to_unsigned(tm_sec()), ':');
out_ = copy_str<Char>(std::begin(buf), std::end(buf), out_);
*out_++ = ' ';
on_am_pm();
} else {
format_localized('r');
}
}
void on_24_hour_time() {
write2(tm_hour());
*out_++ = ':';
write2(tm_min());
}
void on_iso_time() {
char buf[8];
write_digit2_separated(buf, to_unsigned(tm_hour()), to_unsigned(tm_min()),
to_unsigned(tm_sec()), ':');
out_ = copy_str<Char>(std::begin(buf), std::end(buf), out_);
}
void on_am_pm() {
if (is_classic_) {
*out_++ = tm_hour() < 12 ? 'A' : 'P';
*out_++ = 'M';
} else {
format_localized('p');
}
}
// These apply to chrono durations but not tm.
void on_duration_value() {}
void on_duration_unit() {}
};
struct chrono_format_checker : null_chrono_spec_handler<chrono_format_checker> {
FMT_NORETURN void unsupported() { FMT_THROW(format_error("no date")); }
template <typename Char>
FMT_CONSTEXPR void on_text(const Char*, const Char*) {}
FMT_CONSTEXPR void on_24_hour(numeric_system) {}
FMT_CONSTEXPR void on_12_hour(numeric_system) {}
FMT_CONSTEXPR void on_minute(numeric_system) {}
FMT_CONSTEXPR void on_second(numeric_system) {}
FMT_CONSTEXPR void on_12_hour_time() {}
FMT_CONSTEXPR void on_24_hour_time() {}
FMT_CONSTEXPR void on_iso_time() {}
FMT_CONSTEXPR void on_am_pm() {}
FMT_CONSTEXPR void on_duration_value() {}
FMT_CONSTEXPR void on_duration_unit() {}
};
template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
inline bool isnan(T) {
return false;
}
template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)>
inline bool isnan(T value) {
return std::isnan(value);
}
template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
inline bool isfinite(T) {
return true;
}
// Converts value to Int and checks that it's in the range [0, upper).
template <typename T, typename Int, FMT_ENABLE_IF(std::is_integral<T>::value)>
inline Int to_nonnegative_int(T value, Int upper) {
FMT_ASSERT(value >= 0 && to_unsigned(value) <= to_unsigned(upper),
"invalid value");
(void)upper;
return static_cast<Int>(value);
}
template <typename T, typename Int, FMT_ENABLE_IF(!std::is_integral<T>::value)>
inline Int to_nonnegative_int(T value, Int upper) {
if (value < 0 || value > static_cast<T>(upper))
FMT_THROW(format_error("invalid value"));
return static_cast<Int>(value);
}
template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
inline T mod(T x, int y) {
return x % static_cast<T>(y);
}
template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value)>
inline T mod(T x, int y) {
return std::fmod(x, static_cast<T>(y));
}
// If T is an integral type, maps T to its unsigned counterpart, otherwise
// leaves it unchanged (unlike std::make_unsigned).
template <typename T, bool INTEGRAL = std::is_integral<T>::value>
struct make_unsigned_or_unchanged {
using type = T;
};
template <typename T> struct make_unsigned_or_unchanged<T, true> {
using type = typename std::make_unsigned<T>::type;
};
#if FMT_SAFE_DURATION_CAST
// throwing version of safe_duration_cast
template <typename To, typename FromRep, typename FromPeriod>
To fmt_safe_duration_cast(std::chrono::duration<FromRep, FromPeriod> from) {
int ec;
To to = safe_duration_cast::safe_duration_cast<To>(from, ec);
if (ec) FMT_THROW(format_error("cannot format duration"));
return to;
}
#endif
template <typename Rep, typename Period,
FMT_ENABLE_IF(std::is_integral<Rep>::value)>
inline std::chrono::duration<Rep, std::milli> get_milliseconds(
std::chrono::duration<Rep, Period> d) {
// this may overflow and/or the result may not fit in the
// target type.
