mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-28 08:16:09 +03:00
310 lines
11 KiB
C++
310 lines
11 KiB
C++
// Copyright 2017 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef BASE_CONTAINERS_SPAN_H_
|
|
#define BASE_CONTAINERS_SPAN_H_
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <iterator>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
namespace base {
|
|
|
|
template <typename T>
|
|
class span;
|
|
|
|
namespace internal {
|
|
|
|
template <typename T>
|
|
struct IsSpanImpl : std::false_type {};
|
|
|
|
template <typename T>
|
|
struct IsSpanImpl<span<T>> : std::true_type {};
|
|
|
|
template <typename T>
|
|
using IsSpan = IsSpanImpl<std::decay_t<T>>;
|
|
|
|
template <typename T>
|
|
struct IsStdArrayImpl : std::false_type {};
|
|
|
|
template <typename T, size_t N>
|
|
struct IsStdArrayImpl<std::array<T, N>> : std::true_type {};
|
|
|
|
template <typename T>
|
|
using IsStdArray = IsStdArrayImpl<std::decay_t<T>>;
|
|
|
|
template <typename From, typename To>
|
|
using IsLegalSpanConversion = std::is_convertible<From*, To*>;
|
|
|
|
template <typename Container, typename T>
|
|
using ContainerHasConvertibleData = IsLegalSpanConversion<
|
|
std::remove_pointer_t<decltype(std::declval<Container>().data())>,
|
|
T>;
|
|
template <typename Container>
|
|
using ContainerHasIntegralSize =
|
|
std::is_integral<decltype(std::declval<Container>().size())>;
|
|
|
|
template <typename From, typename To>
|
|
using EnableIfLegalSpanConversion =
|
|
std::enable_if_t<IsLegalSpanConversion<From, To>::value>;
|
|
|
|
// SFINAE check if Container can be converted to a span<T>. Note that the
|
|
// implementation details of this check differ slightly from the requirements in
|
|
// the working group proposal: in particular, the proposal also requires that
|
|
// the container conversion constructor participate in overload resolution only
|
|
// if two additional conditions are true:
|
|
//
|
|
// 1. Container implements operator[].
|
|
// 2. Container::value_type matches remove_const_t<element_type>.
|
|
//
|
|
// The requirements are relaxed slightly here: in particular, not requiring (2)
|
|
// means that an immutable span can be easily constructed from a mutable
|
|
// container.
|
|
template <typename Container, typename T>
|
|
using EnableIfSpanCompatibleContainer =
|
|
std::enable_if_t<!internal::IsSpan<Container>::value &&
|
|
!internal::IsStdArray<Container>::value &&
|
|
ContainerHasConvertibleData<Container, T>::value &&
|
|
ContainerHasIntegralSize<Container>::value>;
|
|
|
|
template <typename Container, typename T>
|
|
using EnableIfConstSpanCompatibleContainer =
|
|
std::enable_if_t<std::is_const<T>::value &&
|
|
!internal::IsSpan<Container>::value &&
|
|
!internal::IsStdArray<Container>::value &&
|
|
ContainerHasConvertibleData<Container, T>::value &&
|
|
ContainerHasIntegralSize<Container>::value>;
|
|
|
|
} // namespace internal
|
|
|
|
// A span is a value type that represents an array of elements of type T. Since
|
|
// it only consists of a pointer to memory with an associated size, it is very
|
|
// light-weight. It is cheap to construct, copy, move and use spans, so that
|
|
// users are encouraged to use it as a pass-by-value parameter. A span does not
|
|
// own the underlying memory, so care must be taken to ensure that a span does
|
|
// not outlive the backing store.
|
|
//
|
|
// span is somewhat analogous to StringPiece, but with arbitrary element types,
|
|
// allowing mutation if T is non-const.
|
|
//
|
|
// span is implicitly convertible from C++ arrays, as well as most [1]
|
|
// container-like types that provide a data() and size() method (such as
|
|
// std::vector<T>). A mutable span<T> can also be implicitly converted to an
|
|
// immutable span<const T>.
|
|
//
|
|
// Consider using a span for functions that take a data pointer and size
|
|
// parameter: it allows the function to still act on an array-like type, while
|
|
// allowing the caller code to be a bit more concise.
