add performance test demo page. reduce number of drawing calls drawing pipeline of webgl drawer.

This commit is contained in:
Tom 2023-07-19 18:18:56 -04:00
parent 01a4ea6f2c
commit f510301922
6 changed files with 842 additions and 324 deletions

View File

@ -324,7 +324,9 @@ class CanvasDrawer extends $.DrawerBase{
if (tiledImage._croppingPolygons) {
var self = this;
if(!usedClip){
this._saveContext(useSketch);
}
try {
var polygons = tiledImage._croppingPolygons.map(function (polygon) {
return polygon.map(function (coord) {

View File

@ -1,3 +1,4 @@
/*
* OpenSeadragon - WebGLDrawer
*
@ -142,11 +143,10 @@
this._TileMap = new Map();
this._gl = null;
this._glLocs = null;
this._glProgram = null;
this._glUnitQuadBuffer = null;
this._firstPass = null;
this._secondPass = null;
this._glFrameBuffer = null;
this._glTiledImageTexture = null;
this._renderToTexture = null;
this._glFramebufferToCanvasTransform = null;
this._outputCanvas = null;
this._outputContext = null;
@ -196,7 +196,7 @@
});
// Delete all our created resources
gl.deleteBuffer(this._glUnitQuadBuffer);
gl.deleteBuffer(this._secondPass.bufferOutputPosition);
gl.deleteFramebuffer(this._glFrameBuffer);
// TO DO: if/when render buffers or frame buffers are used, release them:
// gl.deleteRenderbuffer(someRenderbuffer);
@ -282,35 +282,59 @@
let rotMatrix = Mat3.makeRotation(-viewport.rotation);
let viewMatrix = scaleMatrix.multiply(rotMatrix).multiply(posMatrix);
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
gl.clear(gl.COLOR_BUFFER_BIT); // clear the back buffer
// clear the output canvas
this._outputContext.clearRect(0, 0, this._outputCanvas.width, this._outputCanvas.height);
// TO DO: further optimization is possible.
// If no clipping and no composite operation, the tiled images
// can all be drawn onto the rendering canvas at the same time, avoiding
// unnecessary clearing and copying of the pixel data.
// For now, I'm doing it this way to replicate full functionality
// of the context2d drawer
let renderingBufferHasImageData = false;
//iterate over tiled images and draw each one using a two-pass rendering pipeline if needed
tiledImages.forEach( (tiledImage, tiledImageIndex) => {
let useContext2dPipeline = ( tiledImage.compositeOperation ||
this.viewer.compositeOperation ||
tiledImage._clip ||
tiledImage._croppingPolygons ||
tiledImage.debugMode
);
let useTwoPassRendering = useContext2dPipeline || (tiledImage.opacity < 1); // TO DO: check hasTransparency in addition to opacity
//iterate over tiled imagesget the list of tiles to draw
tiledImages.forEach( (tiledImage, i) => {
//get the list of tiles to draw
let tilesToDraw = tiledImage.getTilesToDraw();
if(tilesToDraw.length === 0){
return;
}
// bind to the framebuffer for render-to-texture
gl.bindFramebuffer(gl.FRAMEBUFFER, this._glFrameBuffer);
// using the context2d pipeline requires a clean rendering (back) buffer to start
if(useContext2dPipeline){
// if the rendering buffer has image data currently, write it to the output canvas now and clear it
if(renderingBufferHasImageData){
this._outputContext.drawImage(this._renderingCanvas, 0, 0);
}
// clear the buffer
gl.clear(gl.COLOR_BUFFER_BIT);
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
gl.clear(gl.COLOR_BUFFER_BIT); // clear the back buffer
}
// First rendering pass: compose tiles that make up this tiledImage
gl.useProgram(this._firstPass.shaderProgram);
// bind to the framebuffer for render-to-texture if using two-pass rendering, otherwise back buffer (null)
if(useTwoPassRendering){
gl.bindFramebuffer(gl.FRAMEBUFFER, this._glFrameBuffer);
// clear the buffer to draw a new image
gl.clear(gl.COLOR_BUFFER_BIT);
} else {
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
// no need to clear, just draw on top of the existing pixels
}
// set opacity for this image
gl.uniform1f(this._glLocs.uOpacityMultiplier, tiledImage.opacity);
@ -329,37 +353,86 @@
overallMatrix = viewMatrix.multiply(localMatrix);
}
// iterate over tiles and draw each one to the buffer
for(let ti = 0; ti < tilesToDraw.length; ti++){
let tile = tilesToDraw[ti].tile;
let textureInfo = this._TextureMap.get(tile.getCanvasContext().canvas);
let maxTextures = this._gl.getParameter(this._gl.MAX_TEXTURE_IMAGE_UNITS);
let texturePositionArray = new Float32Array(maxTextures * 12); // 6 vertices (2 triangles) x 2 coordinates per vertex
let textureDataArray = new Array(maxTextures);
let matrixArray = new Array(maxTextures);
let opacityArray = new Array(maxTextures);
// iterate over tiles and add data for each one to the buffers
for(let tileIndex = 0; tileIndex < tilesToDraw.length; tileIndex++){
let tile = tilesToDraw[tileIndex].tile;
let index = tileIndex % maxTextures;
let tileContext = tile.getCanvasContext();
let textureInfo = tileContext ? this._TextureMap.get(tileContext.canvas) : null;
if(textureInfo){
this._drawTile(tile, tiledImage, textureInfo, overallMatrix, tiledImage.opacity);
this._getTileData(tile, tiledImage, textureInfo, overallMatrix, index, texturePositionArray, textureDataArray, matrixArray, opacityArray);
} else {
// console.log('No tile info', tile);
}
if( (index === maxTextures - 1) || (tileIndex === tilesToDraw.length - 1)){
// We've filled up the buffers: time to draw this set of tiles
// bind each tile's texture to the appropriate gl.TEXTURE#
for(let i = 0; i <= index; i++){
gl.activeTexture(gl.TEXTURE0 + i);
gl.bindTexture(gl.TEXTURE_2D, textureDataArray[i]);
}
// set the buffer data for the texture coordinates to use for each tile
gl.bindBuffer(gl.ARRAY_BUFFER, this._firstPass.bufferTexturePosition);
gl.bufferData(gl.ARRAY_BUFFER, texturePositionArray, gl.DYNAMIC_DRAW);
// Draw from the Framebuffer onto the rendering canvas buffer
// set the transform matrix uniform for each tile
matrixArray.forEach( (matrix, index) => {
gl.uniformMatrix3fv(this._firstPass.uTransformMatrices[index], false, matrix);
});
// set the opacity uniform for each tile
gl.uniform1fv(this._firstPass.uOpacities, new Float32Array(opacityArray));
gl.flush(); // finish drawing to the texture
gl.bindFramebuffer(gl.FRAMEBUFFER, null); // null means bind to the backbuffer for drawing
gl.bindTexture(gl.TEXTURE_2D, this._glTiledImageTexture); // bind the rendered texture to use
gl.clear(gl.COLOR_BUFFER_BIT); // clear the back buffer
// bind vertex buffers and (re)set attributes before calling gl.drawArrays()
gl.bindBuffer(gl.ARRAY_BUFFER, this._firstPass.bufferOutputPosition);
gl.vertexAttribPointer(this._firstPass.aOutputPosition, 2, gl.FLOAT, false, 0, 0);
// set up the matrix to draw the whole framebuffer to the entire clip space
gl.uniformMatrix3fv(this._glLocs.uMatrix, false, this._glFramebufferToCanvasTransform);
gl.bindBuffer(gl.ARRAY_BUFFER, this._firstPass.bufferTexturePosition);
gl.vertexAttribPointer(this._firstPass.aTexturePosition, 2, gl.FLOAT, false, 0, 0);
// reset texturebuffer to unit quad
gl.bindBuffer(gl.ARRAY_BUFFER, this._glTextureBuffer);
gl.bufferData(gl.ARRAY_BUFFER, this._glUnitQuad, gl.DYNAMIC_DRAW);
gl.bindBuffer(gl.ARRAY_BUFFER, this._firstPass.bufferIndex);
gl.vertexAttribPointer(this._firstPass.aIndex, 1, gl.FLOAT, false, 0, 0);
// Draw! 6 vertices per tile (2 triangles per rectangle)
gl.drawArrays(gl.TRIANGLES, 0, 6 * (index + 1) );
}
}
// gl.flush(); // is this necessary?