#if FMT_SAFE_DURATION_CAST
using CommonSecondsType =
typename std::common_type<decltype(d), std::chrono::seconds>::type;
const auto d_as_common = fmt_safe_duration_cast<CommonSecondsType>(d);
const auto d_as_whole_seconds =
fmt_safe_duration_cast<std::chrono::seconds>(d_as_common);
// this conversion should be nonproblematic
const auto diff = d_as_common - d_as_whole_seconds;
const auto ms =
fmt_safe_duration_cast<std::chrono::duration<Rep, std::milli>>(diff);
return ms;
#else
auto s = std::chrono::duration_cast<std::chrono::seconds>(d);
return std::chrono::duration_cast<std::chrono::milliseconds>(d - s);
#endif
}
// Returns the number of fractional digits in the range [0, 18] according to the
// C++20 spec. If more than 18 fractional digits are required then returns 6 for
// microseconds precision.
constexpr int count_fractional_digits(long long num, long long den, int n = 0) {
return num % den == 0
? n
: (n > 18 ? 6 : count_fractional_digits(num * 10, den, n + 1));
}
constexpr long long pow10(std::uint32_t n) {
return n == 0 ? 1 : 10 * pow10(n - 1);
}
template <class Rep, class Period,
FMT_ENABLE_IF(std::numeric_limits<Rep>::is_signed)>
constexpr std::chrono::duration<Rep, Period> abs(
std::chrono::duration<Rep, Period> d) {
// We need to compare the duration using the count() method directly
// due to a compiler bug in clang-11 regarding the spaceship operator,
// when -Wzero-as-null-pointer-constant is enabled.
// In clang-12 the bug has been fixed. See
// https://bugs.llvm.org/show_bug.cgi?id=46235 and the reproducible example:
// https://www.godbolt.org/z/Knbb5joYx.
return d.count() >= d.zero().count() ? d : -d;
}
template <class Rep, class Period,
FMT_ENABLE_IF(!std::numeric_limits<Rep>::is_signed)>
constexpr std::chrono::duration<Rep, Period> abs(
std::chrono::duration<Rep, Period> d) {
return d;
}
template <typename Char, typename Rep, typename OutputIt,
FMT_ENABLE_IF(std::is_integral<Rep>::value)>
OutputIt format_duration_value(OutputIt out, Rep val, int) {
return write<Char>(out, val);
}
template <typename Char, typename Rep, typename OutputIt,
FMT_ENABLE_IF(std::is_floating_point<Rep>::value)>
OutputIt format_duration_value(OutputIt out, Rep val, int precision) {
auto specs = basic_format_specs<Char>();
specs.precision = precision;
specs.type = precision >= 0 ? presentation_type::fixed_lower
: presentation_type::general_lower;
return write<Char>(out, val, specs);
}
template <typename Char, typename OutputIt>
OutputIt copy_unit(string_view unit, OutputIt out, Char) {
return std::copy(unit.begin(), unit.end(), out);
}
template <typename OutputIt>
OutputIt copy_unit(string_view unit, OutputIt out, wchar_t) {
// This works when wchar_t is UTF-32 because units only contain characters
// that have the same representation in UTF-16 and UTF-32.
utf8_to_utf16 u(unit);
return std::copy(u.c_str(), u.c_str() + u.size(), out);
}
template <typename Char, typename Period, typename OutputIt>
OutputIt format_duration_unit(OutputIt out) {
if (const char* unit = get_units<Period>())
return copy_unit(string_view(unit), out, Char());
*out++ = '[';
out = write<Char>(out, Period::num);
if (const_check(Period::den != 1)) {
*out++ = '/';
out = write<Char>(out, Period::den);
}
*out++ = ']';
*out++ = 's';
return out;
}
class get_locale {
private:
union {
std::locale locale_;
};
bool has_locale_ = false;
public:
get_locale(bool localized, locale_ref loc) : has_locale_(localized) {
if (localized)
::new (&locale_) std::locale(loc.template get<std::locale>());
}
~get_locale() {
if (has_locale_) locale_.~locale();
}
operator const std::locale&() const {
return has_locale_ ? locale_ : get_classic_locale();
}
};
template <typename FormatContext, typename OutputIt, typename Rep,
typename Period>
struct chrono_formatter {
FormatContext& context;
OutputIt out;
int precision;
bool localized = false;
// rep is unsigned to avoid overflow.
