mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-28 16:26:10 +03:00
1102 lines
37 KiB
C++
1102 lines
37 KiB
C++
// Copyright 2013 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "base/strings/string_util.h"
|
|
|
|
#include <ctype.h>
|
|
#include <errno.h>
|
|
#include <math.h>
|
|
#include <stdarg.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
#include <wchar.h>
|
|
#include <wctype.h>
|
|
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <vector>
|
|
|
|
#include "base/logging.h"
|
|
#include "base/macros.h"
|
|
#include "base/strings/utf_string_conversion_utils.h"
|
|
#include "base/strings/utf_string_conversions.h"
|
|
#include "base/third_party/icu/icu_utf.h"
|
|
#include "util/build_config.h"
|
|
|
|
namespace base {
|
|
|
|
namespace {
|
|
|
|
// Used by ReplaceStringPlaceholders to track the position in the string of
|
|
// replaced parameters.
|
|
struct ReplacementOffset {
|
|
ReplacementOffset(uintptr_t parameter, size_t offset)
|
|
: parameter(parameter), offset(offset) {}
|
|
|
|
// Index of the parameter.
|
|
uintptr_t parameter;
|
|
|
|
// Starting position in the string.
|
|
size_t offset;
|
|
};
|
|
|
|
static bool CompareParameter(const ReplacementOffset& elem1,
|
|
const ReplacementOffset& elem2) {
|
|
return elem1.parameter < elem2.parameter;
|
|
}
|
|
|
|
// Overloaded function to append one string onto the end of another. Having a
|
|
// separate overload for |source| as both string and StringPiece allows for more
|
|
// efficient usage from functions templated to work with either type (avoiding a
|
|
// redundant call to the BasicStringPiece constructor in both cases).
|
|
template <typename string_type>
|
|
inline void AppendToString(string_type* target, const string_type& source) {
|
|
target->append(source);
|
|
}
|
|
|
|
template <typename string_type>
|
|
inline void AppendToString(string_type* target,
|
|
const BasicStringPiece<string_type>& source) {
|
|
source.AppendToString(target);
|
|
}
|
|
|
|
// Assuming that a pointer is the size of a "machine word", then
|
|
// uintptr_t is an integer type that is also a machine word.
|
|
typedef uintptr_t MachineWord;
|
|
const uintptr_t kMachineWordAlignmentMask = sizeof(MachineWord) - 1;
|
|
|
|
inline bool IsAlignedToMachineWord(const void* pointer) {
|
|
return !(reinterpret_cast<MachineWord>(pointer) & kMachineWordAlignmentMask);
|
|
}
|
|
|
|
template <typename T>
|
|
inline T* AlignToMachineWord(T* pointer) {
|
|
return reinterpret_cast<T*>(reinterpret_cast<MachineWord>(pointer) &
|
|
~kMachineWordAlignmentMask);
|
|
}
|
|
|
|
template <size_t size, typename CharacterType>
|
|
struct NonASCIIMask;
|
|
template <>
|
|
struct NonASCIIMask<4, char16> {
|
|
static inline uint32_t value() { return 0xFF80FF80U; }
|
|
};
|
|
template <>
|
|
struct NonASCIIMask<4, char> {
|
|
static inline uint32_t value() { return 0x80808080U; }
|
|
};
|
|
template <>
|
|
struct NonASCIIMask<8, char16> {
|
|
static inline uint64_t value() { return 0xFF80FF80FF80FF80ULL; }
|
|
};
|
|
template <>
|
|
struct NonASCIIMask<8, char> {
|
|
static inline uint64_t value() { return 0x8080808080808080ULL; }
|
|
};
|
|
#if defined(WCHAR_T_IS_UTF32)
|
|
template <>
|
|
struct NonASCIIMask<4, wchar_t> {
|
|
static inline uint32_t value() { return 0xFFFFFF80U; }
|
|
};
|
|
template <>
|
|
struct NonASCIIMask<8, wchar_t> {
|
|
static inline uint64_t value() { return 0xFFFFFF80FFFFFF80ULL; }
|
|
};
|
|
#endif // WCHAR_T_IS_UTF32
|
|
|
|
} // namespace
|
|
|
|
bool IsWprintfFormatPortable(const wchar_t* format) {
|
|
for (const wchar_t* position = format; *position != '\0'; ++position) {
|
|
if (*position == '%') {
|
|
bool in_specification = true;
|
|
bool modifier_l = false;
|
|
while (in_specification) {
|
|
// Eat up characters until reaching a known specifier.
|
|
if (*++position == '\0') {
|
|
// The format string ended in the middle of a specification. Call
|
|
// it portable because no unportable specifications were found. The
|
|
// string is equally broken on all platforms.
|
|
return true;
|
|
}
|
|
|
|
if (*position == 'l') {
|
|
// 'l' is the only thing that can save the 's' and 'c' specifiers.
|
|
modifier_l = true;
|
|
} else if (((*position == 's' || *position == 'c') && !modifier_l) ||
|
|
*position == 'S' || *position == 'C' || *position == 'F' ||
|
|
*position == 'D' || *position == 'O' || *position == 'U') {
|
|
// Not portable.
|
|
return false;
|
|
}
|
|
|
|
if (wcschr(L"diouxXeEfgGaAcspn%", *position)) {
|
|
// Portable, keep scanning the rest of the format string.