if(useTwoPassRendering){
// Second rendering pass: Render the tiled image from the framebuffer into the back buffer
gl.useProgram(this._secondPass.shaderProgram);
// set the rendering target to the back buffer (null)
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
// bind the rendered texture from the first pass to use during this second pass
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, this._renderToTexture);
// set opacity to the value for the current tiledImage
this._gl.uniform1f(this._glLocs.uOpacityMultiplier, tiledImage.opacity);
this._gl.uniform1f(this._secondPass.uOpacityMultiplier, tiledImage.opacity);
// bind buffers and set attributes before calling gl.drawArrays
gl.bindBuffer(gl.ARRAY_BUFFER, this._secondPass.bufferTexturePosition);
gl.vertexAttribPointer(this._secondPass.aTexturePosition, 2, gl.FLOAT, false, 0, 0);
gl.bindBuffer(gl.ARRAY_BUFFER, this._secondPass.bufferOutputPosition);
gl.vertexAttribPointer(this._firstPass.aOutputPosition, 2, gl.FLOAT, false, 0, 0);
// Draw the quad (two triangles)
gl.drawArrays(gl.TRIANGLES, 0, 6);
// iterate over any filters - filters can use this._glTiledImageTexture to get rendered data if desired
// TO DO: is this the mechanism we want to use here?
// iterate over any filters - filters can use this._renderToTexture to get rendered data if desired
let filters = this.filters || [];
for(let fi = 0; fi < filters.length; fi++){
let filter = this.filters[fi];
@ -367,12 +440,47 @@
filter.apply(gl); // filter.apply should write data on top of the backbuffer (bound above)
}
}
gl.flush(); //make sure drawing to the output buffer of the rendering canvas is complete. Is this necessary?
}
renderingBufferHasImageData = true;
// gl.flush(); //make sure drawing to the output buffer of the rendering canvas is complete. Is this necessary?
if(useContext2dPipeline){
// draw from the rendering canvas onto the output canvas, clipping/cropping if needed.
this._renderToOutputCanvas(tiledImage, tilesToDraw, i);
this._applyContext2dPipeline(tiledImage, tilesToDraw, tiledImageIndex);
renderingBufferHasImageData = false;
// clear the buffer
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
gl.clear(gl.COLOR_BUFFER_BIT); // clear the back buffer
}
// Fire tiled-image-drawn event.
// TO DO: the image data may not be on the output canvas yet!!
if( this.viewer ){
/**
* Raised when a tiled image is drawn to the canvas. Only valid
* for webgl drawer.
*
* @event tiled-image-drawn
* @memberof OpenSeadragon.Viewer
* @type {object}
* @property {OpenSeadragon.Viewer} eventSource - A reference to the Viewer which raised the event.
* @property {OpenSeadragon.TiledImage} tiledImage - Which TiledImage is being drawn.
* @property {Array} tiles - An array of Tile objects that were drawn.
* @property {?Object} userData - Arbitrary subscriber-defined object.
*/
this.viewer.raiseEvent( 'tiled-image-drawn', {
tiledImage: tiledImage,
tiles: tilesToDraw.map(info => info.tile),
});
}
});
// TO DO: the line below is a test!
if(renderingBufferHasImageData){
this._outputContext.drawImage(this._renderingCanvas, 0, 0);
}
}
@ -418,7 +526,7 @@
* @param {OpenSeadragon.TiledImage} tiledImage - the tiledImage to draw
* @param {Array} tilesToDraw - array of objects containing tiles that were drawn
*/
_renderToOutputCanvas(tiledImage, tilesToDraw, tiledImageIndex){
_applyContext2dPipeline(tiledImage, tilesToDraw, tiledImageIndex){
// composite onto the output canvas, clipping if necessary
this._outputContext.save();
@ -439,39 +547,19 @@
this._drawDebugInfo(tilesToDraw, tiledImage, strokeStyle, fillStyle);
}
// Fire tiled-image-drawn event now that the data is on the output canvas
if( this.viewer ){
/**
* Raised when a tiled image is drawn to the canvas. Only valid
* for webgl drawer.
*
* @event tiled-image-drawn
* @memberof OpenSeadragon.Viewer
* @type {object}
* @property {OpenSeadragon.Viewer} eventSource - A reference to the Viewer which raised the event.
* @property {OpenSeadragon.TiledImage} tiledImage - Which TiledImage is being drawn.
* @property {Array} tiles - An array of Tile objects that were drawn.
* @property {?Object} userData - Arbitrary subscriber-defined object.