|
|
//
|
|
// For read-only data access pass a span<const T>: the caller can supply either
|
|
// a span<const T> or a span<T>, while the callee will have a read-only view.
|
|
// For read-write access a mutable span<T> is required.
|
|
//
|
|
// Without span:
|
|
// Read-Only:
|
|
// // std::string HexEncode(const uint8_t* data, size_t size);
|
|
// std::vector<uint8_t> data_buffer = GenerateData();
|
|
// std::string r = HexEncode(data_buffer.data(), data_buffer.size());
|
|
//
|
|
// Mutable:
|
|
// // ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt, Args...);
|
|
// char str_buffer[100];
|
|
// SafeSNPrintf(str_buffer, sizeof(str_buffer), "Pi ~= %lf", 3.14);
|
|
//
|
|
// With span:
|
|
// Read-Only:
|
|
// // std::string HexEncode(base::span<const uint8_t> data);
|
|
// std::vector<uint8_t> data_buffer = GenerateData();
|
|
// std::string r = HexEncode(data_buffer);
|
|
|
|
// Mutable:
|
|
// // ssize_t SafeSNPrintf(base::span<char>, const char* fmt, Args...);
|
|
// char str_buffer[100];
|
|
// SafeSNPrintf(str_buffer, "Pi ~= %lf", 3.14);
|
|
//
|
|
// ======= Differences from the working group proposal =======
|
|
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0122r5.pdf is the
|
|
// latest working group proposal. The biggest difference is span does not
|
|
// support a static extent template parameter. Other differences are documented
|
|
// in subsections below.
|
|
//
|
|
// Differences from [views.constants]:
|
|
// - no dynamic_extent constant
|
|
//
|
|
// Differences in constants and types:
|
|
// - no element_type type alias
|
|
// - no index_type type alias
|
|
// - no different_type type alias
|
|
// - no extent constant
|
|
//
|
|
// Differences from [span.cons]:
|
|
// - no constructor from a pointer range
|
|
// - no constructor from std::array
|
|
// - no constructor from std::unique_ptr
|
|
// - no constructor from std::shared_ptr
|
|
// - no explicitly defaulted the copy/move constructor/assignment operators,
|
|
// since MSVC complains about constexpr functions that aren't marked const.
|
|
//
|
|
// Differences from [span.sub]:
|
|
// - no templated first()
|
|
// - no templated last()
|
|
// - no templated subspan()
|
|
//
|
|
// Differences from [span.obs]:
|
|
// - no length_bytes()
|
|
// - no size_bytes()
|
|
//
|
|
// Differences from [span.elem]:
|
|
// - no operator ()()
|
|
//
|
|
// Differences from [span.objectrep]:
|
|
// - no as_bytes()
|
|
// - no as_writeable_bytes()
|
|
template <typename T>
|
|
class span {
|
|
public:
|
|
using value_type = std::remove_cv_t<T>;
|
|
using pointer = T*;
|
|
using reference = T&;
|
|
using iterator = T*;
|
|
using const_iterator = const T*;
|
|
using reverse_iterator = std::reverse_iterator<iterator>;
|
|
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
|
|
|
|
// span constructors, copy, assignment, and destructor
|
|
constexpr span() noexcept : data_(nullptr), size_(0) {}
|
|
constexpr span(std::nullptr_t) noexcept : span() {}
|
|
constexpr span(T* data, size_t size) noexcept : data_(data), size_(size) {}
|
|
// TODO(dcheng): Implement construction from a |begin| and |end| pointer.
|
|
template <size_t N>
|
|
constexpr span(T (&array)[N]) noexcept : span(array, N) {}
|
|
// TODO(dcheng): Implement construction from std::array.
|
|
// Conversion from a container that provides |T* data()| and |integral_type
|
|
// size()|.
|
|
template <typename Container,
|
|
typename = internal::EnableIfSpanCompatibleContainer<Container, T>>
|
|
constexpr span(Container& container)
|
|
: span(container.data(), container.size()) {}
|
|
template <
|
|
typename Container,
|
|
typename = internal::EnableIfConstSpanCompatibleContainer<Container, T>>
|
|
span(const Container& container) : span(container.data(), container.size()) {}
|
|
~span() noexcept = default;
|
|
// Conversions from spans of compatible types: this allows a span<T> to be
|
|
// seamlessly used as a span<const T>, but not the other way around.
