mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-25 14:56:10 +03:00
691 lines
24 KiB
C++
691 lines
24 KiB
C++
// Copyright 2013 The Chromium Authors
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "url/url_canon_ip.h"
|
|
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <limits>
|
|
|
|
#include "base/check.h"
|
|
#include "url/url_canon_internal.h"
|
|
#include "url/url_features.h"
|
|
|
|
namespace url {
|
|
|
|
namespace {
|
|
|
|
// Converts one of the character types that represent a numerical base to the
|
|
// corresponding base.
|
|
int BaseForType(SharedCharTypes type) {
|
|
switch (type) {
|
|
case CHAR_HEX:
|
|
return 16;
|
|
case CHAR_DEC:
|
|
return 10;
|
|
case CHAR_OCT:
|
|
return 8;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// Converts an IPv4 component to a 32-bit number, while checking for overflow.
|
|
//
|
|
// Possible return values:
|
|
// - IPV4 - The number was valid, and did not overflow.
|
|
// - BROKEN - The input was numeric, but too large for a 32-bit field.
|
|
// - NEUTRAL - Input was not numeric.
|
|
//
|
|
// The input is assumed to be ASCII. The components are assumed to be non-empty.
|
|
template<typename CHAR>
|
|
CanonHostInfo::Family IPv4ComponentToNumber(const CHAR* spec,
|
|
const Component& component,
|
|
uint32_t* number) {
|
|
// Empty components are considered non-numeric.
|
|
if (component.is_empty())
|
|
return CanonHostInfo::NEUTRAL;
|
|
|
|
// Figure out the base
|
|
SharedCharTypes base;
|
|
int base_prefix_len = 0; // Size of the prefix for this base.
|
|
if (spec[component.begin] == '0') {
|
|
// Either hex or dec, or a standalone zero.
|
|
if (component.len == 1) {
|
|
base = CHAR_DEC;
|
|
} else if (spec[component.begin + 1] == 'X' ||
|
|
spec[component.begin + 1] == 'x') {
|
|
base = CHAR_HEX;
|
|
base_prefix_len = 2;
|
|
} else {
|
|
base = CHAR_OCT;
|
|
base_prefix_len = 1;
|
|
}
|
|
} else {
|
|
base = CHAR_DEC;
|
|
}
|
|
|
|
// Extend the prefix to consume all leading zeros.
|
|
while (base_prefix_len < component.len &&
|
|
spec[component.begin + base_prefix_len] == '0')
|
|
base_prefix_len++;
|
|
|
|
// Put the component, minus any base prefix, into a NULL-terminated buffer so
|
|
// we can call the standard library. Because leading zeros have already been
|
|
// discarded, filling the entire buffer is guaranteed to trigger the 32-bit
|
|
// overflow check.
|
|
const int kMaxComponentLen = 16;
|
|
char buf[kMaxComponentLen + 1]; // digits + '\0'
|
|
int dest_i = 0;
|
|
bool may_be_broken_octal = false;
|
|
for (int i = component.begin + base_prefix_len; i < component.end(); i++) {
|
|
if (spec[i] >= 0x80)
|
|
return CanonHostInfo::NEUTRAL;
|
|
|
|
// We know the input is 7-bit, so convert to narrow (if this is the wide
|
|
// version of the template) by casting.
|
|
char input = static_cast<char>(spec[i]);
|
|
|
|
// Validate that this character is OK for the given base.
|
|
if (!IsCharOfType(input, base)) {
|
|
if (IsCharOfType(input, CHAR_DEC)) {
|
|
// Entirely numeric components with leading 0s that aren't octal are
|
|
// considered broken.
|
|
may_be_broken_octal = true;
|
|
} else {
|
|
return CanonHostInfo::NEUTRAL;
|
|
}
|
|
}
|
|
|
|
// Fill the buffer, if there's space remaining. This check allows us to
|
|
// verify that all characters are numeric, even those that don't fit.