*/
this.viewer.raiseEvent( 'tiled-image-drawn', {
tiledImage: tiledImage,
tiles: tilesToDraw.map(info => info.tile),
});
}
}
// private
_drawTile(tile, tiledImage, textureInfo, viewMatrix, imageOpacity){
_getTileData(tile, tiledImage, textureInfo, viewMatrix, index, texturePositionArray, textureDataArray, matrixArray, opacityArray){
let gl = this._gl;
let texture = textureInfo.texture;
let textureQuad = textureInfo.position;
// set the vertices into the non-overlapped portion of the texture
gl.bindBuffer(gl.ARRAY_BUFFER, this._glTextureBuffer);
gl.bufferData(gl.ARRAY_BUFFER, textureQuad, gl.DYNAMIC_DRAW);
// set the position of this texture
texturePositionArray.set(textureQuad, index * 12);
// compute offsets for overlap
// compute offsets that account for tile overlap; needed for calculating the transform matrix appropriately
let overlapFraction = this._calculateOverlapFraction(tile, tiledImage);
let xOffset = tile.positionedBounds.width * overlapFraction.x;
let yOffset = tile.positionedBounds.height * overlapFraction.y;
@ -502,41 +590,164 @@
let overallMatrix = viewMatrix.multiply(matrix);
// set opacity for this image
this._gl.uniform1f(this._glLocs.uOpacityMultiplier, tile.opacity); // imageOpacity *
gl.uniformMatrix3fv(this._glLocs.uMatrix, false, overallMatrix.values);
gl.bindTexture(gl.TEXTURE_2D, texture);
opacityArray[index] = tile.opacity;// * tiledImage.opacity;
textureDataArray[index] = texture;
matrixArray[index] = overallMatrix.values;
if(this.continuousTileRefresh){
// Upload the image into the texture (already bound to TEXTURE_2D above)
// Upload the image into the texture
// TO DO: test if this works appropriately
let tileContext = tile.getCanvasContext();
this._raiseTileDrawingEvent(tiledImage, this._outputContext, tile, tileContext);
this._uploadImageData(tileContext, tile, tiledImage);
}
gl.drawArrays(gl.TRIANGLES, 0, 6);
}
_setupRenderer(){
if(!this._gl){
let gl = this._gl;
if(!gl){
$.console.error('_setupCanvases must be called before _setupRenderer');
}
this._unitQuad = this._makeQuadVertexBuffer(0, 1, 0, 1); // used a few places; create once and store the result
this._makeFirstPassShaderProgram();
this._makeSecondPassShaderProgram();
// set up the texture to render to in the first pass, and which will be used for rendering the second pass
this._renderToTexture = gl.createTexture();
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, this._renderToTexture);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, this._renderingCanvas.width, this._renderingCanvas.height, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
// set up the framebuffer for render-to-texture
this._glFrameBuffer = gl.createFramebuffer();
gl.bindFramebuffer(gl.FRAMEBUFFER, this._glFrameBuffer);
gl.framebufferTexture2D(
gl.FRAMEBUFFER,
gl.COLOR_ATTACHMENT0, // attach texture as COLOR_ATTACHMENT0
gl.TEXTURE_2D, // attach a 2D texture
this._renderToTexture, // the texture to attach
0
);
gl.enable(gl.BLEND);
gl.blendFunc(gl.ONE, gl.ONE_MINUS_SRC_ALPHA);
}
_makeFirstPassShaderProgram(){
let numTextures = this._glNumTextures = this._gl.getParameter(this._gl.MAX_TEXTURE_IMAGE_UNITS);
let makeMatrixUniforms = () => {
return [...Array(numTextures).keys()].map(index => `uniform mat3 u_matrix_${index};`).join('\n');
};
let makeConditionals = () => {
return [...Array(numTextures).keys()].map(index => `${index > 0 ? 'else ' : ''}if(int(a_index) == ${index}) { transform_matrix = u_matrix_${index}; }`).join('\n');
};
const vertexShaderProgram = `
attribute vec2 a_output_position;
attribute vec2 a_texture_position;
attribute float a_index;
${makeMatrixUniforms()} // create a uniform mat3 for each potential tile to draw
varying vec2 v_texture_position;
varying float v_image_index;
void main() {
mat3 transform_matrix; // value will be set by the if/elses in makeConditional()
${makeConditionals()}
gl_Position = vec4(transform_matrix * vec3(a_output_position, 1), 1);
v_texture_position = a_texture_position;
v_image_index = a_index;
}
`;
const fragmentShaderProgram = `
precision mediump float;
// our textures
uniform sampler2D u_images[${numTextures}];
// our opacities
uniform float u_opacities[${numTextures}];
// the varyings passed in from the vertex shader.
varying vec2 v_texture_position;
varying float v_image_index;
void main() {
// can't index directly with a variable, need to use a loop iterator hack
for(int i = 0; i < ${numTextures}; ++i){
if(i == int(v_image_index)){
gl_FragColor = texture2D(u_images[i], v_texture_position) * u_opacities[i];
}
}
}
`;
let gl = this._gl;
let program = this.constructor.initShaderProgram(gl, vertexShaderProgram, fragmentShaderProgram);
gl.useProgram(program);
// get locations of attributes and uniforms, and create buffers for each attribute
this._firstPass = {
shaderProgram: program,
aOutputPosition: gl.getAttribLocation(program, 'a_output_position'),
aTexturePosition: gl.getAttribLocation(program, 'a_texture_position'),
aIndex: gl.getAttribLocation(program, 'a_index'),
uTransformMatrices: [...Array(this._glNumTextures).keys()].map(i=>gl.getUniformLocation(program, `u_matrix_${i}`)),
uImages: gl.getUniformLocation(program, 'u_images'),
uOpacities: gl.getUniformLocation(program, 'u_opacities'),
bufferOutputPosition: gl.createBuffer(),
bufferTexturePosition: gl.createBuffer(),
bufferIndex: gl.createBuffer(),
};
gl.uniform1iv(this._firstPass.uImages, [...Array(numTextures).keys()]);
// provide coordinates for the rectangle in output space, i.e. a unit quad for each one.
let outputQuads = new Float32Array(numTextures * 12);
for(let i = 0; i < numTextures; ++i){
outputQuads.set(Float32Array.from(this._unitQuad), i * 12);
}
gl.bindBuffer(gl.ARRAY_BUFFER, this._firstPass.bufferOutputPosition);
gl.bufferData(gl.ARRAY_BUFFER, outputQuads, gl.STATIC_DRAW); // bind data statically here, since it's unchanging
gl.enableVertexAttribArray(this._firstPass.aOutputPosition);
// provide texture coordinates for the rectangle in image (texture) space. Data will be set later.
gl.bindBuffer(gl.ARRAY_BUFFER, this._firstPass.bufferTexturePosition);
gl.enableVertexAttribArray(this._firstPass.aTexturePosition);
// for each vertex, provide an index into the array of textures/matrices to use for the correct tile
gl.bindBuffer(gl.ARRAY_BUFFER, this._firstPass.bufferIndex);
let indices = [...Array(this._glNumTextures).keys()].map(i => Array(6).fill(i)).flat(); // repeat each index 6 times, for the 6 vertices per tile (2 triangles)
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(indices), gl.STATIC_DRAW); // bind data statically here, since it's unchanging
gl.enableVertexAttribArray(this._firstPass.aIndex);
}
_makeSecondPassShaderProgram(){
const vertexShaderProgram = `
attribute vec2 a_output_position;
attribute vec2 a_texture_position;
uniform mat3 u_matrix;
varying vec2 v_texCoord;
varying vec2 v_texture_position;
void main() {
gl_Position = vec4(u_matrix * vec3(a_output_position, 1), 1);
v_texCoord = a_texture_position;
v_texture_position = a_texture_position;
}
`;
@ -547,65 +758,48 @@
uniform sampler2D u_image;
// the texCoords passed in from the vertex shader.
varying vec2 v_texCoord;
varying vec2 v_texture_position;
// the opacity multiplier for the image
uniform float u_opacity_multiplier;
void main() {
gl_FragColor = texture2D(u_image, v_texCoord);
gl_FragColor = texture2D(u_image, v_texture_position);
gl_FragColor *= u_opacity_multiplier;
}
`;
let gl = this._gl;
this._glProgram = this.constructor.initShaderProgram(gl, vertexShaderProgram, fragmentShaderProgram);
gl.useProgram(this._glProgram);
gl.enable(gl.BLEND);
gl.blendFunc(gl.ONE, gl.ONE_MINUS_SRC_ALPHA);
this._glLocs = {
aOutputPosition: gl.getAttribLocation(this._glProgram, 'a_output_position'),
aTexturePosition: gl.getAttribLocation(this._glProgram, 'a_texture_position'),
uMatrix: gl.getUniformLocation(this._glProgram, 'u_matrix'),
uImage: gl.getUniformLocation(this._glProgram, 'u_image'),
uOpacityMultiplier: gl.getUniformLocation(this._glProgram, 'u_opacity_multiplier')
let gl = this._gl;
let program = this.constructor.initShaderProgram(gl, vertexShaderProgram, fragmentShaderProgram);
gl.useProgram(program);
// get locations of attributes and uniforms, and create buffers for each attribute
this._secondPass = {
shaderProgram: program,
aOutputPosition: gl.getAttribLocation(program, 'a_output_position'),
aTexturePosition: gl.getAttribLocation(program, 'a_texture_position'),
uMatrix: gl.getUniformLocation(program, 'u_matrix'),
uImage: gl.getUniformLocation(program, 'u_image'),
uOpacityMultiplier: gl.getUniformLocation(program, 'u_opacity_multiplier'),
bufferOutputPosition: gl.createBuffer(),
bufferTexturePosition: gl.createBuffer(),
};
this._glUnitQuad = this._makeQuadVertexBuffer(0, 1, 0, 1);
// provide texture coordinates for the rectangle in output space.
