mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2025-02-24 10:53:19 +03:00
957 lines
37 KiB
C++
957 lines
37 KiB
C++
// Copyright 2012 The Chromium Authors
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "base/message_loop/message_pump_win.h"
|
|
|
|
#include <windows.h>
|
|
|
|
#include <algorithm>
|
|
#include <atomic>
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <type_traits>
|
|
|
|
#include "base/auto_reset.h"
|
|
#include "base/check.h"
|
|
#include "base/debug/alias.h"
|
|
#include "base/debug/crash_logging.h"
|
|
#include "base/debug/dump_without_crashing.h"
|
|
#include "base/feature_list.h"
|
|
#include "base/functional/bind.h"
|
|
#include "base/memory/raw_ptr.h"
|
|
#include "base/metrics/histogram_macros.h"
|
|
#include "base/numerics/safe_conversions.h"
|
|
#include "base/strings/string_number_conversions.h"
|
|
#include "base/task/task_features.h"
|
|
#include "base/trace_event/base_tracing.h"
|
|
#include "base/tracing_buildflags.h"
|
|
|
|
#if BUILDFLAG(ENABLE_BASE_TRACING)
|
|
#include "third_party/perfetto/protos/perfetto/trace/track_event/chrome_message_pump.pbzero.h" // nogncheck
|
|
#endif // BUILDFLAG(ENABLE_BASE_TRACING)
|
|
|
|
namespace base {
|
|
|
|
namespace {
|
|
|
|
// Returns the number of milliseconds before |next_task_time|, clamped between
|
|
// zero and the biggest DWORD value (or INFINITE if |next_task_time.is_max()|).
|
|
// Optionally, a recent value of Now() may be passed in to avoid resampling it.
|
|
DWORD GetSleepTimeoutMs(TimeTicks next_task_time,
|
|
TimeTicks recent_now = TimeTicks()) {
|
|
// Shouldn't need to sleep or install a timer when there's pending immediate
|
|
// work.
|
|
DCHECK(!next_task_time.is_null());
|
|
|
|
if (next_task_time.is_max()) {
|
|
return INFINITE;
|
|
}
|
|
|
|
auto now = recent_now.is_null() ? TimeTicks::Now() : recent_now;
|
|
auto timeout_ms = (next_task_time - now).InMillisecondsRoundedUp();
|
|
|
|
// A saturated_cast with an unsigned destination automatically clamps negative
|
|
// values at zero.
|
|
static_assert(!std::is_signed_v<DWORD>, "DWORD is unexpectedly signed");
|
|
return saturated_cast<DWORD>(timeout_ms);
|
|
}
|
|
|
|
bool g_ui_pump_improvements_win = false;
|
|
|
|
} // namespace
|
|
|
|
// Message sent to get an additional time slice for pumping (processing) another
|
|
// task (a series of such messages creates a continuous task pump).
|
|
static const int kMsgHaveWork = WM_USER + 1;
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// MessagePumpWin public:
|
|
|
|
MessagePumpWin::MessagePumpWin() = default;
|
|
MessagePumpWin::~MessagePumpWin() = default;
|
|
|
|
// static
|
|
void MessagePumpWin::InitializeFeatures() {
|
|
g_ui_pump_improvements_win = FeatureList::IsEnabled(kUIPumpImprovementsWin);
|
|
}
|
|
|
|
void MessagePumpWin::Run(Delegate* delegate) {
|
|
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
|
|
|
|
RunState run_state(delegate);
|
|
if (run_state_) {
|
|
run_state.is_nested = true;
|
|
}
|
|
|
|
AutoReset<raw_ptr<RunState>> auto_reset_run_state(&run_state_, &run_state);
|
|
DoRunLoop();
|
|
}
|
|
|
|
void MessagePumpWin::Quit() {
|
|
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
|
|
|
|
DCHECK(run_state_);
|
|
run_state_->should_quit = true;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// MessagePumpForUI public:
|
|
|
|
MessagePumpForUI::MessagePumpForUI() {
|
|
bool succeeded = message_window_.Create(
|
|
BindRepeating(&MessagePumpForUI::MessageCallback, Unretained(this)));
|
|
PCHECK(succeeded) << "Failed to create message-only Window";
|
|
}
|
|
|
|
MessagePumpForUI::~MessagePumpForUI() = default;
|
|
|
|
void MessagePumpForUI::ScheduleWork() {
|
|
// This is the only MessagePumpForUI method which can be called outside of
|
|
// |bound_thread_|.
|
|
|
|
if (g_ui_pump_improvements_win &&
|
|
!in_nested_native_loop_with_application_tasks_) {
|
|
// The pump is running using `event_` as its chrome-side synchronization
|
|
// variable. In this case, no deduplication is done, since the event has its
|
|
// own state.
|
|
event_.Signal();
|
|
return;
|
|
}
|
|
|
|
bool not_scheduled = false;
|
|
if (!native_msg_scheduled_.compare_exchange_strong(
|
|
not_scheduled, true, std::memory_order_relaxed)) {
|
|
return; // Someone else continued the pumping.
|
|
}
|
|
|
|
const BOOL ret = ::PostMessage(message_window_.hwnd(), kMsgHaveWork, 0, 0);
|
|
if (ret) {
|
|
return; // There was room in the Window Message queue.