|
|
in_specification = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
template <typename StringType>
|
|
StringType ToLowerASCIIImpl(BasicStringPiece<StringType> str) {
|
|
StringType ret;
|
|
ret.reserve(str.size());
|
|
for (size_t i = 0; i < str.size(); i++)
|
|
ret.push_back(ToLowerASCII(str[i]));
|
|
return ret;
|
|
}
|
|
|
|
template <typename StringType>
|
|
StringType ToUpperASCIIImpl(BasicStringPiece<StringType> str) {
|
|
StringType ret;
|
|
ret.reserve(str.size());
|
|
for (size_t i = 0; i < str.size(); i++)
|
|
ret.push_back(ToUpperASCII(str[i]));
|
|
return ret;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
std::string ToLowerASCII(StringPiece str) {
|
|
return ToLowerASCIIImpl<std::string>(str);
|
|
}
|
|
|
|
string16 ToLowerASCII(StringPiece16 str) {
|
|
return ToLowerASCIIImpl<string16>(str);
|
|
}
|
|
|
|
std::string ToUpperASCII(StringPiece str) {
|
|
return ToUpperASCIIImpl<std::string>(str);
|
|
}
|
|
|
|
string16 ToUpperASCII(StringPiece16 str) {
|
|
return ToUpperASCIIImpl<string16>(str);
|
|
}
|
|
|
|
template <class StringType>
|
|
int CompareCaseInsensitiveASCIIT(BasicStringPiece<StringType> a,
|
|
BasicStringPiece<StringType> b) {
|
|
// Find the first characters that aren't equal and compare them. If the end
|
|
// of one of the strings is found before a nonequal character, the lengths
|
|
// of the strings are compared.
|
|
size_t i = 0;
|
|
while (i < a.length() && i < b.length()) {
|
|
typename StringType::value_type lower_a = ToLowerASCII(a[i]);
|
|
typename StringType::value_type lower_b = ToLowerASCII(b[i]);
|
|
if (lower_a < lower_b)
|
|
return -1;
|
|
if (lower_a > lower_b)
|
|
return 1;
|
|
i++;
|
|
}
|
|
|
|
// End of one string hit before finding a different character. Expect the
|
|
// common case to be "strings equal" at this point so check that first.
|
|
if (a.length() == b.length())
|
|
return 0;
|
|
|
|
if (a.length() < b.length())
|
|
return -1;
|
|
return 1;
|
|
}
|
|
|
|
int CompareCaseInsensitiveASCII(StringPiece a, StringPiece b) {
|
|
return CompareCaseInsensitiveASCIIT<std::string>(a, b);
|
|
}
|
|
|
|
int CompareCaseInsensitiveASCII(StringPiece16 a, StringPiece16 b) {
|
|
return CompareCaseInsensitiveASCIIT<string16>(a, b);
|
|
}
|
|
|
|
bool EqualsCaseInsensitiveASCII(StringPiece a, StringPiece b) {
|
|
if (a.length() != b.length())
|
|
return false;
|
|
return CompareCaseInsensitiveASCIIT<std::string>(a, b) == 0;
|
|
}
|
|
|
|
bool EqualsCaseInsensitiveASCII(StringPiece16 a, StringPiece16 b) {
|
|
if (a.length() != b.length())
|
|
return false;
|
|
return CompareCaseInsensitiveASCIIT<string16>(a, b) == 0;
|
|
}
|
|
|
|
template <class StringType>
|
|
bool ReplaceCharsT(const StringType& input,
|
|
BasicStringPiece<StringType> find_any_of_these,
|
|
BasicStringPiece<StringType> replace_with,
|
|
StringType* output);
|
|
|
|
bool ReplaceChars(const string16& input,
|
|
StringPiece16 replace_chars,
|
|
const string16& replace_with,
|
|
string16* output) {
|
|
return ReplaceCharsT(input, replace_chars, StringPiece16(replace_with),
|
|
output);
|
|
}
|
|
|
|
bool ReplaceChars(const std::string& input,
|
|
StringPiece replace_chars,
|
|
const std::string& replace_with,
|
|
std::string* output) {
|
|
return ReplaceCharsT(input, replace_chars, StringPiece(replace_with), output);
|
|
}
|
|
|
|
bool RemoveChars(const string16& input,
|
|
StringPiece16 remove_chars,
|
|
string16* output) {
|
|
return ReplaceCharsT(input, remove_chars, StringPiece16(), output);
|
|
}
|
|
|
|
bool RemoveChars(const std::string& input,
|
|
StringPiece remove_chars,
|
|
std::string* output) {
|
|
return ReplaceCharsT(input, remove_chars, StringPiece(), output);
|
|
}
|
|
|
|
template <typename Str>
|
|
TrimPositions TrimStringT(const Str& input,
|
|
BasicStringPiece<Str> trim_chars,
|
|
TrimPositions positions,
|
|
Str* output) {
|
|
// Find the edges of leading/trailing whitespace as desired. Need to use
|
|
// a StringPiece version of input to be able to call find* on it with the
|
|
// StringPiece version of trim_chars (normally the trim_chars will be a
|
|
// constant so avoid making a copy).
|
|
BasicStringPiece<Str> input_piece(input);
|
|
const size_t last_char = input.length() - 1;
|
|
const size_t first_good_char = (positions & TRIM_LEADING)
|
|
? input_piece.find_first_not_of(trim_chars)
|
|
: 0;
|
|
const size_t last_good_char = (positions & TRIM_TRAILING)
|
|
? input_piece.find_last_not_of(trim_chars)
|
|
: last_char;
|
|
|
|
// When the string was all trimmed, report that we stripped off characters
|
|
// from whichever position the caller was interested in. For empty input, we
|
|
// stripped no characters, but we still need to clear |output|.