this._glUnitQuadBuffer = gl.createBuffer(); //keep reference to clear it later
gl.bindBuffer(gl.ARRAY_BUFFER, this._glUnitQuadBuffer);
gl.bufferData(gl.ARRAY_BUFFER, this._glUnitQuad, gl.STATIC_DRAW);
gl.enableVertexAttribArray(this._glLocs.aOutputPosition);
gl.vertexAttribPointer(this._glLocs.aOutputPosition, 2, gl.FLOAT, false, 0, 0);
// provide coordinates for the rectangle in output space, i.e. a unit quad for each one.
gl.bindBuffer(gl.ARRAY_BUFFER, this._secondPass.bufferOutputPosition);
gl.bufferData(gl.ARRAY_BUFFER, this._unitQuad, gl.STATIC_DRAW); // bind data statically here since it's unchanging
gl.enableVertexAttribArray(this._secondPass.aOutputPosition);
// provide texture coordinates for the rectangle in image (texture) space.
this._glTextureBuffer = gl.createBuffer(); //keep reference to clear it later
gl.bindBuffer(gl.ARRAY_BUFFER, this._glTextureBuffer);
gl.bufferData(gl.ARRAY_BUFFER, this._glUnitQuad, gl.DYNAMIC_DRAW); // use unit quad to start, will be updated per tile
gl.enableVertexAttribArray(this._glLocs.aTexturePosition);
gl.vertexAttribPointer(this._glLocs.aTexturePosition, 2, gl.FLOAT, false, 0, 0);
// setup the framebuffer
this._glTiledImageTexture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, this._glTiledImageTexture);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, this._renderingCanvas.width, this._renderingCanvas.height, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
this._glFrameBuffer = gl.createFramebuffer();
gl.bindFramebuffer(gl.FRAMEBUFFER, this._glFrameBuffer);
gl.framebufferTexture2D(
gl.FRAMEBUFFER,
gl.COLOR_ATTACHMENT0, // attach texture as COLOR_ATTACHMENT0
gl.TEXTURE_2D, // attach a 2D texture
this._glTiledImageTexture, // the texture to attach
0
);
this._glFramebufferToCanvasTransform = Mat3.makeScaling(2, 2).multiply(Mat3.makeTranslation(-0.5, -0.5)).values;
gl.bindBuffer(gl.ARRAY_BUFFER, this._secondPass.bufferTexturePosition);
gl.bufferData(gl.ARRAY_BUFFER, this._unitQuad, gl.DYNAMIC_DRAW); // bind data statically here since it's unchanging
gl.enableVertexAttribArray(this._secondPass.aTexturePosition);
// set the matrix that transforms the framebuffer to clip space
let matrix = Mat3.makeScaling(2, 2).multiply(Mat3.makeTranslation(-0.5, -0.5));
gl.uniformMatrix3fv(this._secondPass.uMatrix, false, matrix.values);
}
_resizeRenderer(){
@ -615,10 +809,11 @@
gl.viewport(0, 0, w, h);
//release the old texture
gl.deleteTexture(this._glTiledImageTexture);
gl.deleteTexture(this._renderToTexture);
//create a new texture and set it up
this._glTiledImageTexture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, this._glTiledImageTexture);
this._renderToTexture = gl.createTexture();
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, this._renderToTexture);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, w, h, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
@ -626,7 +821,7 @@
//bind the frame buffer to the new texture
gl.bindFramebuffer(gl.FRAMEBUFFER, this._glFrameBuffer);
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, this._glTiledImageTexture, 0);
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, this._renderToTexture, 0);
}
@ -708,7 +903,7 @@
position = this._makeQuadVertexBuffer(left, right, top, bottom);
} else {
// no overlap: this texture can use the unit quad as it's position data
position = this._glUnitQuad;
position = this._unitQuad;
}
let textureInfo = {
@ -718,7 +913,7 @@
// add it to our _TextureMap
this._TextureMap.set(canvas, textureInfo);
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, texture);
// Set the parameters so we can render any size image.
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
@ -1035,14 +1230,6 @@
};
// $.WebGLDrawer.Filter = class{
// constructor(gl){
// this.gl = gl;
// }
// apply(){
// }
// };
}( OpenSeadragon ));

View File

@ -6,6 +6,7 @@
<script type="text/javascript" src='../lib/jquery-1.9.1.min.js'></script>
<script type="text/javascript" src='../lib/jquery-ui-1.10.2/js/jquery-ui-1.10.2.min.js'></script>
<link rel="stylesheet" href="../lib/jquery-ui-1.10.2/css/smoothness/jquery-ui-1.10.2.min.css">
<script type="text/javascript" src="./webgldemodrawer.js"></script>
<script type="module" src="./drawercomparison.js"></script>
<style type="text/css">

View File

@ -0,0 +1,47 @@
<!DOCTYPE html>
<html>
<head>
<title>Drawer Comparison Demo</title>
<script type="text/javascript" src='../../build/openseadragon/openseadragon.js'></script>
<script type="text/javascript" src='../lib/jquery-1.9.1.min.js'></script>
<script type="text/javascript" src='../lib/jquery-ui-1.10.2/js/jquery-ui-1.10.2.min.js'></script>
<link rel="stylesheet" href="../lib/jquery-ui-1.10.2/css/smoothness/jquery-ui-1.10.2.min.css">
<!-- <script src="https://cdnjs.cloudflare.com/ajax/libs/stats.js/17/Stats.js" crossorigin="anonymous" referrerpolicy="no-referrer"></script> -->
<!-- <script type="text/javascript" src="./webgldemodrawer.js"></script> -->
<script type="module" src="./drawerperformance.js"></script>
<style type="text/css">
.content{
max-width:960px;
margin: 0 auto;
}
#drawer{
height:800px;
}
</style>
</head>
<body>
<div class="content">
<h2>Compare performance of drawer implementations</h2>
<div>
<label>Select a drawer: </label>
<select id="select-drawer">
<option value="canvas">Canvas</option>
<option value="webgl">WebGL</option>
<option value="html">HTML</option>
</select>
<label>Num images: </label>
<input id="input-number" type="number" value="1" min="1" step="1">
<button id="create-drawer">Create drawer</button>
</div>
<div id="drawer"></div>
</div>
</body>
</html>

View File

@ -0,0 +1,90 @@
const sources = {
"rainbow":"../data/testpattern.dzi",
"leaves":"../data/iiif_2_0_sizes/info.json",
"bblue":{
type:'image',
url: "../data/BBlue.png",
},
"duomo":"https://openseadragon.github.io/example-images/duomo/duomo.dzi",
}
const labels = {
rainbow: 'Rainbow Grid',
leaves: 'Leaves',
bblue: 'Blue B',
duomo: 'Duomo',
}
let viewer;
(function(){
var script=document.createElement('script');
script.onload=function(){
var stats=new Stats();
document.body.appendChild(stats.dom);
requestAnimationFrame(function loop(){stats.update();requestAnimationFrame(loop)});
};
script.src='https://mrdoob.github.io/stats.js/build/stats.min.js';
document.head.appendChild(script);
})();
$('#create-drawer').on('click',function(){
let drawerType = $('#select-drawer').val();
let num = Math.floor($('#input-number').val());
if(viewer){
viewer.destroy();
}
viewer = window.viewer = makeViewer(drawerType);
let tileSources = makeTileSources(num);
tileSources.forEach((ts, i) => {
viewer.addTiledImage({
tileSource: ts,
x: (i % 10) / 20,
y: Math.floor(i / 10) / 20,
width: 1,
opacity: (i % 3) === 0 ? 0.4 : 1
});
});
let movingLeft = false;
window.setInterval(()=>{
let m = movingLeft ? 1 : -1;
movingLeft = m === -1;
let dist = viewer.viewport.getBounds().width / 2 / viewer.viewport.getZoom();
viewer.viewport.panBy(new OpenSeadragon.Point( dist * m/2, 0));
}, 1000);
});
function makeViewer(drawerType){
let viewer = OpenSeadragon({
id: "drawer",
prefixUrl: "../../build/openseadragon/images/",
minZoomImageRatio:0.01,
maxZoomPixelRatio:100,
smoothTileEdgesMinZoom:1.1,
crossOriginPolicy: 'Anonymous',
ajaxWithCredentials: false,
drawer:drawerType,
blendTime:0
});
return viewer;
}
function makeTileSources(num){
let keys = Object.keys(sources);
let indices = Array.from(Array(num).keys());
return indices.map(index => {
let ts = sources[keys[index % keys.length]];
return ts;
})
}

View File

@ -1,7 +1,6 @@
// THIS CODE OVERWRITES THE ORIGINAL VERSION FOR FASTER TESTING
// i.e. it doesn't need to be re-built with grunt after every save.