|
|
}
|
|
|
|
// We have failed to insert a have-work message, so there is a chance that we
|
|
// will starve tasks/timers while sitting in a nested run loop. Nested loops
|
|
// only look at Windows Message queues, and don't look at *our* task queues,
|
|
// etc., so we might not get a time slice in such. :-(
|
|
// We could abort here, but the fear is that this failure mode is plausibly
|
|
// common (queue is full, of about 2000 messages), so we'll do a near-graceful
|
|
// recovery. Nested loops are pretty transient (we think), so this will
|
|
// probably be recoverable.
|
|
|
|
// Clarify that we didn't really insert.
|
|
native_msg_scheduled_.store(false, std::memory_order_relaxed);
|
|
TRACE_EVENT_INSTANT0("base", "Chrome.MessageLoopProblem.MESSAGE_POST_ERROR",
|
|
TRACE_EVENT_SCOPE_THREAD);
|
|
}
|
|
|
|
void MessagePumpForUI::ScheduleDelayedWork(
|
|
const Delegate::NextWorkInfo& next_work_info) {
|
|
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
|
|
|
|
// Since this is always called from |bound_thread_|, there is almost always
|
|
// nothing to do as the loop is already running. When the loop becomes idle,
|
|
// it will typically WaitForWork() in DoRunLoop() with the timeout provided by
|
|
// DoWork(). The only alternative to this is entering a native nested loop
|
|
// (e.g. modal dialog) under a
|
|
// `ScopedAllowApplicationTasksInNativeNestedLoop`, in which case
|
|
// HandleWorkMessage() will be invoked when the system picks up kMsgHaveWork
|
|
// and it will ScheduleNativeTimer() if it's out of immediate work. However,
|
|
// in that alternate scenario : it's possible for a Windows native work item
|
|
// (e.g. https://docs.microsoft.com/en-us/windows/desktop/winmsg/using-hooks)
|
|
// to wake the native nested loop and PostDelayedTask() to the current thread
|
|
// from it. This is the only case where we must install/adjust the native
|
|
// timer from ScheduleDelayedWork() because if we don't, the native loop will
|
|
// go back to sleep, unaware of the new |delayed_work_time|.
|
|
// See MessageLoopTest.PostDelayedTaskFromSystemPump for an example.
|
|
// TODO(gab): This could potentially be replaced by a ForegroundIdleProc hook
|
|
// if Windows ends up being the only platform requiring ScheduleDelayedWork().
|
|
if (in_nested_native_loop_with_application_tasks_ &&
|
|
!native_msg_scheduled_.load(std::memory_order_relaxed)) {
|
|
ScheduleNativeTimer(next_work_info);
|
|
}
|
|
}
|
|
|
|
bool MessagePumpForUI::HandleNestedNativeLoopWithApplicationTasks(
|
|
bool application_tasks_desired) {
|
|
// It is here assumed that we will be in a native loop until either
|
|
// DoRunLoop() gets control back, or this is called with `false`, and thus the
|
|
// Windows event queue is to be used for synchronization. This is to prevent
|
|
// being unable to wake up for application tasks in the case of a nested loop.
|
|
in_nested_native_loop_with_application_tasks_ = application_tasks_desired;
|
|
if (application_tasks_desired) {
|
|
ScheduleWork();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void MessagePumpForUI::AddObserver(Observer* observer) {
|
|
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
|
|
observers_.AddObserver(observer);
|
|
}
|
|
|
|
void MessagePumpForUI::RemoveObserver(Observer* observer) {
|
|
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
|
|
observers_.RemoveObserver(observer);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// MessagePumpForUI private:
|
|
|
|
bool MessagePumpForUI::MessageCallback(UINT message,
|
|
WPARAM wparam,
|
|
LPARAM lparam,
|
|
LRESULT* result) {
|
|
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
|
|
switch (message) {
|
|
case kMsgHaveWork:
|
|
HandleWorkMessage();
|
|
break;
|
|
case WM_TIMER:
|
|
if (wparam == reinterpret_cast<UINT_PTR>(this)) {
|
|
HandleTimerMessage();
|
|
}
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void MessagePumpForUI::DoRunLoop() {
|
|
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
|
|
|
|
// IF this was just a simple PeekMessage() loop (servicing all possible work
|
|
// queues), then Windows would try to achieve the following order according
|
|
// to MSDN documentation about PeekMessage with no filter):
|
|
// * Sent messages
|
|
// * Posted messages
|
|
// * Sent messages (again)
|
|
// * WM_PAINT messages
|
|
// * WM_TIMER messages
|
|
//
|
|
// Summary: none of the above classes is starved, and sent messages has twice
|
|
// the chance of being processed (i.e., reduced service time).
|
|
|
|
wakeup_state_ = WakeupState::kRunning;
|
|
|
|
for (;;) {
|
|
// If we do any work, we may create more messages etc., and more work may
|
|
// possibly be waiting in another task group. When we (for example)
|
|
// ProcessNextWindowsMessage(), there is a good chance there are still more
|
|
// messages waiting. On the other hand, when any of these methods return
|
|
// having done no work, then it is pretty unlikely that calling them again
|
|
// quickly will find any work to do. Finally, if they all say they had no
|
|
// work, then it is a good time to consider sleeping (waiting) for more
|
|
// work.
|
|
|
|
in_nested_native_loop_with_application_tasks_ = false;
|
|
bool more_work_is_plausible = false;
|
|
|
|
if (!g_ui_pump_improvements_win ||
|
|
wakeup_state_ != WakeupState::kApplicationTask) {
|
|
more_work_is_plausible |= ProcessNextWindowsMessage();
|
|
// We can end up in native loops which allow application tasks outside of
|
|
// DoWork() when Windows calls back a Win32 message window owned by some
|
|
// Chromium code.