using rep =
conditional_t<std::is_integral<Rep>::value && sizeof(Rep) < sizeof(int),
unsigned, typename make_unsigned_or_unchanged<Rep>::type>;
rep val;
using seconds = std::chrono::duration<rep>;
seconds s;
using milliseconds = std::chrono::duration<rep, std::milli>;
bool negative;
using char_type = typename FormatContext::char_type;
using tm_writer_type = tm_writer<OutputIt, char_type>;
chrono_formatter(FormatContext& ctx, OutputIt o,
std::chrono::duration<Rep, Period> d)
: context(ctx),
out(o),
val(static_cast<rep>(d.count())),
negative(false) {
if (d.count() < 0) {
val = 0 - val;
negative = true;
}
// this may overflow and/or the result may not fit in the
// target type.
#if FMT_SAFE_DURATION_CAST
// might need checked conversion (rep!=Rep)
auto tmpval = std::chrono::duration<rep, Period>(val);
s = fmt_safe_duration_cast<seconds>(tmpval);
#else
s = std::chrono::duration_cast<seconds>(
std::chrono::duration<rep, Period>(val));
#endif
}
// returns true if nan or inf, writes to out.
bool handle_nan_inf() {
if (isfinite(val)) {
return false;
}
if (isnan(val)) {
write_nan();
return true;
}
// must be +-inf
if (val > 0) {
write_pinf();
} else {
write_ninf();
}
return true;
}
Rep hour() const { return static_cast<Rep>(mod((s.count() / 3600), 24)); }
Rep hour12() const {
Rep hour = static_cast<Rep>(mod((s.count() / 3600), 12));
return hour <= 0 ? 12 : hour;
}
Rep minute() const { return static_cast<Rep>(mod((s.count() / 60), 60)); }
Rep second() const { return static_cast<Rep>(mod(s.count(), 60)); }
std::tm time() const {
auto time = std::tm();
time.tm_hour = to_nonnegative_int(hour(), 24);
time.tm_min = to_nonnegative_int(minute(), 60);
time.tm_sec = to_nonnegative_int(second(), 60);
return time;
}
void write_sign() {
if (negative) {
*out++ = '-';
negative = false;
}
}
void write(Rep value, int width) {
write_sign();
if (isnan(value)) return write_nan();
uint32_or_64_or_128_t<int> n =
to_unsigned(to_nonnegative_int(value, max_value<int>()));
int num_digits = detail::count_digits(n);
if (width > num_digits) out = std::fill_n(out, width - num_digits, '0');
out = format_decimal<char_type>(out, n, num_digits).end;
}
template <class Duration> void write_fractional_seconds(Duration d) {
constexpr auto num_fractional_digits =
count_fractional_digits(Duration::period::num, Duration::period::den);
using subsecond_precision = std::chrono::duration<
typename std::common_type<typename Duration::rep,
std::chrono::seconds::rep>::type,
std::ratio<1, detail::pow10(num_fractional_digits)>>;
if (std::ratio_less<typename subsecond_precision::period,
std::chrono::seconds::period>::value) {
*out++ = '.';
// Don't convert long double to integer seconds to avoid overflow.
