naiveproxy/net/cert/cert_verify_proc_android.cc
2018-08-14 22:19:20 +00:00

375 lines
15 KiB
C++

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/cert/cert_verify_proc_android.h"
#include <string>
#include <vector>
#include "base/logging.h"
#include "base/metrics/histogram_functions.h"
#include "base/metrics/histogram_macros.h"
#include "base/sha1.h"
#include "base/strings/string_piece.h"
#include "crypto/sha2.h"
#include "net/android/cert_verify_result_android.h"
#include "net/android/network_library.h"
#include "net/base/net_errors.h"
#include "net/cert/asn1_util.h"
#include "net/cert/cert_net_fetcher.h"
#include "net/cert/cert_status_flags.h"
#include "net/cert/cert_verify_result.h"
#include "net/cert/internal/cert_errors.h"
#include "net/cert/internal/parsed_certificate.h"
#include "net/cert/known_roots.h"
#include "net/cert/x509_certificate.h"
#include "net/cert/x509_util.h"
#include "url/gurl.h"
namespace net {
namespace {
// Android ignores the authType parameter to
// X509TrustManager.checkServerTrusted, so pass in a dummy value. See
// https://crbug.com/627154.
const char kAuthType[] = "RSA";
// The maximum number of AIA fetches that TryVerifyWithAIAFetching() will
// attempt. If a valid chain cannot be built after this many fetches,
// TryVerifyWithAIAFetching() will give up and return
// CERT_VERIFY_STATUS_ANDROID_NO_TRUSTED_ROOT.
const unsigned int kMaxAIAFetches = 5;
// Starting at certs[start], this function searches |certs| for an issuer of
// certs[start], then for an issuer of that issuer, and so on until it finds a
// certificate |cert| for which |certs| does not contain an issuer of
// |cert|. Returns a pointer to this |cert|, or nullptr if all certificates
// while path-building from |start| have an issuer in |certs| (including if
// there is a loop). Note that the returned certificate will be equal to |start|
// if |start| does not have an issuer in |certs|.
//
// TODO(estark): when searching for an issuer, this always uses the first
// encountered issuer in |certs|, and does not handle the situation where
// |certs| contains more than one issuer for a given certificate.
scoped_refptr<ParsedCertificate> FindLastCertWithUnknownIssuer(
const ParsedCertificateList& certs,
const scoped_refptr<ParsedCertificate>& start) {
DCHECK_GE(certs.size(), 1u);
std::set<scoped_refptr<ParsedCertificate>> used_in_path;
scoped_refptr<ParsedCertificate> last = start;
while (true) {
used_in_path.insert(last);
scoped_refptr<ParsedCertificate> last_issuer;
// Find an issuer for |last| (which might be |last| itself if self-signed).
for (const auto& cert : certs) {
if (cert->normalized_subject() == last->normalized_issuer()) {
last_issuer = cert;
break;
}
}
if (!last_issuer) {
// There is no issuer for |last| in |certs|.
return last;
}
if (last_issuer->normalized_subject() == last_issuer->normalized_issuer()) {
// A chain can be built from |start| to a self-signed certificate, so
// return nullptr to indicate that there is no certificate with an unknown
// issuer.
return nullptr;
}
if (used_in_path.find(last_issuer) != used_in_path.end()) {
// |certs| contains a loop.
return nullptr;
}
// Continue the search for |last_issuer|'s issuer.
last = last_issuer;
}
NOTREACHED();
return nullptr;
}
// Uses |fetcher| to fetch issuers from |uri|. If the fetch succeeds, the
// certificate is parsed and added to |cert_list|. Returns true if the fetch was
// successful and the result could be parsed as a certificate, and false
// otherwise.