|
|
in_nested_native_loop_with_application_tasks_ = false;
|
|
if (run_state_->should_quit) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
Delegate::NextWorkInfo next_work_info = run_state_->delegate->DoWork();
|
|
// Since nested native loops with application tasks are initiated by a
|
|
// scoper, they should always be cleared before exiting DoWork().
|
|
DCHECK(!in_nested_native_loop_with_application_tasks_);
|
|
wakeup_state_ = WakeupState::kRunning;
|
|
more_work_is_plausible |= next_work_info.is_immediate();
|
|
|
|
if (run_state_->should_quit) {
|
|
break;
|
|
}
|
|
|
|
if (installed_native_timer_) {
|
|
// As described in ScheduleNativeTimer(), the native timer is only
|
|
// installed and needed while in a nested native loop. If it is installed,
|
|
// it means the above work entered such a loop. Having now resumed, the
|
|
// native timer is no longer needed.
|
|
KillNativeTimer();
|
|
}
|
|
|
|
if (more_work_is_plausible) {
|
|
continue;
|
|
}
|
|
|
|
run_state_->delegate->DoIdleWork();
|
|
// DoIdleWork() shouldn't end up in native nested loops, nor should it
|
|
// permit native nested loops, and thus shouldn't have any chance of
|
|
// reinstalling a native timer.
|
|
DCHECK(!in_nested_native_loop_with_application_tasks_);
|
|
DCHECK(!installed_native_timer_);
|
|
if (run_state_->should_quit) {
|
|
break;
|
|
}
|
|
|
|
WaitForWork(next_work_info);
|
|
}
|
|
}
|
|
|
|
void MessagePumpForUI::WaitForWork(Delegate::NextWorkInfo next_work_info) {
|
|
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
|
|
|
|
// Wait until a message is available, up to the time needed by the timer
|
|
// manager to fire the next set of timers.
|
|
DWORD wait_flags = MWMO_INPUTAVAILABLE;
|
|
bool last_wakeup_was_spurious = false;
|
|
for (DWORD delay = GetSleepTimeoutMs(next_work_info.delayed_run_time,
|
|
next_work_info.recent_now);
|
|
delay != 0; delay = GetSleepTimeoutMs(next_work_info.delayed_run_time)) {
|
|
if (!last_wakeup_was_spurious) {
|
|
run_state_->delegate->BeforeWait();
|
|
}
|
|
last_wakeup_was_spurious = false;
|
|
|
|
// Tell the optimizer to retain these values to simplify analyzing hangs.
|
|
base::debug::Alias(&delay);
|
|
base::debug::Alias(&wait_flags);
|
|
DWORD result;
|
|
if (g_ui_pump_improvements_win) {
|
|
HANDLE event_handle = event_.handle();
|
|
result = MsgWaitForMultipleObjectsEx(1, &event_handle, delay, QS_ALLINPUT,
|
|
wait_flags);
|
|
DPCHECK(WAIT_FAILED != result);
|
|
if (result == WAIT_OBJECT_0) {
|
|
wakeup_state_ = WakeupState::kApplicationTask;
|
|
} else if (result == WAIT_OBJECT_0 + 1) {
|
|
wakeup_state_ = WakeupState::kNative;
|
|
} else {
|
|
wakeup_state_ = WakeupState::kInactive;
|
|
}
|
|
} else {
|
|
result = MsgWaitForMultipleObjectsEx(0, nullptr, delay, QS_ALLINPUT,
|
|
wait_flags);
|
|
DPCHECK(WAIT_FAILED != result);
|
|
if (result == WAIT_OBJECT_0) {
|
|
wakeup_state_ = WakeupState::kNative;
|
|
} else {
|
|
wakeup_state_ = WakeupState::kInactive;
|
|
}
|
|
}
|
|
|
|
if (wakeup_state_ == WakeupState::kApplicationTask) {
|
|
// This can only be reached when the pump woke up via `event_`. In that
|
|
// case, tasks are prioritized over native.
|
|
return;
|
|
} else if (wakeup_state_ == WakeupState::kNative) {
|
|
// A WM_* message is available.
|
|
// If a parent child relationship exists between windows across threads
|
|
// then their thread inputs are implicitly attached.
|
|
// This causes the MsgWaitForMultipleObjectsEx API to return indicating
|
|
// that messages are ready for processing (Specifically, mouse messages
|
|
// intended for the child window may appear if the child window has
|
|
// capture).
|
|
// The subsequent PeekMessages call may fail to return any messages thus
|
|
// causing us to enter a tight loop at times.
|
|
// The code below is a workaround to give the child window
|
|
// some time to process its input messages by looping back to
|
|
// MsgWaitForMultipleObjectsEx above when there are no messages for the
|
|
// current thread.
|
|
|
|
// As in ProcessNextWindowsMessage().
|
|
auto scoped_do_work_item = run_state_->delegate->BeginWorkItem();
|
|
{
|
|
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("base"),
|
|
"MessagePumpForUI::WaitForWork GetQueueStatus");
|
|
if (HIWORD(::GetQueueStatus(QS_SENDMESSAGE)) & QS_SENDMESSAGE) {
|
|
return;
|
|
}
|
|
}
|
|
{
|
|
MSG msg;
|
|
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("base"),
|
|
"MessagePumpForUI::WaitForWork PeekMessage");
|
|
if (::PeekMessage(&msg, nullptr, 0, 0, PM_NOREMOVE)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// We know there are no more messages for this thread because PeekMessage
|
|
// has returned false. Reset |wait_flags| so that we wait for a *new*
|
|
// message.