using sec = conditional_t<
std::is_same<typename Duration::rep, long double>::value,
std::chrono::duration<long double>, std::chrono::seconds>;
auto fractional = detail::abs(d) - std::chrono::duration_cast<sec>(d);
const auto subseconds =
std::chrono::treat_as_floating_point<
typename subsecond_precision::rep>::value
? fractional.count()
: std::chrono::duration_cast<subsecond_precision>(fractional)
.count();
uint32_or_64_or_128_t<long long> n =
to_unsigned(to_nonnegative_int(subseconds, max_value<long long>()));
int num_digits = detail::count_digits(n);
if (num_fractional_digits > num_digits)
out = std::fill_n(out, num_fractional_digits - num_digits, '0');
out = format_decimal<char_type>(out, n, num_digits).end;
}
}
void write_nan() { std::copy_n("nan", 3, out); }
void write_pinf() { std::copy_n("inf", 3, out); }
void write_ninf() { std::copy_n("-inf", 4, out); }
template <typename Callback, typename... Args>
void format_tm(const tm& time, Callback cb, Args... args) {
if (isnan(val)) return write_nan();
get_locale loc(localized, context.locale());
auto w = tm_writer_type(loc, out, time);
(w.*cb)(args...);
out = w.out();
}
void on_text(const char_type* begin, const char_type* end) {
std::copy(begin, end, out);
}
// These are not implemented because durations don't have date information.
void on_abbr_weekday() {}
void on_full_weekday() {}
void on_dec0_weekday(numeric_system) {}
void on_dec1_weekday(numeric_system) {}
void on_abbr_month() {}
void on_full_month() {}
void on_datetime(numeric_system) {}
void on_loc_date(numeric_system) {}
void on_loc_time(numeric_system) {}
void on_us_date() {}
void on_iso_date() {}
void on_utc_offset() {}
void on_tz_name() {}
void on_year(numeric_system) {}
void on_short_year(numeric_system) {}
void on_offset_year() {}
void on_century(numeric_system) {}
void on_iso_week_based_year() {}
void on_iso_week_based_short_year() {}
void on_dec_month(numeric_system) {}
void on_dec0_week_of_year(numeric_system) {}
void on_dec1_week_of_year(numeric_system) {}
void on_iso_week_of_year(numeric_system) {}
void on_day_of_year() {}
void on_day_of_month(numeric_system) {}
void on_day_of_month_space(numeric_system) {}
void on_24_hour(numeric_system ns) {
if (handle_nan_inf()) return;
if (ns == numeric_system::standard) return write(hour(), 2);
auto time = tm();
time.tm_hour = to_nonnegative_int(hour(), 24);
format_tm(time, &tm_writer_type::on_24_hour, ns);
}
void on_12_hour(numeric_system ns) {
if (handle_nan_inf()) return;
if (ns == numeric_system::standard) return write(hour12(), 2);
auto time = tm();
time.tm_hour = to_nonnegative_int(hour12(), 12);
format_tm(time, &tm_writer_type::on_12_hour, ns);
}
void on_minute(numeric_system ns) {
if (handle_nan_inf()) return;
if (ns == numeric_system::standard) return write(minute(), 2);
auto time = tm();
time.tm_min = to_nonnegative_int(minute(), 60);
format_tm(time, &tm_writer_type::on_minute, ns);
}
void on_second(numeric_system ns) {
if (handle_nan_inf()) return;
if (ns == numeric_system::standard) {
write(second(), 2);
write_fractional_seconds(std::chrono::duration<rep, Period>{val});
return;
}
auto time = tm();
time.tm_sec = to_nonnegative_int(second(), 60);
format_tm(time, &tm_writer_type::on_second, ns);
}
void on_12_hour_time() {
if (handle_nan_inf()) return;
format_tm(time(), &tm_writer_type::on_12_hour_time);
}
void on_24_hour_time() {
if (handle_nan_inf()) {
*out++ = ':';
handle_nan_inf();
return;
}
write(hour(), 2);
*out++ = ':';
write(minute(), 2);
}
void on_iso_time() {
on_24_hour_time();
*out++ = ':';
if (handle_nan_inf()) return;
on_second(numeric_system::standard);
}
void on_am_pm() {
if (handle_nan_inf()) return;
format_tm(time(), &tm_writer_type::on_am_pm);
}
void on_duration_value() {
if (handle_nan_inf()) return;
write_sign();
out = format_duration_value<char_type>(out, val, precision);
}
void on_duration_unit() {
out = format_duration_unit<char_type, Period>(out);
}
};
FMT_END_DETAIL_NAMESPACE
#if defined(__cpp_lib_chrono) && __cpp_lib_chrono >= 201907
using weekday = std::chrono::weekday;
#else
// A fallback version of weekday.