|
|
if (dest_i < kMaxComponentLen)
|
|
buf[dest_i++] = input;
|
|
}
|
|
|
|
if (may_be_broken_octal)
|
|
return CanonHostInfo::BROKEN;
|
|
|
|
buf[dest_i] = '\0';
|
|
|
|
// Use the 64-bit strtoi so we get a big number (no hex, decimal, or octal
|
|
// number can overflow a 64-bit number in <= 16 characters).
|
|
uint64_t num = _strtoui64(buf, NULL, BaseForType(base));
|
|
|
|
// Check for 32-bit overflow.
|
|
if (num > std::numeric_limits<uint32_t>::max())
|
|
return CanonHostInfo::BROKEN;
|
|
|
|
// No overflow. Success!
|
|
*number = static_cast<uint32_t>(num);
|
|
return CanonHostInfo::IPV4;
|
|
}
|
|
|
|
// See declaration of IPv4AddressToNumber for documentation.
|
|
template <typename CHAR, typename UCHAR>
|
|
CanonHostInfo::Family DoIPv4AddressToNumber(const CHAR* spec,
|
|
Component host,
|
|
unsigned char address[4],
|
|
int* num_ipv4_components) {
|
|
// Ignore terminal dot, if present.
|
|
if (host.is_nonempty() && spec[host.end() - 1] == '.')
|
|
--host.len;
|
|
|
|
// Do nothing if empty.
|
|
if (host.is_empty())
|
|
return CanonHostInfo::NEUTRAL;
|
|
|
|
// Read component values. The first `existing_components` of them are
|
|
// populated front to back, with the first one corresponding to the last
|
|
// component, which allows for early exit if the last component isn't a
|
|
// number.
|
|
uint32_t component_values[4];
|
|
int existing_components = 0;
|
|
|
|
int current_component_end = host.end();
|
|
int current_position = current_component_end;
|
|
while (true) {
|
|
// If this is not the first character of a component, go to the next
|
|
// component.
|
|
if (current_position != host.begin && spec[current_position - 1] != '.') {
|
|
--current_position;
|
|
continue;
|
|
}
|
|
|
|
CanonHostInfo::Family family = IPv4ComponentToNumber(
|
|
spec,
|
|
Component(current_position, current_component_end - current_position),
|
|
&component_values[existing_components]);
|
|
|
|
// If `family` is NEUTRAL and this is the last component, return NEUTRAL. If
|
|
// `family` is NEUTRAL but not the last component, this is considered a
|
|
// BROKEN IPv4 address, as opposed to a non-IPv4 hostname.
|
|
if (family == CanonHostInfo::NEUTRAL && existing_components == 0)
|
|
return CanonHostInfo::NEUTRAL;
|
|
|
|
if (family != CanonHostInfo::IPV4)
|
|
return CanonHostInfo::BROKEN;
|
|
|
|
++existing_components;
|
|
|
|
// If this is the final component, nothing else to do.
|
|
if (current_position == host.begin)
|
|
break;
|
|
|
|
// If there are more than 4 components, fail.
|
|
if (existing_components == 4)
|
|
return CanonHostInfo::BROKEN;
|
|
|
|
current_component_end = current_position - 1;
|
|
--current_position;
|
|
}
|
|
|
|
// Use `component_values` to fill out the 4-component IP address.
|
|
|
|
// First, process all components but the last, while making sure each fits
|
|
// within an 8-bit field.
|
|
for (int i = existing_components - 1; i > 0; i--) {
|
|
if (component_values[i] > std::numeric_limits<uint8_t>::max())
|
|
return CanonHostInfo::BROKEN;
|
|
address[existing_components - i - 1] =
|
|
static_cast<unsigned char>(component_values[i]);
|
|
}
|
|
|
|
uint32_t last_value = component_values[0];
|
|
for (int i = 3; i >= existing_components - 1; i--) {
|
|
address[i] = static_cast<unsigned char>(last_value);
|
|
last_value >>= 8;
|
|
}
|
|
|
|
// If the last component has residual bits, report overflow.
|
|
if (last_value != 0)
|
|
return CanonHostInfo::BROKEN;
|
|
|
|
// Tell the caller how many components we saw.
|
|
*num_ipv4_components = existing_components;
|
|
|
|
// Success!