|
|
if (input.empty() || (first_good_char == Str::npos) ||
|
|
(last_good_char == Str::npos)) {
|
|
bool input_was_empty = input.empty(); // in case output == &input
|
|
output->clear();
|
|
return input_was_empty ? TRIM_NONE : positions;
|
|
}
|
|
|
|
// Trim.
|
|
*output = input.substr(first_good_char, last_good_char - first_good_char + 1);
|
|
|
|
// Return where we trimmed from.
|
|
return static_cast<TrimPositions>(
|
|
((first_good_char == 0) ? TRIM_NONE : TRIM_LEADING) |
|
|
((last_good_char == last_char) ? TRIM_NONE : TRIM_TRAILING));
|
|
}
|
|
|
|
bool TrimString(const string16& input,
|
|
StringPiece16 trim_chars,
|
|
string16* output) {
|
|
return TrimStringT(input, trim_chars, TRIM_ALL, output) != TRIM_NONE;
|
|
}
|
|
|
|
bool TrimString(const std::string& input,
|
|
StringPiece trim_chars,
|
|
std::string* output) {
|
|
return TrimStringT(input, trim_chars, TRIM_ALL, output) != TRIM_NONE;
|
|
}
|
|
|
|
template <typename Str>
|
|
BasicStringPiece<Str> TrimStringPieceT(BasicStringPiece<Str> input,
|
|
BasicStringPiece<Str> trim_chars,
|
|
TrimPositions positions) {
|
|
size_t begin =
|
|
(positions & TRIM_LEADING) ? input.find_first_not_of(trim_chars) : 0;
|
|
size_t end = (positions & TRIM_TRAILING)
|
|
? input.find_last_not_of(trim_chars) + 1
|
|
: input.size();
|
|
return input.substr(begin, end - begin);
|
|
}
|
|
|
|
StringPiece16 TrimString(StringPiece16 input,
|
|
StringPiece16 trim_chars,
|
|
TrimPositions positions) {
|
|
return TrimStringPieceT(input, trim_chars, positions);
|
|
}
|
|
|
|
StringPiece TrimString(StringPiece input,
|
|
StringPiece trim_chars,
|
|
TrimPositions positions) {
|
|
return TrimStringPieceT(input, trim_chars, positions);
|
|
}
|
|
|
|
void TruncateUTF8ToByteSize(const std::string& input,
|
|
const size_t byte_size,
|
|
std::string* output) {
|
|
DCHECK(output);
|
|
if (byte_size > input.length()) {
|
|
*output = input;
|
|
return;
|
|
}
|
|
DCHECK_LE(byte_size,
|
|
static_cast<uint32_t>(std::numeric_limits<int32_t>::max()));
|
|
// Note: This cast is necessary because CBU8_NEXT uses int32_ts.
|
|
int32_t truncation_length = static_cast<int32_t>(byte_size);
|
|
int32_t char_index = truncation_length - 1;
|
|
const char* data = input.data();
|
|
|
|
// Using CBU8, we will move backwards from the truncation point
|
|
// to the beginning of the string looking for a valid UTF8
|
|
// character. Once a full UTF8 character is found, we will
|
|
// truncate the string to the end of that character.
|
|
while (char_index >= 0) {
|
|
int32_t prev = char_index;
|
|
base_icu::UChar32 code_point = 0;
|
|
CBU8_NEXT(data, char_index, truncation_length, code_point);
|
|
if (!IsValidCharacter(code_point) || !IsValidCodepoint(code_point)) {
|
|
char_index = prev - 1;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (char_index >= 0)
|
|
*output = input.substr(0, char_index);
|
|
else
|
|
output->clear();
|
|
}
|
|
|
|
TrimPositions TrimWhitespace(const string16& input,
|
|
TrimPositions positions,
|
|
string16* output) {
|
|
return TrimStringT(input, StringPiece16(kWhitespaceUTF16), positions, output);
|
|
}
|
|
|
|
StringPiece16 TrimWhitespace(StringPiece16 input, TrimPositions positions) {
|
|
return TrimStringPieceT(input, StringPiece16(kWhitespaceUTF16), positions);
|
|
}
|
|
|
|
TrimPositions TrimWhitespaceASCII(const std::string& input,
|
|
TrimPositions positions,
|
|
std::string* output) {
|
|
return TrimStringT(input, StringPiece(kWhitespaceASCII), positions, output);
|
|
}
|
|
|
|
StringPiece TrimWhitespaceASCII(StringPiece input, TrimPositions positions) {
|
|
return TrimStringPieceT(input, StringPiece(kWhitespaceASCII), positions);
|
|
}
|
|
|
|
template <typename STR>
|
|
STR CollapseWhitespaceT(const STR& text, bool trim_sequences_with_line_breaks) {
|
|
STR result;
|
|
result.resize(text.size());
|
|
|
|
// Set flags to pretend we're already in a trimmed whitespace sequence, so we
|
|
// will trim any leading whitespace.
|
|
bool in_whitespace = true;
|
|
bool already_trimmed = true;
|
|
|
|
int chars_written = 0;
|
|
for (typename STR::const_iterator i(text.begin()); i != text.end(); ++i) {
|
|
if (IsUnicodeWhitespace(*i)) {
|
|
if (!in_whitespace) {
|
|
// Reduce all whitespace sequences to a single space.
|
|
in_whitespace = true;
|
|
result[chars_written++] = L' ';
|
|
}
|
|
if (trim_sequences_with_line_breaks && !already_trimmed &&
|
|
((*i == '\n') || (*i == '\r'))) {
|
|
// Whitespace sequences containing CR or LF are eliminated entirely.