class weekday {
private:
unsigned char value;
public:
weekday() = default;
explicit constexpr weekday(unsigned wd) noexcept
: value(static_cast<unsigned char>(wd != 7 ? wd : 0)) {}
constexpr unsigned c_encoding() const noexcept { return value; }
};
class year_month_day {};
#endif
// A rudimentary weekday formatter.
template <typename Char> struct formatter<weekday, Char> {
private:
bool localized = false;
public:
FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx)
-> decltype(ctx.begin()) {
auto begin = ctx.begin(), end = ctx.end();
if (begin != end && *begin == 'L') {
++begin;
localized = true;
}
return begin;
}
template <typename FormatContext>
auto format(weekday wd, FormatContext& ctx) const -> decltype(ctx.out()) {
auto time = std::tm();
time.tm_wday = static_cast<int>(wd.c_encoding());
detail::get_locale loc(localized, ctx.locale());
auto w = detail::tm_writer<decltype(ctx.out()), Char>(loc, ctx.out(), time);
w.on_abbr_weekday();
return w.out();
}
};
template <typename Rep, typename Period, typename Char>
struct formatter<std::chrono::duration<Rep, Period>, Char> {
private:
basic_format_specs<Char> specs;
int precision = -1;
using arg_ref_type = detail::arg_ref<Char>;
arg_ref_type width_ref;
arg_ref_type precision_ref;
bool localized = false;
basic_string_view<Char> format_str;
using duration = std::chrono::duration<Rep, Period>;
struct spec_handler {
formatter& f;
basic_format_parse_context<Char>& context;
basic_string_view<Char> format_str;
template <typename Id> FMT_CONSTEXPR arg_ref_type make_arg_ref(Id arg_id) {
context.check_arg_id(arg_id);
return arg_ref_type(arg_id);
}
FMT_CONSTEXPR arg_ref_type make_arg_ref(basic_string_view<Char> arg_id) {
context.check_arg_id(arg_id);
return arg_ref_type(arg_id);
}
FMT_CONSTEXPR arg_ref_type make_arg_ref(detail::auto_id) {
return arg_ref_type(context.next_arg_id());
}
void on_error(const char* msg) { FMT_THROW(format_error(msg)); }
FMT_CONSTEXPR void on_fill(basic_string_view<Char> fill) {
f.specs.fill = fill;
}
FMT_CONSTEXPR void on_align(align_t align) { f.specs.align = align; }
FMT_CONSTEXPR void on_width(int width) { f.specs.width = width; }
FMT_CONSTEXPR void on_precision(int _precision) {
f.precision = _precision;
}
FMT_CONSTEXPR void end_precision() {}
template <typename Id> FMT_CONSTEXPR void on_dynamic_width(Id arg_id) {
f.width_ref = make_arg_ref(arg_id);
}
template <typename Id> FMT_CONSTEXPR void on_dynamic_precision(Id arg_id) {
f.precision_ref = make_arg_ref(arg_id);
}
};
using iterator = typename basic_format_parse_context<Char>::iterator;
struct parse_range {
iterator begin;
iterator end;
};
FMT_CONSTEXPR parse_range do_parse(basic_format_parse_context<Char>& ctx) {
auto begin = ctx.begin(), end = ctx.end();
if (begin == end || *begin == '}') return {begin, begin};
spec_handler handler{*this, ctx, format_str};
begin = detail::parse_align(begin, end, handler);
if (begin == end) return {begin, begin};
begin = detail::parse_width(begin, end, handler);
if (begin == end) return {begin, begin};
if (*begin == '.') {
if (std::is_floating_point<Rep>::value)
begin = detail::parse_precision(begin, end, handler);
else
handler.on_error("precision not allowed for this argument type");
}
if (begin != end && *begin == 'L') {
++begin;
localized = true;
}
end = detail::parse_chrono_format(begin, end,
detail::chrono_format_checker());
return {begin, end};
}
public:
FMT_CONSTEXPR auto parse(basic_format_parse_context<Char>& ctx)
-> decltype(ctx.begin()) {
auto range = do_parse(ctx);
format_str = basic_string_view<Char>(
&*range.begin, detail::to_unsigned(range.end - range.begin));
return range.end;
}
template <typename FormatContext>
auto format(const duration& d, FormatContext& ctx) const
-> decltype(ctx.out()) {
auto specs_copy = specs;
auto precision_copy = precision;
auto begin = format_str.begin(), end = format_str.end();
// As a possible future optimization, we could avoid extra copying if width
// is not specified.