/*
* OpenSeadragon - WebGLDrawer
*
@ -146,11 +145,10 @@
this._TileMap = new Map();
this._gl = null;
this._glLocs = null;
this._glProgram = null;
this._glUnitQuadBuffer = null;
this._firstPass = null;
this._secondPass = null;
this._glFrameBuffer = null;
this._glTiledImageTexture = null;
this._renderToTexture = null;
this._glFramebufferToCanvasTransform = null;
this._outputCanvas = null;
this._outputContext = null;
@ -200,8 +198,8 @@
});
// Delete all our created resources
gl.deleteBuffer(this._glUnitQuadBuffer);
gl.deleteBuffer(this._glFrameBuffer);
gl.deleteBuffer(this._secondPass.bufferOutputPosition);
gl.deleteFramebuffer(this._glFrameBuffer);
// TO DO: if/when render buffers or frame buffers are used, release them:
// gl.deleteRenderbuffer(someRenderbuffer);
// gl.deleteFramebuffer(someFramebuffer);
@ -238,8 +236,7 @@
// Public API required by all Drawer implementations
/**
* @returns {Boolean} returns true if canvas and webgl are supported and
* three.js has been exposed as a global variable named THREE
* @returns {Boolean} returns true if canvas and webgl are supported
*/
static isSupported(){
let canvasElement = document.createElement( 'canvas' );
@ -252,6 +249,10 @@
return !!( webglContext );
}
getType(){
return 'webgl';
}
/**
* create the HTML element (canvas in this case) that the image will be drawn into
* @returns {Element} the canvas to draw into
@ -283,35 +284,59 @@
let rotMatrix = Mat3.makeRotation(-viewport.rotation);
let viewMatrix = scaleMatrix.multiply(rotMatrix).multiply(posMatrix);
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
gl.clear(gl.COLOR_BUFFER_BIT); // clear the back buffer
// clear the output canvas
this._outputContext.clearRect(0, 0, this._outputCanvas.width, this._outputCanvas.height);
// TO DO: further optimization is possible.
// If no clipping and no composite operation, the tiled images
// can all be drawn onto the rendering canvas at the same time, avoiding
// unnecessary clearing and copying of the pixel data.
// For now, I'm doing it this way to replicate full functionality
// of the context2d drawer
let renderingBufferHasImageData = false;
//iterate over tiled images and draw each one using a two-pass rendering pipeline if needed
tiledImages.forEach( (tiledImage, tiledImageIndex) => {
let useContext2dPipeline = ( tiledImage.compositeOperation ||
this.viewer.compositeOperation ||
tiledImage._clip ||
tiledImage._croppingPolygons ||
tiledImage.debugMode
);
let useTwoPassRendering = useContext2dPipeline ||(tiledImage.opacity < 1); // TO DO: check hasTransparency in addition to opacity
//iterate over tiled imagesget the list of tiles to draw
tiledImages.forEach( (tiledImage, i) => {
//get the list of tiles to draw
let tilesToDraw = tiledImage.getTilesToDraw();
if(tilesToDraw.length === 0){
return;
}
// bind to the framebuffer for render-to-texture
gl.bindFramebuffer(gl.FRAMEBUFFER, this._glFrameBuffer);
// using the context2d pipeline requires a clean rendering (back) buffer to start
if(useContext2dPipeline){
// if the rendering buffer has image data currently, write it to the output canvas now and clear it
if(renderingBufferHasImageData){
this._outputContext.drawImage(this._renderingCanvas, 0, 0);
}
// clear the buffer
gl.clear(gl.COLOR_BUFFER_BIT);
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
gl.clear(gl.COLOR_BUFFER_BIT); // clear the back buffer
}
// First rendering pass: compose tiles that make up this tiledImage
gl.useProgram(this._firstPass.shaderProgram);
// bind to the framebuffer for render-to-texture if using two-pass rendering, otherwise back buffer (null)
if(useTwoPassRendering){
gl.bindFramebuffer(gl.FRAMEBUFFER, this._glFrameBuffer);
// clear the buffer to draw a new image
gl.clear(gl.COLOR_BUFFER_BIT);
} else {
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
// no need to clear, just draw on top of the existing pixels
}
// set opacity for this image
gl.uniform1f(this._glLocs.uOpacityMultiplier, tiledImage.opacity);
@ -330,54 +355,134 @@
overallMatrix = viewMatrix.multiply(localMatrix);
}
// iterate over tiles and draw each one to the buffer
for(let ti = 0; ti < tilesToDraw.length; ti++){
let tile = tilesToDraw[ti].tile;
let textureInfo = this._TextureMap.get(tile.getCanvasContext().canvas);
let maxTextures = this._gl.getParameter(this._gl.MAX_TEXTURE_IMAGE_UNITS);
let texturePositionArray = new Float32Array(maxTextures * 12); // 6 vertices (2 triangles) x 2 coordinates per vertex
let textureDataArray = new Array(maxTextures);
let matrixArray = new Array(maxTextures);
let opacityArray = new Array(maxTextures);
// iterate over tiles and add data for each one to the buffers
for(let tileIndex = 0; tileIndex < tilesToDraw.length; tileIndex++){
let tile = tilesToDraw[tileIndex].tile;
let index = tileIndex % maxTextures;
let tileContext = tile.getCanvasContext();
let textureInfo = tileContext ? this._TextureMap.get(tileContext.canvas) : null;
if(textureInfo){
this._drawTile(tile, tiledImage, textureInfo, overallMatrix, tiledImage.opacity);
this._getTileData(tile, tiledImage, textureInfo, overallMatrix, index, texturePositionArray, textureDataArray, matrixArray, opacityArray);
} else {
// console.log('No tile info', tile);
}
if( (index === maxTextures - 1) || (tileIndex === tilesToDraw.length - 1)){
// We've filled up the buffers: time to draw this set of tiles
// bind each tile's texture to the appropriate gl.TEXTURE#
for(let i = 0; i <= index; i++){
gl.activeTexture(gl.TEXTURE0 + i);
gl.bindTexture(gl.TEXTURE_2D, textureDataArray[i]);
}
// set the buffer data for the texture coordinates to use for each tile
gl.bindBuffer(gl.ARRAY_BUFFER, this._firstPass.bufferTexturePosition);
gl.bufferData(gl.ARRAY_BUFFER, texturePositionArray, gl.DYNAMIC_DRAW);
// Draw from the Framebuffer onto the rendering canvas buffer
// set the transform matrix uniform for each tile
matrixArray.forEach( (matrix, index) => {