|
|
already_trimmed = true;
|
|
--chars_written;
|
|
}
|
|
} else {
|
|
// Non-whitespace chracters are copied straight across.
|
|
in_whitespace = false;
|
|
already_trimmed = false;
|
|
result[chars_written++] = *i;
|
|
}
|
|
}
|
|
|
|
if (in_whitespace && !already_trimmed) {
|
|
// Any trailing whitespace is eliminated.
|
|
--chars_written;
|
|
}
|
|
|
|
result.resize(chars_written);
|
|
return result;
|
|
}
|
|
|
|
string16 CollapseWhitespace(const string16& text,
|
|
bool trim_sequences_with_line_breaks) {
|
|
return CollapseWhitespaceT(text, trim_sequences_with_line_breaks);
|
|
}
|
|
|
|
std::string CollapseWhitespaceASCII(const std::string& text,
|
|
bool trim_sequences_with_line_breaks) {
|
|
return CollapseWhitespaceT(text, trim_sequences_with_line_breaks);
|
|
}
|
|
|
|
bool ContainsOnlyChars(StringPiece input, StringPiece characters) {
|
|
return input.find_first_not_of(characters) == StringPiece::npos;
|
|
}
|
|
|
|
bool ContainsOnlyChars(StringPiece16 input, StringPiece16 characters) {
|
|
return input.find_first_not_of(characters) == StringPiece16::npos;
|
|
}
|
|
|
|
template <class Char>
|
|
inline bool DoIsStringASCII(const Char* characters, size_t length) {
|
|
MachineWord all_char_bits = 0;
|
|
const Char* end = characters + length;
|
|
|
|
// Prologue: align the input.
|
|
while (!IsAlignedToMachineWord(characters) && characters != end) {
|
|
all_char_bits |= *characters;
|
|
++characters;
|
|
}
|
|
|
|
// Compare the values of CPU word size.
|
|
const Char* word_end = AlignToMachineWord(end);
|
|
const size_t loop_increment = sizeof(MachineWord) / sizeof(Char);
|
|
while (characters < word_end) {
|
|
all_char_bits |= *(reinterpret_cast<const MachineWord*>(characters));
|
|
characters += loop_increment;
|
|
}
|
|
|
|
// Process the remaining bytes.
|
|
while (characters != end) {
|
|
all_char_bits |= *characters;
|
|
++characters;
|
|
}
|
|
|
|
MachineWord non_ascii_bit_mask =
|
|
NonASCIIMask<sizeof(MachineWord), Char>::value();
|
|
return !(all_char_bits & non_ascii_bit_mask);
|
|
}
|
|
|
|
bool IsStringASCII(StringPiece str) {
|
|
return DoIsStringASCII(str.data(), str.length());
|
|
}
|
|
|
|
bool IsStringASCII(StringPiece16 str) {
|
|
return DoIsStringASCII(str.data(), str.length());
|
|
}
|
|
|
|
#if defined(WCHAR_T_IS_UTF32)
|
|
bool IsStringASCII(WStringPiece str) {
|
|
return DoIsStringASCII(str.data(), str.length());
|
|
}
|
|
#endif
|
|
|
|
bool IsStringUTF8(StringPiece str) {
|
|
const char* src = str.data();
|
|
int32_t src_len = static_cast<int32_t>(str.length());
|
|
int32_t char_index = 0;
|
|
|
|
while (char_index < src_len) {
|
|
int32_t code_point;
|
|
CBU8_NEXT(src, char_index, src_len, code_point);
|
|
if (!IsValidCharacter(code_point))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Implementation note: Normally this function will be called with a hardcoded
|
|
// constant for the lowercase_ascii parameter. Constructing a StringPiece from
|
|
// a C constant requires running strlen, so the result will be two passes
|
|
// through the buffers, one to file the length of lowercase_ascii, and one to
|
|
// compare each letter.
|
|
//
|
|
// This function could have taken a const char* to avoid this and only do one
|
|
// pass through the string. But the strlen is faster than the case-insensitive
|
|
// compares and lets us early-exit in the case that the strings are different
|
|
// lengths (will often be the case for non-matches). So whether one approach or
|
|
// the other will be faster depends on the case.
|
|
//
|
|
// The hardcoded strings are typically very short so it doesn't matter, and the
|
|
// string piece gives additional flexibility for the caller (doesn't have to be
|
|
// null terminated) so we choose the StringPiece route.