|
|
wait_flags = 0;
|
|
} else {
|
|
DCHECK_EQ(wakeup_state_, WakeupState::kInactive);
|
|
last_wakeup_was_spurious = true;
|
|
TRACE_EVENT_INSTANT(
|
|
"base", "MessagePumpForUI::WaitForWork Spurious Wakeup",
|
|
[&](perfetto::EventContext ctx) {
|
|
ctx.event<perfetto::protos::pbzero::ChromeTrackEvent>()
|
|
->set_chrome_message_pump_for_ui()
|
|
->set_wait_for_object_result(result);
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
void MessagePumpForUI::HandleWorkMessage() {
|
|
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
|
|
|
|
// If we are being called outside of the context of Run, then don't try to do
|
|
// any work. This could correspond to a MessageBox call or something of that
|
|
// sort.
|
|
if (!run_state_) {
|
|
// Since we handled a kMsgHaveWork message, we must still update this flag.
|
|
native_msg_scheduled_.store(false, std::memory_order_relaxed);
|
|
return;
|
|
}
|
|
|
|
// Let whatever would have run had we not been putting messages in the queue
|
|
// run now. This is an attempt to make our dummy message not starve other
|
|
// messages that may be in the Windows message queue.
|
|
ProcessPumpReplacementMessage();
|
|
|
|
Delegate::NextWorkInfo next_work_info = run_state_->delegate->DoWork();
|
|
if (next_work_info.is_immediate()) {
|
|
ScheduleWork();
|
|
} else {
|
|
run_state_->delegate->BeforeWait();
|
|
ScheduleNativeTimer(next_work_info);
|
|
}
|
|
}
|
|
|
|
void MessagePumpForUI::HandleTimerMessage() {
|
|
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
|
|
|
|
// ::KillTimer doesn't remove pending WM_TIMER messages from the queue,
|
|
// explicitly ignore the last WM_TIMER message in that case to avoid handling
|
|
// work from here when DoRunLoop() is active (which could result in scheduling
|
|
// work from two places at once). Note: we're still fine in the event that a
|
|
// second native nested loop is entered before such a dead WM_TIMER message is
|
|
// discarded because ::SetTimer merely resets the timer if invoked twice with
|
|
// the same id.
|
|
if (!installed_native_timer_) {
|
|
return;
|
|
}
|
|
|
|
// We only need to fire once per specific delay, another timer may be
|
|
// scheduled below but we're done with this one.
|
|
KillNativeTimer();
|
|
|
|
// If we are being called outside of the context of Run, then don't do
|
|
// anything. This could correspond to a MessageBox call or something of
|
|
// that sort.
|
|
if (!run_state_) {
|
|
return;
|
|
}
|
|
|
|
Delegate::NextWorkInfo next_work_info = run_state_->delegate->DoWork();
|
|
if (next_work_info.is_immediate()) {
|
|
ScheduleWork();
|
|
} else {
|
|
run_state_->delegate->BeforeWait();
|
|
ScheduleNativeTimer(next_work_info);
|
|
}
|
|
}
|
|
|
|
void MessagePumpForUI::ScheduleNativeTimer(
|
|
Delegate::NextWorkInfo next_work_info) {
|
|
DCHECK(!next_work_info.is_immediate());
|
|
// We should only ScheduleNativeTimer() under the new pump implementation
|
|
// while nested with application tasks.
|
|
DCHECK(!g_ui_pump_improvements_win ||
|
|
in_nested_native_loop_with_application_tasks_);
|
|
|
|
// Do not redundantly set the same native timer again if it was already set.
|
|
// This can happen when a nested native loop goes idle with pending delayed
|
|
// tasks, then gets woken up by an immediate task, and goes back to idle with
|
|
// the same pending delay. No need to kill the native timer if there is
|
|
// already one but the |delayed_run_time| has changed as ::SetTimer reuses the
|
|
// same id and will replace and reset the existing timer.
|
|
if (installed_native_timer_ &&
|
|
*installed_native_timer_ == next_work_info.delayed_run_time) {
|
|
return;
|
|
}
|
|
|
|
if (next_work_info.delayed_run_time.is_max()) {
|
|
return;
|
|
}
|
|
|
|
// We do not use native Windows timers in general as they have a poor, 10ms,
|
|
// granularity. Instead we rely on MsgWaitForMultipleObjectsEx's
|
|
// high-resolution timeout to sleep without timers in WaitForWork(). However,
|
|
// when entering a nested native ::GetMessage() loop (e.g. native modal
|
|
// windows) under a `ScopedAllowApplicationTasksInNativeNestedLoop`, we have
|
|
// to rely on a native timer when HandleWorkMessage() runs out of immediate
|
|
// work. Since `ScopedAllowApplicationTasksInNativeNestedLoop` invokes
|
|
// ScheduleWork() : we are guaranteed that HandleWorkMessage() will be called
|
|
// after entering a nested native loop that should process application
|
|
// tasks. But once HandleWorkMessage() is out of immediate work, ::SetTimer()
|
|
// is used to guarantee we are invoked again should the next delayed task
|
|
// expire before the nested native loop ends. The native timer being
|
|
// unnecessary once we return to our DoRunLoop(), we ::KillTimer when it
|
|
// resumes (nested native loops should be rare so we're not worried about
|
|
// ::SetTimer<=>::KillTimer churn). TODO(gab): The long-standing legacy
|
|
// dependency on the behavior of
|
|
// `ScopedAllowApplicationTasksInNativeNestedLoop` is unfortunate, would be
|
|
// nice to make this a MessagePump concept (instead of requiring impls to
|
|
// invoke ScheduleWork() one-way and no-op DoWork() the other way).