|
|
return CanonHostInfo::IPV4;
|
|
}
|
|
|
|
// Return true if we've made a final IPV4/BROKEN decision, false if the result
|
|
// is NEUTRAL, and we could use a second opinion.
|
|
template<typename CHAR, typename UCHAR>
|
|
bool DoCanonicalizeIPv4Address(const CHAR* spec,
|
|
const Component& host,
|
|
CanonOutput* output,
|
|
CanonHostInfo* host_info) {
|
|
host_info->family = IPv4AddressToNumber(
|
|
spec, host, host_info->address, &host_info->num_ipv4_components);
|
|
|
|
switch (host_info->family) {
|
|
case CanonHostInfo::IPV4:
|
|
// Definitely an IPv4 address.
|
|
host_info->out_host.begin = output->length();
|
|
AppendIPv4Address(host_info->address, output);
|
|
host_info->out_host.len = output->length() - host_info->out_host.begin;
|
|
return true;
|
|
case CanonHostInfo::BROKEN:
|
|
// Definitely broken.
|
|
return true;
|
|
default:
|
|
// Could be IPv6 or a hostname.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Helper class that describes the main components of an IPv6 input string.
|
|
// See the following examples to understand how it breaks up an input string:
|
|
//
|
|
// [Example 1]: input = "[::aa:bb]"
|
|
// ==> num_hex_components = 2
|
|
// ==> hex_components[0] = Component(3,2) "aa"
|
|
// ==> hex_components[1] = Component(6,2) "bb"
|
|
// ==> index_of_contraction = 0
|
|
// ==> ipv4_component = Component(0, -1)
|
|
//
|
|
// [Example 2]: input = "[1:2::3:4:5]"
|
|
// ==> num_hex_components = 5
|
|
// ==> hex_components[0] = Component(1,1) "1"
|
|
// ==> hex_components[1] = Component(3,1) "2"
|
|
// ==> hex_components[2] = Component(6,1) "3"
|
|
// ==> hex_components[3] = Component(8,1) "4"
|
|
// ==> hex_components[4] = Component(10,1) "5"
|
|
// ==> index_of_contraction = 2
|
|
// ==> ipv4_component = Component(0, -1)
|
|
//
|
|
// [Example 3]: input = "[::ffff:192.168.0.1]"
|
|
// ==> num_hex_components = 1
|
|
// ==> hex_components[0] = Component(3,4) "ffff"
|
|
// ==> index_of_contraction = 0
|
|
// ==> ipv4_component = Component(8, 11) "192.168.0.1"
|
|
//
|
|
// [Example 4]: input = "[1::]"
|
|
// ==> num_hex_components = 1
|
|
// ==> hex_components[0] = Component(1,1) "1"
|
|
// ==> index_of_contraction = 1
|
|
// ==> ipv4_component = Component(0, -1)
|
|
//
|
|
// [Example 5]: input = "[::192.168.0.1]"
|
|
// ==> num_hex_components = 0
|
|
// ==> index_of_contraction = 0
|
|
// ==> ipv4_component = Component(8, 11) "192.168.0.1"
|
|
//
|
|
struct IPv6Parsed {
|
|
// Zero-out the parse information.
|
|
void reset() {
|
|
num_hex_components = 0;
|
|
index_of_contraction = -1;
|
|
ipv4_component.reset();
|
|
}
|
|
|
|
// There can be up to 8 hex components (colon separated) in the literal.
|
|
Component hex_components[8];
|
|
|
|
// The count of hex components present. Ranges from [0,8].
|
|
int num_hex_components;
|
|
|
|
// The index of the hex component that the "::" contraction precedes, or
|
|
// -1 if there is no contraction.
|
|
int index_of_contraction;
|
|
|
|
// The range of characters which are an IPv4 literal.
|
|
Component ipv4_component;
|
|
};
|
|
|
|
// Parse the IPv6 input string. If parsing succeeded returns true and fills
|
|
// |parsed| with the information. If parsing failed (because the input is
|
|
// invalid) returns false.