gl.uniformMatrix3fv(this._firstPass.uTransformMatrices[index], false, matrix);
});
// set the opacity uniform for each tile
gl.uniform1fv(this._firstPass.uOpacities, new Float32Array(opacityArray));
gl.flush(); // finish drawing to the texture
gl.bindFramebuffer(gl.FRAMEBUFFER, null); // null means bind to the backbuffer for drawing
gl.bindTexture(gl.TEXTURE_2D, this._glTiledImageTexture); // bind the rendered texture to use
gl.clear(gl.COLOR_BUFFER_BIT); // clear the back buffer
// bind vertex buffers and (re)set attributes before calling gl.drawArrays()
gl.bindBuffer(gl.ARRAY_BUFFER, this._firstPass.bufferOutputPosition);
gl.vertexAttribPointer(this._firstPass.aOutputPosition, 2, gl.FLOAT, false, 0, 0);
// set up the matrix to draw the whole framebuffer to the entire clip space
gl.uniformMatrix3fv(this._glLocs.uMatrix, false, this._glFramebufferToCanvasTransform);
gl.bindBuffer(gl.ARRAY_BUFFER, this._firstPass.bufferTexturePosition);
gl.vertexAttribPointer(this._firstPass.aTexturePosition, 2, gl.FLOAT, false, 0, 0);
// reset texturebuffer to unit quad
gl.bindBuffer(gl.ARRAY_BUFFER, this._glTextureBuffer);
gl.bufferData(gl.ARRAY_BUFFER, this._glUnitQuad, gl.DYNAMIC_DRAW);
gl.bindBuffer(gl.ARRAY_BUFFER, this._firstPass.bufferIndex);
gl.vertexAttribPointer(this._firstPass.aIndex, 1, gl.FLOAT, false, 0, 0);
// Draw! 6 vertices per tile (2 triangles per rectangle)
gl.drawArrays(gl.TRIANGLES, 0, 6 * (index + 1) );
}
}
// gl.flush(); // is this necessary?
if(useTwoPassRendering){
// Second rendering pass: Render the tiled image from the framebuffer into the back buffer
gl.useProgram(this._secondPass.shaderProgram);
// set the rendering target to the back buffer (null)
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
// bind the rendered texture from the first pass to use during this second pass
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, this._renderToTexture);
// set opacity to the value for the current tiledImage
this._gl.uniform1f(this._glLocs.uOpacityMultiplier, tiledImage.opacity);
this._gl.uniform1f(this._secondPass.uOpacityMultiplier, tiledImage.opacity);
// bind buffers and set attributes before calling gl.drawArrays
gl.bindBuffer(gl.ARRAY_BUFFER, this._secondPass.bufferTexturePosition);
gl.vertexAttribPointer(this._secondPass.aTexturePosition, 2, gl.FLOAT, false, 0, 0);
gl.bindBuffer(gl.ARRAY_BUFFER, this._secondPass.bufferOutputPosition);
gl.vertexAttribPointer(this._firstPass.aOutputPosition, 2, gl.FLOAT, false, 0, 0);
// Draw the quad (two triangles)
gl.drawArrays(gl.TRIANGLES, 0, 6);
// iterate over any filters - filters can use this._glTiledImageTexture to get rendered data if desired
// TO DO: is this the mechanism we want to use here?
// iterate over any filters - filters can use this._renderToTexture to get rendered data if desired
let filters = this.filters || [];
for(let fi = 0; fi < filters.length; fi++){
let filter = this.filters[fi];
if(filter.createProgram && !filter.program){
filter.createProgram(gl);
}
if(filter.apply){
filter.apply(gl, this._glTiledImageTexture, tiledImage); // filter.apply should write data on top of the backbuffer (bound above)
filter.apply(gl); // filter.apply should write data on top of the backbuffer (bound above)
}
}
}
gl.flush(); //make sure drawing to the output buffer of the rendering canvas is complete. Is this necessary?
renderingBufferHasImageData = true;
// gl.flush(); //make sure drawing to the output buffer of the rendering canvas is complete. Is this necessary?
if(useContext2dPipeline){
// draw from the rendering canvas onto the output canvas, clipping/cropping if needed.
this._renderToOutputCanvas(tiledImage, tilesToDraw, i);
this._applyContext2dPipeline(tiledImage, tilesToDraw, tiledImageIndex);
renderingBufferHasImageData = false;
// clear the buffer
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
gl.clear(gl.COLOR_BUFFER_BIT); // clear the back buffer
}
// Fire tiled-image-drawn event.
// TO DO: the image data may not be on the output canvas yet!!
if( this.viewer ){
/**
* Raised when a tiled image is drawn to the canvas. Only valid
* for webgl drawer.
*
* @event tiled-image-drawn
* @memberof OpenSeadragon.Viewer
* @type {object}
* @property {OpenSeadragon.Viewer} eventSource - A reference to the Viewer which raised the event.
* @property {OpenSeadragon.TiledImage} tiledImage - Which TiledImage is being drawn.
* @property {Array} tiles - An array of Tile objects that were drawn.
* @property {?Object} userData - Arbitrary subscriber-defined object.
*/
this.viewer.raiseEvent( 'tiled-image-drawn', {
tiledImage: tiledImage,
tiles: tilesToDraw.map(info => info.tile),
});
}
});
// TO DO: the line below is a test!
if(renderingBufferHasImageData){
this._outputContext.drawImage(this._renderingCanvas, 0, 0);
}
}
@ -423,7 +528,7 @@
* @param {OpenSeadragon.TiledImage} tiledImage - the tiledImage to draw
* @param {Array} tilesToDraw - array of objects containing tiles that were drawn
*/
_renderToOutputCanvas(tiledImage, tilesToDraw, tiledImageIndex){
_applyContext2dPipeline(tiledImage, tilesToDraw, tiledImageIndex){
// composite onto the output canvas, clipping if necessary
this._outputContext.save();
@ -444,39 +549,19 @@
this._drawDebugInfo(tilesToDraw, tiledImage, strokeStyle, fillStyle);
}
// Fire tiled-image-drawn event now that the data is on the output canvas
if( this.viewer ){
/**
* Raised when a tiled image is drawn to the canvas. Only valid
* for webgl drawer.
*
* @event tiled-image-drawn
* @memberof OpenSeadragon.Viewer
* @type {object}
* @property {OpenSeadragon.Viewer} eventSource - A reference to the Viewer which raised the event.
* @property {OpenSeadragon.TiledImage} tiledImage - Which TiledImage is being drawn.
* @property {Array} tiles - An array of Tile objects that were drawn.
* @property {?Object} userData - Arbitrary subscriber-defined object.