|
|
|
|
UINT delay_msec = strict_cast<UINT>(GetSleepTimeoutMs(
|
|
next_work_info.delayed_run_time, next_work_info.recent_now));
|
|
if (delay_msec == 0) {
|
|
ScheduleWork();
|
|
} else {
|
|
// TODO(gab): ::SetTimer()'s documentation claims it does this for us.
|
|
// Consider removing this safety net.
|
|
delay_msec = std::clamp(delay_msec, static_cast<UINT>(USER_TIMER_MINIMUM),
|
|
static_cast<UINT>(USER_TIMER_MAXIMUM));
|
|
|
|
// Tell the optimizer to retain the delay to simplify analyzing hangs.
|
|
base::debug::Alias(&delay_msec);
|
|
const UINT_PTR ret =
|
|
::SetTimer(message_window_.hwnd(), reinterpret_cast<UINT_PTR>(this),
|
|
delay_msec, nullptr);
|
|
|
|
if (ret) {
|
|
installed_native_timer_ = next_work_info.delayed_run_time;
|
|
return;
|
|
}
|
|
// This error is likely similar to MESSAGE_POST_ERROR (i.e. native queue is
|
|
// full). Since we only use ScheduleNativeTimer() in native nested loops
|
|
// this likely means this pump will not be given a chance to run application
|
|
// tasks until the nested loop completes.
|
|
TRACE_EVENT_INSTANT0("base", "Chrome.MessageLoopProblem.SET_TIMER_ERROR",
|
|
TRACE_EVENT_SCOPE_THREAD);
|
|
}
|
|
}
|
|
|
|
void MessagePumpForUI::KillNativeTimer() {
|
|
DCHECK(installed_native_timer_);
|
|
const bool success =
|
|
::KillTimer(message_window_.hwnd(), reinterpret_cast<UINT_PTR>(this));
|
|
DPCHECK(success);
|
|
installed_native_timer_.reset();
|
|
}
|
|
|
|
bool MessagePumpForUI::ProcessNextWindowsMessage() {
|
|
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
|
|
|
|
MSG msg;
|
|
bool has_msg = false;
|
|
bool more_work_is_plausible = false;
|
|
{
|
|
// ::PeekMessage() may process sent and/or internal messages (regardless of
|
|
// |had_messages| as ::GetQueueStatus() is an optimistic check that may
|
|
// racily have missed an incoming event -- it doesn't hurt to have empty
|
|
// internal units of work when ::PeekMessage turns out to be a no-op).
|
|
// Instantiate |scoped_do_work| ahead of GetQueueStatus() so that
|
|
// trace events it emits fully outscope GetQueueStatus' events
|
|
// (GetQueueStatus() itself not being expected to do work; it's fine to use
|
|
// only one ScopedDoWorkItem for both calls -- we trace them independently
|
|
// just in case internal work stalls).
|
|
auto scoped_do_work_item = run_state_->delegate->BeginWorkItem();
|
|
|
|
{
|
|
// Individually trace ::GetQueueStatus and ::PeekMessage because sampling
|
|
// profiler is hinting that we're spending a surprising amount of time
|
|
// with these on top of the stack. Tracing will be able to tell us whether
|
|
// this is a bias of sampling profiler (e.g. kernel takes ::GetQueueStatus
|
|
// as an opportunity to swap threads and is more likely to schedule the
|
|
// sampling profiler's thread while the sampled thread is swapped out on
|
|
// this frame).
|
|
TRACE_EVENT0(
|
|
TRACE_DISABLED_BY_DEFAULT("base"),
|
|
"MessagePumpForUI::ProcessNextWindowsMessage GetQueueStatus");
|
|
DWORD queue_status = ::GetQueueStatus(QS_SENDMESSAGE);
|
|
|
|
// If there are sent messages in the queue then PeekMessage internally
|
|
// dispatches the message and returns false. We return true in this case
|
|
// to ensure that the message loop peeks again instead of calling
|
|
// MsgWaitForMultipleObjectsEx.
|
|
if (HIWORD(queue_status) & QS_SENDMESSAGE) {
|
|
more_work_is_plausible = true;
|
|
}
|
|
}
|
|
|
|
{
|
|
// PeekMessage can run a message if there are sent messages, trace that
|
|
// and emit the boolean param to see if it ever janks independently (ref.
|
|
// comment on GetQueueStatus).
|
|
TRACE_EVENT(
|
|
TRACE_DISABLED_BY_DEFAULT("base"),
|
|
"MessagePumpForUI::ProcessNextWindowsMessage PeekMessage",
|
|
[&](perfetto::EventContext ctx) {
|
|
perfetto::protos::pbzero::ChromeMessagePump* msg_pump_data =
|
|
ctx.event()->set_chrome_message_pump();
|
|
msg_pump_data->set_sent_messages_in_queue(more_work_is_plausible);
|
|
});
|
|
has_msg = ::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) != FALSE;
|
|
}
|
|
}
|
|
if (has_msg) {
|
|
more_work_is_plausible |= ProcessMessageHelper(msg);
|
|
}
|
|
|
|
return more_work_is_plausible;
|
|
}
|
|
|
|
bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) {
|
|
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
|
|
|
|
if (msg.message == WM_QUIT) {
|
|
// WM_QUIT is the standard way to exit a ::GetMessage() loop. Our
|
|
// MessageLoop has its own quit mechanism, so WM_QUIT is generally
|
|
// unexpected.