bool PerformAIAFetchAndAddResultToVector(scoped_refptr<CertNetFetcher> fetcher,
base::StringPiece uri,
ParsedCertificateList* cert_list) {
GURL url(uri);
if (!url.is_valid())
return false;
std::unique_ptr<CertNetFetcher::Request> request(fetcher->FetchCaIssuers(
url, CertNetFetcher::DEFAULT, CertNetFetcher::DEFAULT));
Error error;
std::vector<uint8_t> aia_fetch_bytes;
request->WaitForResult(&error, &aia_fetch_bytes);
base::UmaHistogramSparse("Net.Certificate.AndroidAIAFetchError",
std::abs(error));
if (error != OK)
return false;
CertErrors errors;
return ParsedCertificate::CreateAndAddToVector(
x509_util::CreateCryptoBuffer(aia_fetch_bytes.data(),
aia_fetch_bytes.size()),
x509_util::DefaultParseCertificateOptions(), cert_list, &errors);
}
// Uses android::VerifyX509CertChain() to verify the certificates in |certs| for
// |hostname| and returns the verification status. If the verification was
// successful, this function populates |verify_result| and |verified_chain|;
// otherwise it leaves them untouched.
android::CertVerifyStatusAndroid AttemptVerificationAfterAIAFetch(
const ParsedCertificateList& certs,
const std::string& hostname,
CertVerifyResult* verify_result,
std::vector<std::string>* verified_chain) {
std::vector<std::string> cert_bytes;
for (const auto& cert : certs) {
cert_bytes.push_back(cert->der_cert().AsString());
}
bool is_issued_by_known_root;
std::vector<std::string> candidate_verified_chain;
android::CertVerifyStatusAndroid status;
android::VerifyX509CertChain(cert_bytes, kAuthType, hostname, &status,
&is_issued_by_known_root,
&candidate_verified_chain);
if (status == android::CERT_VERIFY_STATUS_ANDROID_OK) {
verify_result->is_issued_by_known_root = is_issued_by_known_root;
*verified_chain = candidate_verified_chain;
}
return status;
}
// After a CERT_VERIFY_STATUS_ANDROID_NO_TRUSTED_ROOT error is encountered, this
// function can be called to fetch intermediates and retry verification.
//
// It will start from the first certificate in |cert_bytes| and construct a
// chain as far as it can using certificates in |cert_bytes|, and then
// iteratively fetch issuers from any AIA URLs in the last certificate in this
// chain. It will fetch issuers until it encounters a chain that verifies with
// status CERT_VERIFY_STATUS_ANDROID_OK, or it runs out of AIA URLs to fetch, or
// it has attempted |kMaxAIAFetches| fetches.
//
// If it finds a chain that verifies successfully, it returns
// CERT_VERIFY_STATUS_ANDROID_OK and sets |verify_result| and |verified_chain|
// correspondingly. Otherwise, it returns
// CERT_VERIFY_STATUS_ANDROID_NO_TRUSTED_ROOT and does not modify
// |verify_result| or |verified_chain|.
android::CertVerifyStatusAndroid TryVerifyWithAIAFetching(
const std::vector<std::string>& cert_bytes,
const std::string& hostname,
scoped_refptr<CertNetFetcher> cert_net_fetcher,
CertVerifyResult* verify_result,
std::vector<std::string>* verified_chain) {
if (!cert_net_fetcher)
return android::CERT_VERIFY_STATUS_ANDROID_NO_TRUSTED_ROOT;
// Convert the certificates into ParsedCertificates for ease of pulling out
// AIA URLs.
CertErrors errors;
ParsedCertificateList certs;
for (const auto& cert : cert_bytes) {
if (!ParsedCertificate::CreateAndAddToVector(
x509_util::CreateCryptoBuffer(cert),
x509_util::DefaultParseCertificateOptions(), &certs, &errors)) {
return android::CERT_VERIFY_STATUS_ANDROID_NO_TRUSTED_ROOT;
}
}
// Build a chain as far as possible from the target certificate at index 0,
// using the initially provided certificates.
scoped_refptr<ParsedCertificate> last_cert_with_unknown_issuer =
FindLastCertWithUnknownIssuer(certs, certs[0].get());
if (!last_cert_with_unknown_issuer) {
// |certs| either contains a loop, or contains a full chain to a self-signed
// certificate. Do not attempt AIA fetches for such a chain.
return android::CERT_VERIFY_STATUS_ANDROID_NO_TRUSTED_ROOT;
}
unsigned int num_aia_fetches = 0;
while (true) {
// If chain-building has terminated in a certificate that does not have an
// AIA URL, give up.