|
|
template<typename CHAR, typename UCHAR>
|
|
bool DoParseIPv6(const CHAR* spec, const Component& host, IPv6Parsed* parsed) {
|
|
// Zero-out the info.
|
|
parsed->reset();
|
|
|
|
if (host.is_empty())
|
|
return false;
|
|
|
|
// The index for start and end of address range (no brackets).
|
|
int begin = host.begin;
|
|
int end = host.end();
|
|
|
|
int cur_component_begin = begin; // Start of the current component.
|
|
|
|
// Scan through the input, searching for hex components, "::" contractions,
|
|
// and IPv4 components.
|
|
for (int i = begin; /* i <= end */; i++) {
|
|
bool is_colon = spec[i] == ':';
|
|
bool is_contraction = is_colon && i < end - 1 && spec[i + 1] == ':';
|
|
|
|
// We reached the end of the current component if we encounter a colon
|
|
// (separator between hex components, or start of a contraction), or end of
|
|
// input.
|
|
if (is_colon || i == end) {
|
|
int component_len = i - cur_component_begin;
|
|
|
|
// A component should not have more than 4 hex digits.
|
|
if (component_len > 4)
|
|
return false;
|
|
|
|
// Don't allow empty components.
|
|
if (component_len == 0) {
|
|
// The exception is when contractions appear at beginning of the
|
|
// input or at the end of the input.
|
|
if (!((is_contraction && i == begin) || (i == end &&
|
|
parsed->index_of_contraction == parsed->num_hex_components)))
|
|
return false;
|
|
}
|
|
|
|
// Add the hex component we just found to running list.
|
|
if (component_len > 0) {
|
|
// Can't have more than 8 components!
|
|
if (parsed->num_hex_components >= 8)
|
|
return false;
|
|
|
|
parsed->hex_components[parsed->num_hex_components++] =
|
|
Component(cur_component_begin, component_len);
|
|
}
|
|
}
|
|
|
|
if (i == end)
|
|
break; // Reached the end of the input, DONE.
|
|
|
|
// We found a "::" contraction.
|
|
if (is_contraction) {
|
|
// There can be at most one contraction in the literal.
|
|
if (parsed->index_of_contraction != -1)
|
|
return false;
|
|
parsed->index_of_contraction = parsed->num_hex_components;
|
|
++i; // Consume the colon we peeked.
|
|
}
|
|
|
|
if (is_colon) {
|
|
// Colons are separators between components, keep track of where the
|
|
// current component started (after this colon).
|
|
cur_component_begin = i + 1;
|
|
} else {
|
|
if (static_cast<UCHAR>(spec[i]) >= 0x80)
|
|
return false; // Not ASCII.
|
|
|
|
if (!IsHexChar(static_cast<unsigned char>(spec[i]))) {
|
|
// Regular components are hex numbers. It is also possible for
|
|
// a component to be an IPv4 address in dotted form.
|
|
if (IsIPv4Char(static_cast<unsigned char>(spec[i]))) {
|
|
// Since IPv4 address can only appear at the end, assume the rest
|
|
// of the string is an IPv4 address. (We will parse this separately
|
|
// later).
|
|
parsed->ipv4_component =
|
|
Component(cur_component_begin, end - cur_component_begin);
|
|
break;
|
|
} else {
|
|
// The character was neither a hex digit, nor an IPv4 character.
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Verifies the parsed IPv6 information, checking that the various components
|
|
// add up to the right number of bits (hex components are 16 bits, while
|
|
// embedded IPv4 formats are 32 bits, and contractions are placeholdes for
|
|
// 16 or more bits). Returns true if sizes match up, false otherwise. On
|
|
// success writes the length of the contraction (if any) to
|
|
// |out_num_bytes_of_contraction|.
|
|
bool CheckIPv6ComponentsSize(const IPv6Parsed& parsed,
|
|
int* out_num_bytes_of_contraction) {
|
|
// Each group of four hex digits contributes 16 bits.
|
|
int num_bytes_without_contraction = parsed.num_hex_components * 2;
|
|
|
|
// If an IPv4 address was embedded at the end, it contributes 32 bits.