|
|
TRACE_EVENT_INSTANT0("base",
|
|
"Chrome.MessageLoopProblem.RECEIVED_WM_QUIT_ERROR",
|
|
TRACE_EVENT_SCOPE_THREAD);
|
|
return true;
|
|
}
|
|
|
|
// While running our main message pump, we discard kMsgHaveWork messages.
|
|
if (msg.message == kMsgHaveWork && msg.hwnd == message_window_.hwnd()) {
|
|
return ProcessPumpReplacementMessage();
|
|
}
|
|
|
|
run_state_->delegate->BeginNativeWorkBeforeDoWork();
|
|
auto scoped_do_work_item = run_state_->delegate->BeginWorkItem();
|
|
|
|
TRACE_EVENT("base,toplevel", "MessagePumpForUI DispatchMessage",
|
|
[&](perfetto::EventContext ctx) {
|
|
ctx.event<perfetto::protos::pbzero::ChromeTrackEvent>()
|
|
->set_chrome_message_pump_for_ui()
|
|
->set_message_id(msg.message);
|
|
});
|
|
|
|
for (Observer& observer : observers_) {
|
|
observer.WillDispatchMSG(msg);
|
|
}
|
|
::TranslateMessage(&msg);
|
|
::DispatchMessage(&msg);
|
|
for (Observer& observer : observers_) {
|
|
observer.DidDispatchMSG(msg);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MessagePumpForUI::ProcessPumpReplacementMessage() {
|
|
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
|
|
|
|
// When we encounter a kMsgHaveWork message, this method is called to peek and
|
|
// process a replacement message. The goal is to make the kMsgHaveWork as non-
|
|
// intrusive as possible, even though a continuous stream of such messages are
|
|
// posted. This method carefully peeks a message while there is no chance for
|
|
// a kMsgHaveWork to be pending, then resets the |have_work_| flag (allowing a
|
|
// replacement kMsgHaveWork to possibly be posted), and finally dispatches
|
|
// that peeked replacement. Note that the re-post of kMsgHaveWork may be
|
|
// asynchronous to this thread!!
|
|
|
|
MSG msg;
|
|
bool have_message = false;
|
|
{
|
|
// Note: Ideally this call wouldn't process sent-messages (as we already did
|
|
// that in the PeekMessage call that lead to receiving this kMsgHaveWork),
|
|
// but there's no way to specify this (omitting PM_QS_SENDMESSAGE as in
|
|
// crrev.com/791043 doesn't do anything). Hence this call must be considered
|
|
// as a potential work item.
|
|
auto scoped_do_work_item = run_state_->delegate->BeginWorkItem();
|
|
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("base"),
|
|
"MessagePumpForUI::ProcessPumpReplacementMessage PeekMessage");
|
|
have_message = ::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) != FALSE;
|
|
}
|
|
|
|
// Expect no message or a message different than kMsgHaveWork.
|
|
DCHECK(!have_message || kMsgHaveWork != msg.message ||
|
|
msg.hwnd != message_window_.hwnd());
|
|
|
|
// Since we discarded a kMsgHaveWork message, we must update the flag.
|
|
DCHECK(native_msg_scheduled_.load(std::memory_order_relaxed));
|
|
native_msg_scheduled_.store(false, std::memory_order_relaxed);
|
|
|
|
// We don't need a special time slice if we didn't |have_message| to process.
|
|
if (!have_message) {
|
|
return false;
|
|
}
|
|
|
|
if (msg.message == WM_QUIT) {
|
|
// If we're in a nested ::GetMessage() loop then we must let that loop see
|
|
// the WM_QUIT in order for it to exit. If we're in DoRunLoop then the re-
|
|
// posted WM_QUIT will be either ignored, or handled, by
|
|
// ProcessMessageHelper() called directly from ProcessNextWindowsMessage().
|
|
::PostQuitMessage(static_cast<int>(msg.wParam));
|
|
// Note: we *must not* ScheduleWork() here as WM_QUIT is a low-priority
|
|
// message on Windows (it is only returned by ::PeekMessage() when idle) :
|
|
// https://blogs.msdn.microsoft.com/oldnewthing/20051104-33/?p=33453. As
|
|
// such posting a kMsgHaveWork message via ScheduleWork() would cause an
|
|
// infinite loop (kMsgHaveWork message handled first means we end up here
|
|
// again and repost WM_QUIT+ScheduleWork() again, etc.). Not leaving a
|
|
// kMsgHaveWork message behind however is also problematic as unwinding
|
|
// multiple layers of nested ::GetMessage() loops can result in starving
|
|
// application tasks. TODO(crbug.com/40595757) : Fix this.
|
|
|
|
// The return value is mostly irrelevant but return true like we would after
|
|
// processing a QuitClosure() task.