*/
this.viewer.raiseEvent( 'tiled-image-drawn', {
tiledImage: tiledImage,
tiles: tilesToDraw.map(info => info.tile),
});
}
}
// private
_drawTile(tile, tiledImage, textureInfo, viewMatrix, imageOpacity){
_getTileData(tile, tiledImage, textureInfo, viewMatrix, index, texturePositionArray, textureDataArray, matrixArray, opacityArray){
let gl = this._gl;
let texture = textureInfo.texture;
let textureQuad = textureInfo.position;
// set the vertices into the non-overlapped portion of the texture
gl.bindBuffer(gl.ARRAY_BUFFER, this._glTextureBuffer);
gl.bufferData(gl.ARRAY_BUFFER, textureQuad, gl.DYNAMIC_DRAW);
// set the position of this texture
texturePositionArray.set(textureQuad, index * 12);
// compute offsets for overlap
// compute offsets that account for tile overlap; needed for calculating the transform matrix appropriately
let overlapFraction = this._calculateOverlapFraction(tile, tiledImage);
let xOffset = tile.positionedBounds.width * overlapFraction.x;
let yOffset = tile.positionedBounds.height * overlapFraction.y;
@ -507,41 +592,164 @@
let overallMatrix = viewMatrix.multiply(matrix);
// set opacity for this image
this._gl.uniform1f(this._glLocs.uOpacityMultiplier, tile.opacity); // imageOpacity *
gl.uniformMatrix3fv(this._glLocs.uMatrix, false, overallMatrix.values);
gl.bindTexture(gl.TEXTURE_2D, texture);
opacityArray[index] = tile.opacity;// * tiledImage.opacity;
textureDataArray[index] = texture;
matrixArray[index] = overallMatrix.values;
if(this.continuousTileRefresh){
// Upload the image into the texture (already bound to TEXTURE_2D above)
// Upload the image into the texture
// TO DO: test if this works appropriately
let tileContext = tile.getCanvasContext();
this._raiseTileDrawingEvent(tiledImage, this._outputContext, tile, tileContext);
this._uploadImageData(tileContext, tile, tiledImage);
}
gl.drawArrays(gl.TRIANGLES, 0, 6);
}
_setupRenderer(){
if(!this._gl){
let gl = this._gl;
if(!gl){
$.console.error('_setupCanvases must be called before _setupRenderer');
}
this._unitQuad = this._makeQuadVertexBuffer(0, 1, 0, 1); // used a few places; create once and store the result
this._makeFirstPassShaderProgram();
this._makeSecondPassShaderProgram();
// set up the texture to render to in the first pass, and which will be used for rendering the second pass
this._renderToTexture = gl.createTexture();
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, this._renderToTexture);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, this._renderingCanvas.width, this._renderingCanvas.height, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
// set up the framebuffer for render-to-texture
this._glFrameBuffer = gl.createFramebuffer();
gl.bindFramebuffer(gl.FRAMEBUFFER, this._glFrameBuffer);
gl.framebufferTexture2D(
gl.FRAMEBUFFER,
gl.COLOR_ATTACHMENT0, // attach texture as COLOR_ATTACHMENT0
gl.TEXTURE_2D, // attach a 2D texture
this._renderToTexture, // the texture to attach
0
);
gl.enable(gl.BLEND);
gl.blendFunc(gl.ONE, gl.ONE_MINUS_SRC_ALPHA);
}
_makeFirstPassShaderProgram(){
let numTextures = this._glNumTextures = this._gl.getParameter(this._gl.MAX_TEXTURE_IMAGE_UNITS);
let makeMatrixUniforms = () => {
return [...Array(numTextures).keys()].map(index => `uniform mat3 u_matrix_${index};`).join('\n');
};
let makeConditionals = () => {
return [...Array(numTextures).keys()].map(index => `${index > 0 ? 'else ' : ''}if(int(a_index) == ${index}) { transform_matrix = u_matrix_${index}; }`).join('\n');
};
const vertexShaderProgram = `
attribute vec2 a_output_position;
attribute vec2 a_texture_position;
attribute float a_index;
${makeMatrixUniforms()} // create a uniform mat3 for each potential tile to draw
varying vec2 v_texture_position;
varying float v_image_index;
void main() {
mat3 transform_matrix; // value will be set by the if/elses in makeConditional()
${makeConditionals()}
gl_Position = vec4(transform_matrix * vec3(a_output_position, 1), 1);
v_texture_position = a_texture_position;
v_image_index = a_index;
}
`;
const fragmentShaderProgram = `
precision mediump float;
// our textures
uniform sampler2D u_images[${numTextures}];
// our opacities
uniform float u_opacities[${numTextures}];
// the varyings passed in from the vertex shader.
varying vec2 v_texture_position;
varying float v_image_index;
void main() {
// can't index directly with a variable, need to use a loop iterator hack
for(int i = 0; i < ${numTextures}; ++i){
if(i == int(v_image_index)){
gl_FragColor = texture2D(u_images[i], v_texture_position) * u_opacities[i];
}
}
}
`;
let gl = this._gl;
let program = this.constructor.initShaderProgram(gl, vertexShaderProgram, fragmentShaderProgram);
gl.useProgram(program);
// get locations of attributes and uniforms, and create buffers for each attribute
this._firstPass = {
shaderProgram: program,
aOutputPosition: gl.getAttribLocation(program, 'a_output_position'),
aTexturePosition: gl.getAttribLocation(program, 'a_texture_position'),
aIndex: gl.getAttribLocation(program, 'a_index'),
uTransformMatrices: [...Array(this._glNumTextures).keys()].map(i=>gl.getUniformLocation(program, `u_matrix_${i}`)),
uImages: gl.getUniformLocation(program, 'u_images'),
uOpacities: gl.getUniformLocation(program, 'u_opacities'),
bufferOutputPosition: gl.createBuffer(),
bufferTexturePosition: gl.createBuffer(),
bufferIndex: gl.createBuffer(),
};
gl.uniform1iv(this._firstPass.uImages, [...Array(numTextures).keys()]);
// provide coordinates for the rectangle in output space, i.e. a unit quad for each one.
let outputQuads = new Float32Array(numTextures * 12);
for(let i = 0; i < numTextures; ++i){
outputQuads.set(Float32Array.from(this._unitQuad), i * 12);
}
gl.bindBuffer(gl.ARRAY_BUFFER, this._firstPass.bufferOutputPosition);
gl.bufferData(gl.ARRAY_BUFFER, outputQuads, gl.STATIC_DRAW); // bind data statically here, since it's unchanging
gl.enableVertexAttribArray(this._firstPass.aOutputPosition);
// provide texture coordinates for the rectangle in image (texture) space. Data will be set later.
gl.bindBuffer(gl.ARRAY_BUFFER, this._firstPass.bufferTexturePosition);
gl.enableVertexAttribArray(this._firstPass.aTexturePosition);
// for each vertex, provide an index into the array of textures/matrices to use for the correct tile
gl.bindBuffer(gl.ARRAY_BUFFER, this._firstPass.bufferIndex);
let indices = [...Array(this._glNumTextures).keys()].map(i => Array(6).fill(i)).flat(); // repeat each index 6 times, for the 6 vertices per tile (2 triangles)
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(indices), gl.STATIC_DRAW); // bind data statically here, since it's unchanging
gl.enableVertexAttribArray(this._firstPass.aIndex);
}
_makeSecondPassShaderProgram(){
const vertexShaderProgram = `
attribute vec2 a_output_position;
attribute vec2 a_texture_position;
uniform mat3 u_matrix;
varying vec2 v_texCoord;
varying vec2 v_texture_position;
void main() {
gl_Position = vec4(u_matrix * vec3(a_output_position, 1), 1);
v_texCoord = a_texture_position;
v_texture_position = a_texture_position;
}
`;
@ -552,66 +760,48 @@
uniform sampler2D u_image;
// the texCoords passed in from the vertex shader.