|
|
if (parsed.ipv4_component.is_valid())
|
|
num_bytes_without_contraction += 4;
|
|
|
|
// If there was a "::" contraction, its size is going to be:
|
|
// MAX([16bits], [128bits] - num_bytes_without_contraction).
|
|
int num_bytes_of_contraction = 0;
|
|
if (parsed.index_of_contraction != -1) {
|
|
num_bytes_of_contraction = 16 - num_bytes_without_contraction;
|
|
if (num_bytes_of_contraction < 2)
|
|
num_bytes_of_contraction = 2;
|
|
}
|
|
|
|
// Check that the numbers add up.
|
|
if (num_bytes_without_contraction + num_bytes_of_contraction != 16)
|
|
return false;
|
|
|
|
*out_num_bytes_of_contraction = num_bytes_of_contraction;
|
|
return true;
|
|
}
|
|
|
|
// Converts a hex component into a number. This cannot fail since the caller has
|
|
// already verified that each character in the string was a hex digit, and
|
|
// that there were no more than 4 characters.
|
|
template <typename CHAR>
|
|
uint16_t IPv6HexComponentToNumber(const CHAR* spec,
|
|
const Component& component) {
|
|
DCHECK(component.len <= 4);
|
|
|
|
// Copy the hex string into a C-string.
|
|
char buf[5];
|
|
for (int i = 0; i < component.len; ++i)
|
|
buf[i] = static_cast<char>(spec[component.begin + i]);
|
|
buf[component.len] = '\0';
|
|
|
|
// Convert it to a number (overflow is not possible, since with 4 hex
|
|
// characters we can at most have a 16 bit number).
|
|
return static_cast<uint16_t>(_strtoui64(buf, NULL, 16));
|
|
}
|
|
|
|
// Converts an IPv6 address to a 128-bit number (network byte order), returning
|
|
// true on success. False means that the input was not a valid IPv6 address.
|
|
template<typename CHAR, typename UCHAR>
|
|
bool DoIPv6AddressToNumber(const CHAR* spec,
|
|
const Component& host,
|
|
unsigned char address[16]) {
|
|
// Make sure the component is bounded by '[' and ']'.
|
|
int end = host.end();
|
|
if (host.is_empty() || spec[host.begin] != '[' || spec[end - 1] != ']')
|
|
return false;
|
|
|
|
// Exclude the square brackets.
|
|
Component ipv6_comp(host.begin + 1, host.len - 2);
|
|
|
|
// Parse the IPv6 address -- identify where all the colon separated hex
|
|
// components are, the "::" contraction, and the embedded IPv4 address.
|
|
IPv6Parsed ipv6_parsed;
|
|
if (!DoParseIPv6<CHAR, UCHAR>(spec, ipv6_comp, &ipv6_parsed))
|
|
return false;
|
|
|
|
// Do some basic size checks to make sure that the address doesn't
|
|
// specify more than 128 bits or fewer than 128 bits. This also resolves
|
|
// how may zero bytes the "::" contraction represents.
|
|
int num_bytes_of_contraction;
|
|
if (!CheckIPv6ComponentsSize(ipv6_parsed, &num_bytes_of_contraction))
|
|
return false;
|
|
|
|
int cur_index_in_address = 0;
|
|
|
|
// Loop through each hex components, and contraction in order.
|
|
for (int i = 0; i <= ipv6_parsed.num_hex_components; ++i) {
|
|
// Append the contraction if it appears before this component.
|
|
if (i == ipv6_parsed.index_of_contraction) {
|
|
for (int j = 0; j < num_bytes_of_contraction; ++j)
|
|
address[cur_index_in_address++] = 0;
|
|
}
|
|
// Append the hex component's value.
|
|
if (i != ipv6_parsed.num_hex_components) {
|
|
// Get the 16-bit value for this hex component.
|
|
uint16_t number = IPv6HexComponentToNumber<CHAR>(
|
|
spec, ipv6_parsed.hex_components[i]);
|
|
// Append to |address|, in network byte order.
|
|
address[cur_index_in_address++] = (number & 0xFF00) >> 8;
|
|
address[cur_index_in_address++] = (number & 0x00FF);
|
|
}
|
|
}
|
|
|
|
// If there was an IPv4 section, convert it into a 32-bit number and append
|
|
// it to |address|.