|
|
template <typename Str>
|
|
static inline bool DoLowerCaseEqualsASCII(BasicStringPiece<Str> str,
|
|
StringPiece lowercase_ascii) {
|
|
if (str.size() != lowercase_ascii.size())
|
|
return false;
|
|
for (size_t i = 0; i < str.size(); i++) {
|
|
if (ToLowerASCII(str[i]) != lowercase_ascii[i])
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool LowerCaseEqualsASCII(StringPiece str, StringPiece lowercase_ascii) {
|
|
return DoLowerCaseEqualsASCII<std::string>(str, lowercase_ascii);
|
|
}
|
|
|
|
bool LowerCaseEqualsASCII(StringPiece16 str, StringPiece lowercase_ascii) {
|
|
return DoLowerCaseEqualsASCII<string16>(str, lowercase_ascii);
|
|
}
|
|
|
|
bool EqualsASCII(StringPiece16 str, StringPiece ascii) {
|
|
if (str.length() != ascii.length())
|
|
return false;
|
|
return std::equal(ascii.begin(), ascii.end(), str.begin());
|
|
}
|
|
|
|
template <typename Str>
|
|
bool StartsWithT(BasicStringPiece<Str> str,
|
|
BasicStringPiece<Str> search_for,
|
|
CompareCase case_sensitivity) {
|
|
if (search_for.size() > str.size())
|
|
return false;
|
|
|
|
BasicStringPiece<Str> source = str.substr(0, search_for.size());
|
|
|
|
switch (case_sensitivity) {
|
|
case CompareCase::SENSITIVE:
|
|
return source == search_for;
|
|
|
|
case CompareCase::INSENSITIVE_ASCII:
|
|
return std::equal(
|
|
search_for.begin(), search_for.end(), source.begin(),
|
|
CaseInsensitiveCompareASCII<typename Str::value_type>());
|
|
|
|
default:
|
|
NOTREACHED();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool StartsWith(StringPiece str,
|
|
StringPiece search_for,
|
|
CompareCase case_sensitivity) {
|
|
return StartsWithT<std::string>(str, search_for, case_sensitivity);
|
|
}
|
|
|
|
bool StartsWith(StringPiece16 str,
|
|
StringPiece16 search_for,
|
|
CompareCase case_sensitivity) {
|
|
return StartsWithT<string16>(str, search_for, case_sensitivity);
|
|
}
|
|
|
|
template <typename Str>
|
|
bool EndsWithT(BasicStringPiece<Str> str,
|
|
BasicStringPiece<Str> search_for,
|
|
CompareCase case_sensitivity) {
|
|
if (search_for.size() > str.size())
|
|
return false;
|
|
|
|
BasicStringPiece<Str> source =
|
|
str.substr(str.size() - search_for.size(), search_for.size());
|
|
|
|
switch (case_sensitivity) {
|
|
case CompareCase::SENSITIVE:
|
|
return source == search_for;
|
|
|
|
case CompareCase::INSENSITIVE_ASCII:
|
|
return std::equal(
|
|
source.begin(), source.end(), search_for.begin(),
|
|
CaseInsensitiveCompareASCII<typename Str::value_type>());
|
|
|
|
default:
|
|
NOTREACHED();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool EndsWith(StringPiece str,
|
|
StringPiece search_for,
|
|
CompareCase case_sensitivity) {
|
|
return EndsWithT<std::string>(str, search_for, case_sensitivity);
|
|
}
|
|
|
|
bool EndsWith(StringPiece16 str,
|
|
StringPiece16 search_for,
|
|
CompareCase case_sensitivity) {
|
|
return EndsWithT<string16>(str, search_for, case_sensitivity);
|
|
}
|
|
|
|
char HexDigitToInt(wchar_t c) {
|
|
DCHECK(IsHexDigit(c));
|
|
if (c >= '0' && c <= '9')
|
|
return static_cast<char>(c - '0');
|
|
if (c >= 'A' && c <= 'F')
|
|
return static_cast<char>(c - 'A' + 10);
|
|
if (c >= 'a' && c <= 'f')
|
|
return static_cast<char>(c - 'a' + 10);
|
|
return 0;
|
|
}
|
|
|
|
bool IsUnicodeWhitespace(wchar_t c) {
|
|
// kWhitespaceWide is a NULL-terminated string
|
|
for (const wchar_t* cur = kWhitespaceWide; *cur; ++cur) {
|
|
if (*cur == c)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static const char* const kByteStringsUnlocalized[] = {" B", " kB", " MB",
|
|
" GB", " TB", " PB"};
|
|
|
|
string16 FormatBytesUnlocalized(int64_t bytes) {
|
|
double unit_amount = static_cast<double>(bytes);
|
|
size_t dimension = 0;
|
|
const int kKilo = 1024;
|
|
while (unit_amount >= kKilo &&
|
|
dimension < arraysize(kByteStringsUnlocalized) - 1) {
|
|
unit_amount /= kKilo;
|
|
dimension++;
|
|
}
|
|
|
|
char buf[64];
|
|
if (bytes != 0 && dimension > 0 && unit_amount < 100) {
|
|
base::snprintf(buf, arraysize(buf), "%.1lf%s", unit_amount,
|
|
kByteStringsUnlocalized[dimension]);
|
|
} else {
|
|
base::snprintf(buf, arraysize(buf), "%.0lf%s", unit_amount,
|
|
kByteStringsUnlocalized[dimension]);
|
|
}
|
|
|
|
return ASCIIToUTF16(buf);
|
|
}
|
|
|
|
// A Matcher for DoReplaceMatchesAfterOffset() that matches substrings.
|
|
template <class StringType>
|
|
struct SubstringMatcher {
|
|
BasicStringPiece<StringType> find_this;
|
|
|
|
size_t Find(const StringType& input, size_t pos) {
|
|
return input.find(find_this.data(), pos, find_this.length());
|
|
}
|
|
size_t MatchSize() { return find_this.length(); }
|
|
};
|
|
|
|
// A Matcher for DoReplaceMatchesAfterOffset() that matches single characters.
|
|
template <class StringType>
|
|
struct CharacterMatcher {
|
|
BasicStringPiece<StringType> find_any_of_these;
|
|
|
|
size_t Find(const StringType& input, size_t pos) {
|
|
return input.find_first_of(find_any_of_these.data(), pos,
|
|
find_any_of_these.length());
|
|
}
|
|
constexpr size_t MatchSize() { return 1; }
|
|
};
|
|
|
|
enum class ReplaceType { REPLACE_ALL, REPLACE_FIRST };
|
|
|
|
// Runs in O(n) time in the length of |str|, and transforms the string without
|
|
// reallocating when possible. Returns |true| if any matches were found.