//
// TODO(estark): Instead of giving up at this point, it would be more robust
// to go back to the certificate before |last_cert| in the chain and attempt
// an AIA fetch from that point (if one hasn't already been done). This
// would accomodate chains where the server serves Leaf -> I1 signed by a
// root not in the client's trust store, but AIA fetching would yield an
// intermediate I2 signed by a root that *is* in the client's trust store.
if (!last_cert_with_unknown_issuer->has_authority_info_access())
return android::CERT_VERIFY_STATUS_ANDROID_NO_TRUSTED_ROOT;
for (const auto& uri : last_cert_with_unknown_issuer->ca_issuers_uris()) {
num_aia_fetches++;
if (num_aia_fetches > kMaxAIAFetches)
return android::CERT_VERIFY_STATUS_ANDROID_NO_TRUSTED_ROOT;
if (!PerformAIAFetchAndAddResultToVector(cert_net_fetcher, uri, &certs))
continue;
android::CertVerifyStatusAndroid status =
AttemptVerificationAfterAIAFetch(certs, hostname, verify_result,
verified_chain);
if (status == android::CERT_VERIFY_STATUS_ANDROID_OK)
return status;
}
// If verification still failed but the path expanded, continue to attempt
// AIA fetches.
scoped_refptr<ParsedCertificate> new_last_cert_with_unknown_issuer =
FindLastCertWithUnknownIssuer(certs, last_cert_with_unknown_issuer);
if (!new_last_cert_with_unknown_issuer ||
new_last_cert_with_unknown_issuer == last_cert_with_unknown_issuer) {
// The last round of AIA fetches (if there were any) didn't expand the
// path, or it did such that |certs| now contains a full path to an
// (untrusted) root or a loop.
//
// TODO(estark): As above, it would be more robust to go back one
// certificate and attempt an AIA fetch from that point.
return android::CERT_VERIFY_STATUS_ANDROID_NO_TRUSTED_ROOT;
}
last_cert_with_unknown_issuer = new_last_cert_with_unknown_issuer;
}
NOTREACHED();
return android::CERT_VERIFY_STATUS_ANDROID_NO_TRUSTED_ROOT;
}
// Returns true if the certificate verification call was successful (regardless
// of its result), i.e. if |verify_result| was set. Otherwise returns false.
bool VerifyFromAndroidTrustManager(
const std::vector<std::string>& cert_bytes,
const std::string& hostname,
scoped_refptr<CertNetFetcher> cert_net_fetcher,
CertVerifyResult* verify_result) {
android::CertVerifyStatusAndroid status;
std::vector<std::string> verified_chain;
android::VerifyX509CertChain(cert_bytes, kAuthType, hostname, &status,
&verify_result->is_issued_by_known_root,
&verified_chain);
// If verification resulted in a NO_TRUSTED_ROOT error, then fetch
// intermediates and retry.
