mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-24 14:26:09 +03:00
190 lines
6.4 KiB
C++
190 lines
6.4 KiB
C++
// Copyright 2014 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef BASE_SCOPED_GENERIC_H_
|
|
#define BASE_SCOPED_GENERIC_H_
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <algorithm>
|
|
|
|
#include "base/compiler_specific.h"
|
|
#include "base/macros.h"
|
|
|
|
namespace base {
|
|
|
|
// This class acts like unique_ptr with a custom deleter (although is slightly
|
|
// less fancy in some of the more escoteric respects) except that it keeps a
|
|
// copy of the object rather than a pointer, and we require that the contained
|
|
// object has some kind of "invalid" value.
|
|
//
|
|
// Defining a scoper based on this class allows you to get a scoper for
|
|
// non-pointer types without having to write custom code for set, reset, and
|
|
// move, etc. and get almost identical semantics that people are used to from
|
|
// unique_ptr.
|
|
//
|
|
// It is intended that you will typedef this class with an appropriate deleter
|
|
// to implement clean up tasks for objects that act like pointers from a
|
|
// resource management standpoint but aren't, such as file descriptors and
|
|
// various types of operating system handles. Using unique_ptr for these
|
|
// things requires that you keep a pointer to the handle valid for the lifetime
|
|
// of the scoper (which is easy to mess up).
|
|
//
|
|
// For an object to be able to be put into a ScopedGeneric, it must support
|
|
// standard copyable semantics and have a specific "invalid" value. The traits
|
|
// must define a free function and also the invalid value to assign for
|
|
// default-constructed and released objects.
|
|
//
|
|
// struct FooScopedTraits {
|
|
// // It's assumed that this is a fast inline function with little-to-no
|
|
// // penalty for duplicate calls. This must be a static function even
|
|
// // for stateful traits.
|
|
// static int InvalidValue() {
|
|
// return 0;
|
|
// }
|
|
//
|
|
// // This free function will not be called if f == InvalidValue()!
|
|
// static void Free(int f) {
|
|
// ::FreeFoo(f);
|
|
// }
|
|
// };
|
|
//
|
|
// typedef ScopedGeneric<int, FooScopedTraits> ScopedFoo;
|
|
template<typename T, typename Traits>
|
|
class ScopedGeneric {
|
|
private:
|
|
// This must be first since it's used inline below.
|
|
//
|
|
// Use the empty base class optimization to allow us to have a D
|
|
// member, while avoiding any space overhead for it when D is an
|
|
// empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
|
|
// discussion of this technique.
|
|
struct Data : public Traits {
|
|
explicit Data(const T& in) : generic(in) {}
|
|
Data(const T& in, const Traits& other) : Traits(other), generic(in) {}
|
|
T generic;
|
|
};
|
|
|
|
public:
|
|
typedef T element_type;
|
|
typedef Traits traits_type;
|
|
|
|
ScopedGeneric() : data_(traits_type::InvalidValue()) {}
|
|
|
|
// Constructor. Takes responsibility for freeing the resource associated with
|
|
// the object T.
|
|
explicit ScopedGeneric(const element_type& value) : data_(value) {}
|
|
|
|
// Constructor. Allows initialization of a stateful traits object.
|
|
ScopedGeneric(const element_type& value, const traits_type& traits)
|
|
: data_(value, traits) {
|
|
}
|
|
|
|
// Move constructor. Allows initialization from a ScopedGeneric rvalue.
|
|
ScopedGeneric(ScopedGeneric<T, Traits>&& rvalue)
|
|
: data_(rvalue.release(), rvalue.get_traits()) {
|
|
}
|
|
|
|
~ScopedGeneric() {
|
|
FreeIfNecessary();
|
|
}
|
|
|
|
// operator=. Allows assignment from a ScopedGeneric rvalue.
|
|
ScopedGeneric& operator=(ScopedGeneric<T, Traits>&& rvalue) {
|
|
reset(rvalue.release());
|
|
return *this;
|
|
}
|
|
|
|
// Frees the currently owned object, if any. Then takes ownership of a new
|
|
// object, if given. Self-resets are not allowd as on unique_ptr. See
|
|
// http://crbug.com/162971
|
|
void reset(const element_type& value = traits_type::InvalidValue()) {
|
|
if (data_.generic != traits_type::InvalidValue() && data_.generic == value)
|
|
abort();
|
|
FreeIfNecessary();
|
|
data_.generic = value;
|
|
}
|
|
|
|
void swap(ScopedGeneric& other) {
|
|
// Standard swap idiom: 'using std::swap' ensures that std::swap is
|
|
// present in the overload set, but we call swap unqualified so that
|
|
// any more-specific overloads can be used, if available.
|
|
using std::swap;
|
|
swap(static_cast<Traits&>(data_), static_cast<Traits&>(other.data_));
|
|
swap(data_.generic, other.data_.generic);
|
|
}
|
|
|
|
// Release the object. The return value is the current object held by this
|
|
// object. After this operation, this object will hold a null value, and
|
|
// will not own the object any more.
|
|
element_type release() WARN_UNUSED_RESULT {
|
|
element_type old_generic = data_.generic;
|
|
data_.generic = traits_type::InvalidValue();
|
|
return old_generic;
|
|
}
|
|
|
|
// Returns a raw pointer to the object storage, to allow the scoper to be used
|
|
// to receive and manage out-parameter values. Implies reset().
|
|
element_type* receive() WARN_UNUSED_RESULT {
|
|
reset();
|
|
return &data_.generic;
|
|
}
|
|
|
|
const element_type& get() const { return data_.generic; }
|
|
|
|
// Returns true if this object doesn't hold the special null value for the
|
|
// associated data type.
|
|
bool is_valid() const { return data_.generic != traits_type::InvalidValue(); }
|
|
|
|
bool operator==(const element_type& value) const {
|
|
return data_.generic == value;
|
|
}
|
|
bool operator!=(const element_type& value) const {
|
|
return data_.generic != value;
|
|
}
|
|
|
|
Traits& get_traits() { return data_; }
|
|
const Traits& get_traits() const { return data_; }
|
|
|
|
private:
|
|
void FreeIfNecessary() {
|
|
if (data_.generic != traits_type::InvalidValue()) {
|
|
data_.Free(data_.generic);
|
|
data_.generic = traits_type::InvalidValue();
|
|
}
|
|
}
|
|
|
|
// Forbid comparison. If U != T, it totally doesn't make sense, and if U ==
|
|
// T, it still doesn't make sense because you should never have the same
|
|
// object owned by two different ScopedGenerics.
|
|
template <typename T2, typename Traits2> bool operator==(
|
|
const ScopedGeneric<T2, Traits2>& p2) const;
|
|
template <typename T2, typename Traits2> bool operator!=(
|
|
const ScopedGeneric<T2, Traits2>& p2) const;
|
|
|
|
Data data_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(ScopedGeneric);
|
|
};
|
|
|
|
template<class T, class Traits>
|
|
void swap(const ScopedGeneric<T, Traits>& a,
|
|
const ScopedGeneric<T, Traits>& b) {
|
|
a.swap(b);
|
|
}
|
|
|
|
template<class T, class Traits>
|
|
bool operator==(const T& value, const ScopedGeneric<T, Traits>& scoped) {
|
|
return value == scoped.get();
|
|
}
|
|
|
|
template<class T, class Traits>
|
|
bool operator!=(const T& value, const ScopedGeneric<T, Traits>& scoped) {
|
|
return value != scoped.get();
|
|
}
|
|
|
|
} // namespace base
|
|
|
|
#endif // BASE_SCOPED_GENERIC_H_
|