basic_memory_buffer<Char> buf;
auto out = std::back_inserter(buf);
detail::handle_dynamic_spec<detail::width_checker>(specs_copy.width,
width_ref, ctx);
detail::handle_dynamic_spec<detail::precision_checker>(precision_copy,
precision_ref, ctx);
if (begin == end || *begin == '}') {
out = detail::format_duration_value<Char>(out, d.count(), precision_copy);
detail::format_duration_unit<Char, Period>(out);
} else {
detail::chrono_formatter<FormatContext, decltype(out), Rep, Period> f(
ctx, out, d);
f.precision = precision_copy;
f.localized = localized;
detail::parse_chrono_format(begin, end, f);
}
return detail::write(
ctx.out(), basic_string_view<Char>(buf.data(), buf.size()), specs_copy);
}
};
template <typename Char, typename Duration>
struct formatter<std::chrono::time_point<std::chrono::system_clock, Duration>,
Char> : formatter<std::tm, Char> {
FMT_CONSTEXPR formatter() {
this->do_parse(default_specs,
default_specs + sizeof(default_specs) / sizeof(Char));
}
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
return this->do_parse(ctx.begin(), ctx.end(), true);
}
template <typename FormatContext>
auto format(std::chrono::time_point<std::chrono::system_clock> val,
FormatContext& ctx) const -> decltype(ctx.out()) {
return formatter<std::tm, Char>::format(localtime(val), ctx);
}
static constexpr const Char default_specs[] = {'%', 'F', ' ', '%', 'T'};
};
template <typename Char, typename Duration>
constexpr const Char
formatter<std::chrono::time_point<std::chrono::system_clock, Duration>,
Char>::default_specs[];
template <typename Char> struct formatter<std::tm, Char> {
private:
enum class spec {
unknown,
year_month_day,
hh_mm_ss,
};
spec spec_ = spec::unknown;
basic_string_view<Char> specs;
protected:
template <typename It>
FMT_CONSTEXPR auto do_parse(It begin, It end, bool with_default = false)
-> It {
if (begin != end && *begin == ':') ++begin;
end = detail::parse_chrono_format(begin, end, detail::tm_format_checker());
if (!with_default || end != begin)
specs = {begin, detail::to_unsigned(end - begin)};
// basic_string_view<>::compare isn't constexpr before C++17.
if (specs.size() == 2 && specs[0] == Char('%')) {
if (specs[1] == Char('F'))
spec_ = spec::year_month_day;
else if (specs[1] == Char('T'))
spec_ = spec::hh_mm_ss;
}
return end;
}
public:
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
return this->do_parse(ctx.begin(), ctx.end());
}
template <typename FormatContext>
auto format(const std::tm& tm, FormatContext& ctx) const
-> decltype(ctx.out()) {
const auto loc_ref = ctx.locale();
detail::get_locale loc(static_cast<bool>(loc_ref), loc_ref);
auto w = detail::tm_writer<decltype(ctx.out()), Char>(loc, ctx.out(), tm);
if (spec_ == spec::year_month_day)
w.on_iso_date();
else if (spec_ == spec::hh_mm_ss)
w.on_iso_time();
else
detail::parse_chrono_format(specs.begin(), specs.end(), w);
return w.out();
}
};
FMT_MODULE_EXPORT_END
FMT_END_NAMESPACE
#endif // FMT_CHRONO_H_