|
|
//
|
|
// This is parameterized on a |Matcher| traits type, so that it can be the
|
|
// implementation for both ReplaceChars() and ReplaceSubstringsAfterOffset().
|
|
template <class StringType, class Matcher>
|
|
bool DoReplaceMatchesAfterOffset(StringType* str,
|
|
size_t initial_offset,
|
|
Matcher matcher,
|
|
BasicStringPiece<StringType> replace_with,
|
|
ReplaceType replace_type) {
|
|
using CharTraits = typename StringType::traits_type;
|
|
|
|
const size_t find_length = matcher.MatchSize();
|
|
if (!find_length)
|
|
return false;
|
|
|
|
// If the find string doesn't appear, there's nothing to do.
|
|
size_t first_match = matcher.Find(*str, initial_offset);
|
|
if (first_match == StringType::npos)
|
|
return false;
|
|
|
|
// If we're only replacing one instance, there's no need to do anything
|
|
// complicated.
|
|
const size_t replace_length = replace_with.length();
|
|
if (replace_type == ReplaceType::REPLACE_FIRST) {
|
|
str->replace(first_match, find_length, replace_with.data(), replace_length);
|
|
return true;
|
|
}
|
|
|
|
// If the find and replace strings are the same length, we can simply use
|
|
// replace() on each instance, and finish the entire operation in O(n) time.
|
|
if (find_length == replace_length) {
|
|
auto* buffer = &((*str)[0]);
|
|
for (size_t offset = first_match; offset != StringType::npos;
|
|
offset = matcher.Find(*str, offset + replace_length)) {
|
|
CharTraits::copy(buffer + offset, replace_with.data(), replace_length);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Since the find and replace strings aren't the same length, a loop like the
|
|
// one above would be O(n^2) in the worst case, as replace() will shift the
|
|
// entire remaining string each time. We need to be more clever to keep things
|
|
// O(n).
|
|
//
|
|
// When the string is being shortened, it's possible to just shift the matches
|
|
// down in one pass while finding, and truncate the length at the end of the
|
|
// search.
|
|
//
|
|
// If the string is being lengthened, more work is required. The strategy used
|
|
// here is to make two find() passes through the string. The first pass counts
|
|
// the number of matches to determine the new size. The second pass will
|
|
// either construct the new string into a new buffer (if the existing buffer
|
|
// lacked capacity), or else -- if there is room -- create a region of scratch
|
|
// space after |first_match| by shifting the tail of the string to a higher
|
|
// index, and doing in-place moves from the tail to lower indices thereafter.
|
|
size_t str_length = str->length();
|
|
size_t expansion = 0;
|
|
if (replace_length > find_length) {
|
|
// This operation lengthens the string; determine the new length by counting
|
|
// matches.
|
|
const size_t expansion_per_match = (replace_length - find_length);
|
|
size_t num_matches = 0;
|
|
for (size_t match = first_match; match != StringType::npos;
|
|
match = matcher.Find(*str, match + find_length)) {
|
|
expansion += expansion_per_match;
|
|
++num_matches;
|
|
}
|
|
const size_t final_length = str_length + expansion;
|
|
|
|
if (str->capacity() < final_length) {
|
|
// If we'd have to allocate a new buffer to grow the string, build the
|
|
// result directly into the new allocation via append().
|
|
StringType src(str->get_allocator());
|
|
str->swap(src);
|
|
str->reserve(final_length);
|
|
|
|
size_t pos = 0;
|
|
for (size_t match = first_match;; match = matcher.Find(src, pos)) {
|
|
str->append(src, pos, match - pos);
|
|
str->append(replace_with.data(), replace_length);
|
|
pos = match + find_length;
|
|
|
|
// A mid-loop test/break enables skipping the final Find() call; the
|
|
// number of matches is known, so don't search past the last one.
|
|
if (!--num_matches)
|
|
break;
|
|
}
|
|
|
|
// Handle substring after the final match.
|
|
str->append(src, pos, str_length - pos);
|
|
return true;
|
|
}
|
|
|
|
// Prepare for the copy/move loop below -- expand the string to its final
|
|
// size by shifting the data after the first match to the end of the resized
|
|
// string.
|
|
size_t shift_src = first_match + find_length;
|
|
size_t shift_dst = shift_src + expansion;
|
|
|
|
// Big |expansion| factors (relative to |str_length|) require padding up to
|
|
// |shift_dst|.
|
|
if (shift_dst > str_length)
|
|
str->resize(shift_dst);
|
|
|
|
str->replace(shift_dst, str_length - shift_src, *str, shift_src,
|
|
str_length - shift_src);
|
|
str_length = final_length;
|
|
}
|
|
|
|
// We can alternate replacement and move operations. This won't overwrite the
|
|
// unsearched region of the string so long as |write_offset| <= |read_offset|;
|
|
// that condition is always satisfied because:
|
|
//
|
|
// (a) If the string is being shortened, |expansion| is zero and
|
|
// |write_offset| grows slower than |read_offset|.
|
|
//
|
|
// (b) If the string is being lengthened, |write_offset| grows faster than
|
|
// |read_offset|, but |expansion| is big enough so that |write_offset|
|
|
// will only catch up to |read_offset| at the point of the last match.