|
|
if (ipv6_parsed.ipv4_component.is_valid()) {
|
|
// Append the 32-bit number to |address|.
|
|
int num_ipv4_components = 0;
|
|
// IPv4AddressToNumber will remove the trailing dot from the component.
|
|
bool trailing_dot = ipv6_parsed.ipv4_component.is_nonempty() &&
|
|
spec[ipv6_parsed.ipv4_component.end() - 1] == '.';
|
|
// The URL standard requires the embedded IPv4 address to be concisely
|
|
// composed of 4 parts and disallows terminal dots.
|
|
// See https://url.spec.whatwg.org/#concept-ipv6-parser
|
|
if (CanonHostInfo::IPV4 !=
|
|
IPv4AddressToNumber(spec, ipv6_parsed.ipv4_component,
|
|
&address[cur_index_in_address],
|
|
&num_ipv4_components)) {
|
|
return false;
|
|
}
|
|
if ((num_ipv4_components != 4 || trailing_dot) &&
|
|
base::FeatureList::IsEnabled(
|
|
url::kStrictIPv4EmbeddedIPv6AddressParsing)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Searches for the longest sequence of zeros in |address|, and writes the
|
|
// range into |contraction_range|. The run of zeros must be at least 16 bits,
|
|
// and if there is a tie the first is chosen.
|
|
void ChooseIPv6ContractionRange(const unsigned char address[16],
|
|
Component* contraction_range) {
|
|
// The longest run of zeros in |address| seen so far.
|
|
Component max_range;
|
|
|
|
// The current run of zeros in |address| being iterated over.
|
|
Component cur_range;
|
|
|
|
for (int i = 0; i < 16; i += 2) {
|
|
// Test for 16 bits worth of zero.
|
|
bool is_zero = (address[i] == 0 && address[i + 1] == 0);
|
|
|
|
if (is_zero) {
|
|
// Add the zero to the current range (or start a new one).
|
|
if (!cur_range.is_valid())
|
|
cur_range = Component(i, 0);
|
|
cur_range.len += 2;
|
|
}
|
|
|
|
if (!is_zero || i == 14) {
|
|
// Just completed a run of zeros. If the run is greater than 16 bits,
|
|
// it is a candidate for the contraction.
|
|
if (cur_range.len > 2 && cur_range.len > max_range.len) {
|
|
max_range = cur_range;
|
|
}
|
|
cur_range.reset();
|
|
}
|
|
}
|
|
*contraction_range = max_range;
|
|
}
|
|
|
|
// Return true if we've made a final IPV6/BROKEN decision, false if the result
|
|
// is NEUTRAL, and we could use a second opinion.
|
|
template<typename CHAR, typename UCHAR>
|
|
bool DoCanonicalizeIPv6Address(const CHAR* spec,
|
|
const Component& host,
|
|
CanonOutput* output,
|
|
CanonHostInfo* host_info) {
|
|
// Turn the IP address into a 128 bit number.
|
|
if (!IPv6AddressToNumber(spec, host, host_info->address)) {
|
|
// If it's not an IPv6 address, scan for characters that should *only*
|
|
// exist in an IPv6 address.
|
|
for (int i = host.begin; i < host.end(); i++) {
|
|
switch (spec[i]) {
|
|
case '[':
|
|
case ']':
|
|
case ':':
|
|
host_info->family = CanonHostInfo::BROKEN;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// No invalid characters. Could still be IPv4 or a hostname.