|
|
template <typename U, typename = internal::EnableIfLegalSpanConversion<U, T>>
|
|
constexpr span(const span<U>& other) : span(other.data(), other.size()) {}
|
|
template <typename U, typename = internal::EnableIfLegalSpanConversion<U, T>>
|
|
constexpr span(span<U>&& other) : span(other.data(), other.size()) {}
|
|
|
|
// span subviews
|
|
// Note: ideally all of these would DCHECK, but it requires fairly horrible
|
|
// contortions.
|
|
constexpr span first(size_t count) const { return span(data_, count); }
|
|
|
|
constexpr span last(size_t count) const {
|
|
return span(data_ + (size_ - count), count);
|
|
}
|
|
|
|
constexpr span subspan(size_t pos, size_t count = -1) const {
|
|
return span(data_ + pos, std::min(size_ - pos, count));
|
|
}
|
|
|
|
// span observers
|
|
constexpr size_t length() const noexcept { return size_; }
|
|
constexpr size_t size() const noexcept { return size_; }
|
|
constexpr bool empty() const noexcept { return size_ == 0; }
|
|
|
|
// span element access
|
|
constexpr T& operator[](size_t index) const noexcept { return data_[index]; }
|
|
constexpr T* data() const noexcept { return data_; }
|
|
|
|
// span iterator support
|
|
iterator begin() const noexcept { return data_; }
|
|
iterator end() const noexcept { return data_ + size_; }
|
|
|
|
const_iterator cbegin() const noexcept { return begin(); }
|
|
const_iterator cend() const noexcept { return end(); }
|
|
|
|
reverse_iterator rbegin() const noexcept { return reverse_iterator(end()); }
|
|
reverse_iterator rend() const noexcept { return reverse_iterator(begin()); }
|
|
|
|
const_reverse_iterator crbegin() const noexcept {
|
|
return const_reverse_iterator(cend());
|
|
}
|
|
const_reverse_iterator crend() const noexcept {
|
|
return const_reverse_iterator(cbegin());
|
|
}
|
|
|
|
private:
|
|
T* data_;
|
|
size_t size_;
|
|
};
|
|
|
|
// Relational operators. Equality is a element-wise comparison.
|
|
template <typename T>
|
|
constexpr bool operator==(const span<T>& lhs, const span<T>& rhs) noexcept {
|
|
return std::equal(lhs.cbegin(), lhs.cend(), rhs.cbegin(), rhs.cend());
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr bool operator!=(const span<T>& lhs, const span<T>& rhs) noexcept {
|
|
return !(lhs == rhs);
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr bool operator<(const span<T>& lhs, const span<T>& rhs) noexcept {
|
|
return std::lexicographical_compare(lhs.cbegin(), lhs.cend(), rhs.cbegin(),
|
|
rhs.cend());
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr bool operator<=(const span<T>& lhs, const span<T>& rhs) noexcept {
|
|
return !(rhs < lhs);
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr bool operator>(const span<T>& lhs, const span<T>& rhs) noexcept {
|
|
return rhs < lhs;
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr bool operator>=(const span<T>& lhs, const span<T>& rhs) noexcept {
|
|
return !(lhs < rhs);
|
|
}
|
|
|
|
// Type-deducing helpers for constructing a span.
|
|
template <typename T>
|
|
constexpr span<T> make_span(T* data, size_t size) noexcept {
|
|
return span<T>(data, size);
|
|
}
|
|
|
|
template <typename T, size_t N>
|
|
constexpr span<T> make_span(T (&array)[N]) noexcept {
|
|
return span<T>(array);
|
|
}
|
|
|
|
template <typename Container,
|
|
typename T = typename Container::value_type,
|
|
typename = internal::EnableIfSpanCompatibleContainer<Container, T>>
|
|
constexpr span<T> make_span(Container& container) {
|
|
return span<T>(container);
|
|
}
|
|
|
|
template <
|
|
typename Container,
|
|
typename T = std::add_const_t<typename Container::value_type>,
|
|
typename = internal::EnableIfConstSpanCompatibleContainer<Container, T>>
|
|
constexpr span<T> make_span(const Container& container) {
|
|
return span<T>(container);
|
|
}
|
|
|
|
} // namespace base
|
|
|
|
#endif // BASE_CONTAINERS_SPAN_H_
|