|
|
auto* buffer = &((*str)[0]);
|
|
size_t write_offset = first_match;
|
|
size_t read_offset = first_match + expansion;
|
|
do {
|
|
if (replace_length) {
|
|
CharTraits::copy(buffer + write_offset, replace_with.data(),
|
|
replace_length);
|
|
write_offset += replace_length;
|
|
}
|
|
read_offset += find_length;
|
|
|
|
// min() clamps StringType::npos (the largest unsigned value) to str_length.
|
|
size_t match = std::min(matcher.Find(*str, read_offset), str_length);
|
|
|
|
size_t length = match - read_offset;
|
|
if (length) {
|
|
CharTraits::move(buffer + write_offset, buffer + read_offset, length);
|
|
write_offset += length;
|
|
read_offset += length;
|
|
}
|
|
} while (read_offset < str_length);
|
|
|
|
// If we're shortening the string, truncate it now.
|
|
str->resize(write_offset);
|
|
return true;
|
|
}
|
|
|
|
template <class StringType>
|
|
bool ReplaceCharsT(const StringType& input,
|
|
BasicStringPiece<StringType> find_any_of_these,
|
|
BasicStringPiece<StringType> replace_with,
|
|
StringType* output) {
|
|
// Commonly, this is called with output and input being the same string; in
|
|
// that case, this assignment is inexpensive.
|
|
*output = input;
|
|
|
|
return DoReplaceMatchesAfterOffset(
|
|
output, 0, CharacterMatcher<StringType>{find_any_of_these}, replace_with,
|
|
ReplaceType::REPLACE_ALL);
|
|
}
|
|
|
|
void ReplaceFirstSubstringAfterOffset(string16* str,
|
|
size_t start_offset,
|
|
StringPiece16 find_this,
|
|
StringPiece16 replace_with) {
|
|
DoReplaceMatchesAfterOffset(str, start_offset,
|
|
SubstringMatcher<string16>{find_this},
|
|
replace_with, ReplaceType::REPLACE_FIRST);
|
|
}
|
|
|
|
void ReplaceFirstSubstringAfterOffset(std::string* str,
|
|
size_t start_offset,
|
|
StringPiece find_this,
|
|
StringPiece replace_with) {
|
|
DoReplaceMatchesAfterOffset(str, start_offset,
|
|
SubstringMatcher<std::string>{find_this},
|
|
replace_with, ReplaceType::REPLACE_FIRST);
|
|
}
|
|
|
|
void ReplaceSubstringsAfterOffset(string16* str,
|
|
size_t start_offset,
|
|
StringPiece16 find_this,
|
|
StringPiece16 replace_with) {
|
|
DoReplaceMatchesAfterOffset(str, start_offset,
|
|
SubstringMatcher<string16>{find_this},
|
|
replace_with, ReplaceType::REPLACE_ALL);
|
|
}
|
|
|
|
void ReplaceSubstringsAfterOffset(std::string* str,
|
|
size_t start_offset,
|
|
StringPiece find_this,
|
|
StringPiece replace_with) {
|
|
DoReplaceMatchesAfterOffset(str, start_offset,
|
|
SubstringMatcher<std::string>{find_this},
|
|
replace_with, ReplaceType::REPLACE_ALL);
|
|
}
|
|
|
|
template <class string_type>
|
|
inline typename string_type::value_type* WriteIntoT(string_type* str,
|
|
size_t length_with_null) {
|
|
DCHECK_GT(length_with_null, 1u);
|
|
str->reserve(length_with_null);
|
|
str->resize(length_with_null - 1);
|
|
return &((*str)[0]);
|
|
}
|
|
|
|
char* WriteInto(std::string* str, size_t length_with_null) {
|
|
return WriteIntoT(str, length_with_null);
|
|
}
|
|
|
|
char16* WriteInto(string16* str, size_t length_with_null) {
|
|
return WriteIntoT(str, length_with_null);
|
|
}
|
|
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
// Work around VC++ code-gen bug. https://crbug.com/804884
|
|
#pragma optimize("", off)
|
|
#endif
|
|
|
|
// Generic version for all JoinString overloads. |list_type| must be a sequence
|
|
// (std::vector or std::initializer_list) of strings/StringPieces (std::string,
|
|
// string16, StringPiece or StringPiece16). |string_type| is either std::string
|
|
// or string16.
|
|
template <typename list_type, typename string_type>
|
|
static string_type JoinStringT(const list_type& parts,
|
|
BasicStringPiece<string_type> sep) {
|
|
if (parts.size() == 0)
|
|
return string_type();
|
|
|
|
// Pre-allocate the eventual size of the string. Start with the size of all of
|
|
// the separators (note that this *assumes* parts.size() > 0).
|
|
size_t total_size = (parts.size() - 1) * sep.size();
|
|
for (const auto& part : parts)
|
|
total_size += part.size();
|
|
string_type result;
|
|
result.reserve(total_size);
|
|
|
|
auto iter = parts.begin();
|
|
DCHECK(iter != parts.end());
|
|
AppendToString(&result, *iter);
|
|
++iter;
|
|
|
|
for (; iter != parts.end(); ++iter) {
|
|
sep.AppendToString(&result);
|
|
// Using the overloaded AppendToString allows this template function to work
|
|
// on both strings and StringPieces without creating an intermediate
|
|
// StringPiece object.
|
|
AppendToString(&result, *iter);
|
|
}
|
|
|
|
// Sanity-check that we pre-allocated correctly.