varying vec2 v_texCoord;
varying vec2 v_texture_position;
// the opacity multiplier for the image
uniform float u_opacity_multiplier;
void main() {
gl_FragColor = texture2D(u_image, v_texCoord);
gl_FragColor = texture2D(u_image, v_texture_position);
gl_FragColor *= u_opacity_multiplier;
}
`;
let gl = this._gl;
this._glProgram = this.constructor.initShaderProgram(gl, vertexShaderProgram, fragmentShaderProgram);
gl.useProgram(this._glProgram);
gl.enable(gl.BLEND);
gl.blendFunc(gl.ONE, gl.ONE_MINUS_SRC_ALPHA);
this._glLocs = {
aOutputPosition: gl.getAttribLocation(this._glProgram, 'a_output_position'),
aTexturePosition: gl.getAttribLocation(this._glProgram, 'a_texture_position'),
uMatrix: gl.getUniformLocation(this._glProgram, 'u_matrix'),
uImage: gl.getUniformLocation(this._glProgram, 'u_image'),
uOpacityMultiplier: gl.getUniformLocation(this._glProgram, 'u_opacity_multiplier')
let program = this.constructor.initShaderProgram(gl, vertexShaderProgram, fragmentShaderProgram);
gl.useProgram(program);
// get locations of attributes and uniforms, and create buffers for each attribute
this._secondPass = {
shaderProgram: program,
aOutputPosition: gl.getAttribLocation(program, 'a_output_position'),
aTexturePosition: gl.getAttribLocation(program, 'a_texture_position'),
uMatrix: gl.getUniformLocation(program, 'u_matrix'),
uImage: gl.getUniformLocation(program, 'u_image'),
uOpacityMultiplier: gl.getUniformLocation(program, 'u_opacity_multiplier'),
bufferOutputPosition: gl.createBuffer(),
bufferTexturePosition: gl.createBuffer(),
};
this._glUnitQuad = this._makeQuadVertexBuffer(0, 1, 0, 1);
// provide texture coordinates for the rectangle in output space.
this._glUnitQuadBuffer = gl.createBuffer(); //keep reference to clear it later
gl.bindBuffer(gl.ARRAY_BUFFER, this._glUnitQuadBuffer);
gl.bufferData(gl.ARRAY_BUFFER, this._glUnitQuad, gl.STATIC_DRAW);
gl.enableVertexAttribArray(this._glLocs.aOutputPosition);
gl.vertexAttribPointer(this._glLocs.aOutputPosition, 2, gl.FLOAT, false, 0, 0);
// provide coordinates for the rectangle in output space, i.e. a unit quad for each one.
gl.bindBuffer(gl.ARRAY_BUFFER, this._secondPass.bufferOutputPosition);
gl.bufferData(gl.ARRAY_BUFFER, this._unitQuad, gl.STATIC_DRAW); // bind data statically here since it's unchanging
gl.enableVertexAttribArray(this._secondPass.aOutputPosition);
// provide texture coordinates for the rectangle in image (texture) space.
this._glTextureBuffer = gl.createBuffer(); //keep reference to clear it later
gl.bindBuffer(gl.ARRAY_BUFFER, this._glTextureBuffer);
gl.bufferData(gl.ARRAY_BUFFER, this._glUnitQuad, gl.DYNAMIC_DRAW); // use unit quad to start, will be updated per tile
gl.enableVertexAttribArray(this._glLocs.aTexturePosition);
gl.vertexAttribPointer(this._glLocs.aTexturePosition, 2, gl.FLOAT, false, 0, 0);
// setup the framebuffer
this._glTiledImageTexture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, this._glTiledImageTexture);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, this._renderingCanvas.width, this._renderingCanvas.height, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
this._glFrameBuffer = gl.createFramebuffer();
gl.bindFramebuffer(gl.FRAMEBUFFER, this._glFrameBuffer);
gl.framebufferTexture2D(
gl.FRAMEBUFFER,
gl.COLOR_ATTACHMENT0, // attach texture as COLOR_ATTACHMENT0
gl.TEXTURE_2D, // attach a 2D texture
this._glTiledImageTexture, // the texture to attach
0
);
this._glFramebufferToCanvasTransform = Mat3.makeScaling(2, 2).multiply(Mat3.makeTranslation(-0.5, -0.5)).values;
gl.bindBuffer(gl.ARRAY_BUFFER, this._secondPass.bufferTexturePosition);
gl.bufferData(gl.ARRAY_BUFFER, this._unitQuad, gl.DYNAMIC_DRAW); // bind data statically here since it's unchanging
gl.enableVertexAttribArray(this._secondPass.aTexturePosition);
// set the matrix that transforms the framebuffer to clip space
let matrix = Mat3.makeScaling(2, 2).multiply(Mat3.makeTranslation(-0.5, -0.5));
gl.uniformMatrix3fv(this._secondPass.uMatrix, false, matrix.values);
}
_resizeRenderer(){
@ -621,10 +811,11 @@
gl.viewport(0, 0, w, h);
//release the old texture
gl.deleteTexture(this._glTiledImageTexture);
gl.deleteTexture(this._renderToTexture);
//create a new texture and set it up
this._glTiledImageTexture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, this._glTiledImageTexture);
this._renderToTexture = gl.createTexture();
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, this._renderToTexture);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, w, h, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
@ -632,7 +823,7 @@
//bind the frame buffer to the new texture
gl.bindFramebuffer(gl.FRAMEBUFFER, this._glFrameBuffer);
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, this._glTiledImageTexture, 0);
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, this._renderToTexture, 0);
}
@ -714,7 +905,7 @@
position = this._makeQuadVertexBuffer(left, right, top, bottom);
} else {
// no overlap: this texture can use the unit quad as it's position data
position = this._glUnitQuad;
position = this._unitQuad;
}
let textureInfo = {
@ -724,7 +915,7 @@
// add it to our _TextureMap
this._TextureMap.set(canvas, textureInfo);
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, texture);
// Set the parameters so we can render any size image.
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
@ -758,9 +949,17 @@
let gl = this._gl;
let canvas = tileContext.canvas;
try{
if(!canvas){
throw('Tile context does not have a canvas', tileContext);
}
// This depends on gl.TEXTURE_2D being bound to the texture
// associated with this canvas before calling this function
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, canvas);
} catch (e){
$.console.error('Error uploading image data to WebGL', e);
}
}
@ -772,13 +971,13 @@
_cleanupImageData(tileCanvas){
let textureInfo = this._TextureMap.get(tileCanvas);
//remove from the map
this._TextureMap.delete(tileCanvas);
//release the texture from the GPU
if(textureInfo){
this._gl.deleteTexture(textureInfo.texture);
}
//release the texture from the GPU
this._gl.deleteTexture(textureInfo.texture);
// release the position buffer from the GPU
// TO DO: do this!
}
@ -1033,14 +1232,6 @@
};
// $.WebGLDrawer.Filter = class{
// constructor(gl){
// this.gl = gl;
// }
// apply(){
// }
// };
}( OpenSeadragon ));