if (status == android::CERT_VERIFY_STATUS_ANDROID_NO_TRUSTED_ROOT) {
status = TryVerifyWithAIAFetching(cert_bytes, hostname,
std::move(cert_net_fetcher),
verify_result, &verified_chain);
UMA_HISTOGRAM_BOOLEAN(
"Net.Certificate.VerificationSuccessAfterAIAFetchingNeeded",
status == android::CERT_VERIFY_STATUS_ANDROID_OK);
}
switch (status) {
case android::CERT_VERIFY_STATUS_ANDROID_FAILED:
return false;
case android::CERT_VERIFY_STATUS_ANDROID_OK:
break;
case android::CERT_VERIFY_STATUS_ANDROID_NO_TRUSTED_ROOT:
verify_result->cert_status |= CERT_STATUS_AUTHORITY_INVALID;
break;
case android::CERT_VERIFY_STATUS_ANDROID_EXPIRED:
case android::CERT_VERIFY_STATUS_ANDROID_NOT_YET_VALID:
verify_result->cert_status |= CERT_STATUS_DATE_INVALID;
break;
case android::CERT_VERIFY_STATUS_ANDROID_UNABLE_TO_PARSE:
verify_result->cert_status |= CERT_STATUS_INVALID;
break;
case android::CERT_VERIFY_STATUS_ANDROID_INCORRECT_KEY_USAGE:
verify_result->cert_status |= CERT_STATUS_INVALID;
break;
default:
NOTREACHED();
verify_result->cert_status |= CERT_STATUS_INVALID;
break;
}
// Save the verified chain.
if (!verified_chain.empty()) {
std::vector<base::StringPiece> verified_chain_pieces(verified_chain.size());
for (size_t i = 0; i < verified_chain.size(); i++) {
verified_chain_pieces[i] = base::StringPiece(verified_chain[i]);
}
scoped_refptr<X509Certificate> verified_cert =
X509Certificate::CreateFromDERCertChain(verified_chain_pieces);
if (verified_cert.get())
verify_result->verified_cert = std::move(verified_cert);
else
verify_result->cert_status |= CERT_STATUS_INVALID;
}
// Extract the public key hashes and check whether or not any are known
// roots. Walk from the end of the chain (root) to leaf, to optimize for
// known root checks.
for (auto it = verified_chain.rbegin(); it != verified_chain.rend(); ++it) {
base::StringPiece spki_bytes;
if (!asn1::ExtractSPKIFromDERCert(*it, &spki_bytes)) {
verify_result->cert_status |= CERT_STATUS_INVALID;
continue;
}
HashValue sha256(HASH_VALUE_SHA256);
crypto::SHA256HashString(spki_bytes, sha256.data(), crypto::kSHA256Length);
verify_result->public_key_hashes.push_back(sha256);
if (!verify_result->is_issued_by_known_root) {
verify_result->is_issued_by_known_root =
GetNetTrustAnchorHistogramIdForSPKI(sha256) != 0;
}
}
// Reverse the hash list, to maintain the leaf->root ordering.
std::reverse(verify_result->public_key_hashes.begin(),
verify_result->public_key_hashes.end());
return true;
}
void GetChainDEREncodedBytes(X509Certificate* cert,
std::vector<std::string>* chain_bytes) {
chain_bytes->reserve(1 + cert->intermediate_buffers().size());
chain_bytes->emplace_back(
net::x509_util::CryptoBufferAsStringPiece(cert->cert_buffer()));
for (const auto& handle : cert->intermediate_buffers()) {
chain_bytes->emplace_back(
net::x509_util::CryptoBufferAsStringPiece(handle.get()));
}
}
} // namespace
CertVerifyProcAndroid::CertVerifyProcAndroid() {}
CertVerifyProcAndroid::~CertVerifyProcAndroid() {}
bool CertVerifyProcAndroid::SupportsAdditionalTrustAnchors() const {
return false;
}
int CertVerifyProcAndroid::VerifyInternal(
X509Certificate* cert,
const std::string& hostname,
const std::string& ocsp_response,
int flags,
CRLSet* crl_set,
const CertificateList& additional_trust_anchors,
CertVerifyResult* verify_result) {
std::vector<std::string> cert_bytes;
GetChainDEREncodedBytes(cert, &cert_bytes);
if (!VerifyFromAndroidTrustManager(
cert_bytes, hostname, GetGlobalCertNetFetcher(), verify_result)) {
NOTREACHED();
return ERR_FAILED;
}
if (IsCertStatusError(verify_result->cert_status))
return MapCertStatusToNetError(verify_result->cert_status);
return OK;
}
} // namespace net