|
|
DCHECK_EQ(total_size, result.size());
|
|
|
|
return result;
|
|
}
|
|
|
|
std::string JoinString(const std::vector<std::string>& parts,
|
|
StringPiece separator) {
|
|
return JoinStringT(parts, separator);
|
|
}
|
|
|
|
string16 JoinString(const std::vector<string16>& parts,
|
|
StringPiece16 separator) {
|
|
return JoinStringT(parts, separator);
|
|
}
|
|
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
// Work around VC++ code-gen bug. https://crbug.com/804884
|
|
#pragma optimize("", on)
|
|
#endif
|
|
|
|
std::string JoinString(const std::vector<StringPiece>& parts,
|
|
StringPiece separator) {
|
|
return JoinStringT(parts, separator);
|
|
}
|
|
|
|
string16 JoinString(const std::vector<StringPiece16>& parts,
|
|
StringPiece16 separator) {
|
|
return JoinStringT(parts, separator);
|
|
}
|
|
|
|
std::string JoinString(std::initializer_list<StringPiece> parts,
|
|
StringPiece separator) {
|
|
return JoinStringT(parts, separator);
|
|
}
|
|
|
|
string16 JoinString(std::initializer_list<StringPiece16> parts,
|
|
StringPiece16 separator) {
|
|
return JoinStringT(parts, separator);
|
|
}
|
|
|
|
template <class FormatStringType, class OutStringType>
|
|
OutStringType DoReplaceStringPlaceholders(
|
|
const FormatStringType& format_string,
|
|
const std::vector<OutStringType>& subst,
|
|
std::vector<size_t>* offsets) {
|
|
size_t substitutions = subst.size();
|
|
DCHECK_LT(substitutions, 10U);
|
|
|
|
size_t sub_length = 0;
|
|
for (const auto& cur : subst)
|
|
sub_length += cur.length();
|
|
|
|
OutStringType formatted;
|
|
formatted.reserve(format_string.length() + sub_length);
|
|
|
|
std::vector<ReplacementOffset> r_offsets;
|
|
for (auto i = format_string.begin(); i != format_string.end(); ++i) {
|
|
if ('$' == *i) {
|
|
if (i + 1 != format_string.end()) {
|
|
++i;
|
|
if ('$' == *i) {
|
|
while (i != format_string.end() && '$' == *i) {
|
|
formatted.push_back('$');
|
|
++i;
|
|
}
|
|
--i;
|
|
} else {
|
|
if (*i < '1' || *i > '9') {
|
|
DLOG(ERROR) << "Invalid placeholder: $" << *i;
|
|
continue;
|
|
}
|
|
uintptr_t index = *i - '1';
|
|
if (offsets) {
|
|
ReplacementOffset r_offset(index,
|
|
static_cast<int>(formatted.size()));
|
|
r_offsets.insert(
|
|
std::upper_bound(r_offsets.begin(), r_offsets.end(), r_offset,
|
|
&CompareParameter),
|
|
r_offset);
|
|
}
|
|
if (index < substitutions)
|
|
formatted.append(subst.at(index));
|
|
}
|
|
}
|
|
} else {
|
|
formatted.push_back(*i);
|
|
}
|
|
}
|
|
if (offsets) {
|
|
for (const auto& cur : r_offsets)
|
|
offsets->push_back(cur.offset);
|
|
}
|
|
return formatted;
|
|
}
|
|
|
|
string16 ReplaceStringPlaceholders(const string16& format_string,
|
|
const std::vector<string16>& subst,
|
|
std::vector<size_t>* offsets) {
|
|
return DoReplaceStringPlaceholders(format_string, subst, offsets);
|
|
}
|
|
|
|
std::string ReplaceStringPlaceholders(StringPiece format_string,
|
|
const std::vector<std::string>& subst,
|
|
std::vector<size_t>* offsets) {
|
|
return DoReplaceStringPlaceholders(format_string, subst, offsets);
|
|
}
|
|
|
|
string16 ReplaceStringPlaceholders(const string16& format_string,
|
|
const string16& a,
|
|
size_t* offset) {
|
|
std::vector<size_t> offsets;
|
|
std::vector<string16> subst;
|
|
subst.push_back(a);
|
|
string16 result = ReplaceStringPlaceholders(format_string, subst, &offsets);
|
|
|
|
DCHECK_EQ(1U, offsets.size());
|
|
if (offset)
|
|
*offset = offsets[0];
|
|
return result;
|
|
}
|
|
|
|
// The following code is compatible with the OpenBSD lcpy interface. See:
|
|
// http://www.gratisoft.us/todd/papers/strlcpy.html
|
|
// ftp://ftp.openbsd.org/pub/OpenBSD/src/lib/libc/string/{wcs,str}lcpy.c
|
|
|
|
namespace {
|
|
|
|
template <typename CHAR>
|
|
size_t lcpyT(CHAR* dst, const CHAR* src, size_t dst_size) {
|
|
for (size_t i = 0; i < dst_size; ++i) {
|
|
if ((dst[i] = src[i]) == 0) // We hit and copied the terminating NULL.
|
|
return i;
|
|
}
|
|
|
|
// We were left off at dst_size. We over copied 1 byte. Null terminate.
|
|
if (dst_size != 0)
|
|
dst[dst_size - 1] = 0;
|
|
|
|
// Count the rest of the |src|, and return it's length in characters.
|
|
while (src[dst_size])
|
|
++dst_size;
|
|
return dst_size;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
size_t strlcpy(char* dst, const char* src, size_t dst_size) {
|
|
return lcpyT<char>(dst, src, dst_size);
|
|
}
|
|
size_t wcslcpy(wchar_t* dst, const wchar_t* src, size_t dst_size) {
|
|
return lcpyT<wchar_t>(dst, src, dst_size);
|
|
}
|
|
|
|
} // namespace base
|