|
|
host_info->family = CanonHostInfo::NEUTRAL;
|
|
return false;
|
|
}
|
|
|
|
host_info->out_host.begin = output->length();
|
|
output->push_back('[');
|
|
AppendIPv6Address(host_info->address, output);
|
|
output->push_back(']');
|
|
host_info->out_host.len = output->length() - host_info->out_host.begin;
|
|
|
|
host_info->family = CanonHostInfo::IPV6;
|
|
return true;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void AppendIPv4Address(const unsigned char address[4], CanonOutput* output) {
|
|
for (int i = 0; i < 4; i++) {
|
|
char str[16];
|
|
_itoa_s(address[i], str, 10);
|
|
|
|
for (int ch = 0; str[ch] != 0; ch++)
|
|
output->push_back(str[ch]);
|
|
|
|
if (i != 3)
|
|
output->push_back('.');
|
|
}
|
|
}
|
|
|
|
void AppendIPv6Address(const unsigned char address[16], CanonOutput* output) {
|
|
// We will output the address according to the rules in:
|
|
// http://tools.ietf.org/html/draft-kawamura-ipv6-text-representation-01#section-4
|
|
|
|
// Start by finding where to place the "::" contraction (if any).
|
|
Component contraction_range;
|
|
ChooseIPv6ContractionRange(address, &contraction_range);
|
|
|
|
for (int i = 0; i <= 14;) {
|
|
// We check 2 bytes at a time, from bytes (0, 1) to (14, 15), inclusive.
|
|
DCHECK(i % 2 == 0);
|
|
if (i == contraction_range.begin && contraction_range.len > 0) {
|
|
// Jump over the contraction.
|
|
if (i == 0)
|
|
output->push_back(':');
|
|
output->push_back(':');
|
|
i = contraction_range.end();
|
|
} else {
|
|
// Consume the next 16 bits from |address|.
|
|
int x = address[i] << 8 | address[i + 1];
|
|
|
|
i += 2;
|
|
|
|
// Stringify the 16 bit number (at most requires 4 hex digits).
|
|
char str[5];
|
|
_itoa_s(x, str, 16);
|
|
for (int ch = 0; str[ch] != 0; ++ch)
|
|
output->push_back(str[ch]);
|
|
|
|
// Put a colon after each number, except the last.
|
|
if (i < 16)
|
|
output->push_back(':');
|
|
}
|
|
}
|
|
}
|
|
|
|
void CanonicalizeIPAddress(const char* spec,
|
|
const Component& host,
|
|
CanonOutput* output,
|
|
CanonHostInfo* host_info) {
|
|
if (DoCanonicalizeIPv4Address<char, unsigned char>(
|
|
spec, host, output, host_info))
|
|
return;
|
|
if (DoCanonicalizeIPv6Address<char, unsigned char>(
|
|
spec, host, output, host_info))
|
|
return;
|
|
}
|
|
|
|
void CanonicalizeIPAddress(const char16_t* spec,
|
|
const Component& host,
|
|
CanonOutput* output,
|
|
CanonHostInfo* host_info) {
|
|
if (DoCanonicalizeIPv4Address<char16_t, char16_t>(spec, host, output,
|
|
host_info))
|
|
return;
|
|
if (DoCanonicalizeIPv6Address<char16_t, char16_t>(spec, host, output,
|
|
host_info))
|
|
return;
|
|
}
|
|
|
|
CanonHostInfo::Family IPv4AddressToNumber(const char* spec,
|
|
const Component& host,
|
|
unsigned char address[4],
|
|
int* num_ipv4_components) {
|
|
return DoIPv4AddressToNumber<char, unsigned char>(spec, host, address,
|
|
num_ipv4_components);
|
|
}
|
|
|
|
CanonHostInfo::Family IPv4AddressToNumber(const char16_t* spec,
|
|
const Component& host,
|
|
unsigned char address[4],
|
|
int* num_ipv4_components) {
|
|
return DoIPv4AddressToNumber<char16_t, char16_t>(spec, host, address,
|
|
num_ipv4_components);
|
|
}
|
|
|
|
bool IPv6AddressToNumber(const char* spec,
|
|
const Component& host,
|
|
unsigned char address[16]) {
|
|
return DoIPv6AddressToNumber<char, unsigned char>(spec, host, address);
|
|
}
|
|
|
|
bool IPv6AddressToNumber(const char16_t* spec,
|
|
const Component& host,
|
|
unsigned char address[16]) {
|
|
return DoIPv6AddressToNumber<char16_t, char16_t>(spec, host, address);
|
|
}
|
|
|
|
} // namespace url
|