|
|
return true;
|
|
} else if (msg.message == WM_TIMER &&
|
|
msg.wParam == reinterpret_cast<UINT_PTR>(this)) {
|
|
// This happens when a native nested loop invokes HandleWorkMessage() =>
|
|
// ProcessPumpReplacementMessage() which finds the WM_TIMER message
|
|
// installed by ScheduleNativeTimer(). That message needs to be handled
|
|
// directly as handing it off to ProcessMessageHelper() below would cause an
|
|
// unnecessary ScopedDoWorkItem which may incorrectly lead the Delegate's
|
|
// heuristics to conclude that the DoWork() in HandleTimerMessage() is
|
|
// nested inside a native work item. It's also safe to skip the below
|
|
// ScheduleWork() as it is not mandatory before invoking DoWork() and
|
|
// HandleTimerMessage() handles re-installing the necessary followup
|
|
// messages.
|
|
HandleTimerMessage();
|
|
return true;
|
|
}
|
|
|
|
// Guarantee we'll get another time slice in the case where we go into native
|
|
// windows code. This ScheduleWork() may hurt performance a tiny bit when
|
|
// tasks appear very infrequently, but when the event queue is busy, the
|
|
// kMsgHaveWork events get (percentage wise) rarer and rarer.
|
|
ScheduleWork();
|
|
return ProcessMessageHelper(msg);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// MessagePumpForIO public:
|
|
|
|
MessagePumpForIO::IOContext::IOContext() {
|
|
std::construct_at(GetOverlapped());
|
|
std::memset(GetOverlapped(), 0, sizeof(OVERLAPPED));
|
|
}
|
|
|
|
MessagePumpForIO::IOContext::~IOContext() {
|
|
std::destroy_at(GetOverlapped());
|
|
}
|
|
|
|
OVERLAPPED* MessagePumpForIO::IOContext::GetOverlapped() {
|
|
static_assert(sizeof(OVERLAPPED) == sizeof(Sizer));
|
|
static_assert(alignof(OVERLAPPED) == alignof(Sizer));
|
|
return reinterpret_cast<OVERLAPPED*>(storage_);
|
|
}
|
|
|
|
MessagePumpForIO::IOHandler::IOHandler(const Location& from_here)
|
|
: io_handler_location_(from_here) {}
|
|
|
|
MessagePumpForIO::IOHandler::~IOHandler() = default;
|
|
|
|
MessagePumpForIO::MessagePumpForIO() {
|
|
port_.Set(::CreateIoCompletionPort(INVALID_HANDLE_VALUE, nullptr,
|
|
reinterpret_cast<ULONG_PTR>(nullptr), 1));
|
|
DCHECK(port_.is_valid());
|
|
}
|
|
|
|
MessagePumpForIO::~MessagePumpForIO() = default;
|
|
|
|
void MessagePumpForIO::ScheduleWork() {
|
|
// This is the only MessagePumpForIO method which can be called outside of
|
|
// |bound_thread_|.
|
|
|
|
bool not_scheduled = false;
|
|
if (!native_msg_scheduled_.compare_exchange_strong(
|
|
not_scheduled, true, std::memory_order_relaxed)) {
|
|
return; // Work already scheduled.
|
|
}
|
|
|
|
// Make sure the MessagePump does some work for us.
|
|
const BOOL ret = ::PostQueuedCompletionStatus(
|
|
port_.get(), 0, reinterpret_cast<ULONG_PTR>(this),
|
|
reinterpret_cast<OVERLAPPED*>(this));
|
|
if (ret) {
|
|
return; // Post worked perfectly.
|
|
}
|
|
|
|
// See comment in MessagePumpForUI::ScheduleWork() for this error recovery.
|
|
|
|
native_msg_scheduled_.store(
|
|
false, std::memory_order_relaxed); // Clarify that we didn't succeed.
|
|
TRACE_EVENT_INSTANT0("base",
|
|
"Chrome.MessageLoopProblem.COMPLETION_POST_ERROR",
|
|
TRACE_EVENT_SCOPE_THREAD);
|
|
}
|
|
|
|
void MessagePumpForIO::ScheduleDelayedWork(
|
|
const Delegate::NextWorkInfo& next_work_info) {
|
|
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
|
|
|
|
// Since this is always called from |bound_thread_|, there is nothing to do as
|
|
// the loop is already running. It will WaitForWork() in
|
|
// DoRunLoop() with the correct timeout when it's out of immediate tasks.
|
|
}
|
|
|
|
bool MessagePumpForIO::RegisterIOHandler(HANDLE file_handle,
|
|
IOHandler* handler) {
|
|
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
|
|
|
|
HANDLE port = ::CreateIoCompletionPort(
|
|
file_handle, port_.get(), reinterpret_cast<ULONG_PTR>(handler), 1);
|
|
|
|
if (port == nullptr) {
|
|
const DWORD last_error = ::GetLastError();
|
|
// Use `debug::AllocateCrashKeyString` instead of `SCOPED_CRASH_KEY_NUMBER`
|
|
// so that the key is set for any crash report generated after this, not
|
|
// only for the crash report from the `debug::DumpWithoutCrashing` below.
|
|
static auto* const crash_key = debug::AllocateCrashKeyString(
|
|
"RegisterIOHandlerError", debug::CrashKeySize::Size32);
|
|
debug::SetCrashKeyString(crash_key, NumberToString(last_error));
|
|
// TODO(crbug.com/372194029): Remove when failures are well understood.
|
|
debug::DumpWithoutCrashing();
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MessagePumpForIO::RegisterJobObject(HANDLE job_handle,
|
|
IOHandler* handler) {
|
|
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
|
|
|
|
JOBOBJECT_ASSOCIATE_COMPLETION_PORT info;
|
|
info.CompletionKey = handler;
|
|
info.CompletionPort = port_.get();
|
|
return ::SetInformationJobObject(job_handle,
|
|
JobObjectAssociateCompletionPortInformation,
|
|
&info, sizeof(info)) != FALSE;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// MessagePumpForIO private:
|
|
|
|
void MessagePumpForIO::DoRunLoop() {
|
|
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
|
|
|
|
for (;;) {
|
|
// If we do any work, we may create more messages etc., and more work may
|
|
// possibly be waiting in another task group. When we (for example)
|
|
// WaitForIOCompletion(), there is a good chance there are still more
|
|
// messages waiting. On the other hand, when any of these methods return
|
|
// having done no work, then it is pretty unlikely that calling them
|
|
// again quickly will find any work to do. Finally, if they all say they
|
|
// had no work, then it is a good time to consider sleeping (waiting) for
|
|
// more work.
|
|
|
|
Delegate::NextWorkInfo next_work_info = run_state_->delegate->DoWork();
|
|
bool more_work_is_plausible = next_work_info.is_immediate();
|
|
if (run_state_->should_quit) {
|
|
break;
|
|
}
|
|
|
|
more_work_is_plausible |= WaitForIOCompletion(0);
|
|
if (run_state_->should_quit) {
|
|
break;
|
|
}
|
|
|
|
if (more_work_is_plausible) {
|
|
continue;
|
|
}
|
|
|
|
run_state_->delegate->DoIdleWork();
|
|
if (run_state_->should_quit) {
|
|
break;
|
|
}
|
|
|
|
run_state_->delegate->BeforeWait();
|
|
WaitForWork(next_work_info);
|
|
}
|
|
}
|
|
|
|
// Wait until IO completes, up to the time needed by the timer manager to fire
|
|
// the next set of timers.
|
|
void MessagePumpForIO::WaitForWork(Delegate::NextWorkInfo next_work_info) {
|
|
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
|
|
|
|
// We do not support nested IO message loops. This is to avoid messy
|
|
// recursion problems.
|
|
DCHECK(!run_state_->is_nested) << "Cannot nest an IO message loop!";
|
|
|
|
DWORD timeout = GetSleepTimeoutMs(next_work_info.delayed_run_time,
|
|
next_work_info.recent_now);
|
|
|
|
// Tell the optimizer to retain these values to simplify analyzing hangs.
|
|
base::debug::Alias(&timeout);
|
|
WaitForIOCompletion(timeout);
|
|
}
|
|
|
|
bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout) {
|
|
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
|
|
|
|
IOItem item;
|
|
if (!GetIOItem(timeout, &item)) {
|
|
return false;
|
|
}
|
|
|
|
if (ProcessInternalIOItem(item)) {
|
|
return true;
|
|
}
|
|
|
|
run_state_->delegate->BeginNativeWorkBeforeDoWork();
|
|
auto scoped_do_work_item = run_state_->delegate->BeginWorkItem();
|
|
|
|
TRACE_EVENT(
|
|
"base,toplevel", "IOHandler::OnIOCompleted",
|
|
[&](perfetto::EventContext ctx) {
|
|
ctx.event()->set_chrome_message_pump()->set_io_handler_location_iid(
|
|
base::trace_event::InternedSourceLocation::Get(
|
|
&ctx, base::trace_event::TraceSourceLocation(
|
|
item.handler->io_handler_location())));
|
|
});
|
|
|
|
item.handler.ExtractAsDangling()->OnIOCompleted(
|
|
item.context.ExtractAsDangling(), item.bytes_transfered, item.error);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Asks the OS for another IO completion result.
|
|
bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) {
|
|
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
|
|
|
|
ULONG_PTR key = reinterpret_cast<ULONG_PTR>(nullptr);
|
|
OVERLAPPED* overlapped = nullptr;
|
|
|
|
// Clear the value for the number of bytes transferred in case extracting the
|
|
// packet doesn't populate it.
|
|
item->bytes_transfered = 0;
|
|
if (!::GetQueuedCompletionStatus(port_.get(), &item->bytes_transfered, &key,
|
|
&overlapped, timeout)) {
|
|
if (!overlapped) {
|
|
return false; // Nothing in the queue.
|
|
}
|
|
// A completion packet for a failed operation was processed. The Windows
|
|
// last error code pertains to the operation that failed.
|
|
item->error = ::GetLastError();
|
|
// The packet may have contained a value for the number of bytes
|
|
// transferred, so pass along whatever value was populated from it.
|
|
} else {
|
|
// The packet corresponded to an operation that succeeded, so clear out
|
|
// the error value so that the handler sees the operation as a success.
|
|
item->error = ERROR_SUCCESS;
|
|
}
|
|
|
|
item->handler = reinterpret_cast<IOHandler*>(key);
|
|
item->context = reinterpret_cast<IOContext*>(overlapped);
|
|
return true;
|
|
}
|
|
|
|
bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) {
|
|
DCHECK_CALLED_ON_VALID_THREAD(bound_thread_);
|
|
|
|
if (reinterpret_cast<void*>(this) ==
|
|
reinterpret_cast<void*>(item.context.get()) &&
|
|
reinterpret_cast<void*>(this) ==
|
|
reinterpret_cast<void*>(item.handler.get())) {
|
|
// This is our internal completion.
|
|
DCHECK(!item.bytes_transfered);
|
|
native_msg_scheduled_.store(false, std::memory_order_relaxed);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
} // namespace base
|