mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-12-01 01:36:09 +03:00
1162 lines
47 KiB
C++
1162 lines
47 KiB
C++
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef NET_SPDY_SPDY_SESSION_H_
|
|
#define NET_SPDY_SPDY_SESSION_H_
|
|
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include <map>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "base/containers/circular_deque.h"
|
|
#include "base/gtest_prod_util.h"
|
|
#include "base/macros.h"
|
|
#include "base/memory/ref_counted.h"
|
|
#include "base/memory/scoped_refptr.h"
|
|
#include "base/memory/weak_ptr.h"
|
|
#include "base/strings/string_piece.h"
|
|
#include "base/time/time.h"
|
|
#include "net/base/completion_once_callback.h"
|
|
#include "net/base/host_port_pair.h"
|
|
#include "net/base/io_buffer.h"
|
|
#include "net/base/load_states.h"
|
|
#include "net/base/net_errors.h"
|
|
#include "net/base/net_export.h"
|
|
#include "net/base/request_priority.h"
|
|
#include "net/log/net_log_source.h"
|
|
#include "net/socket/client_socket_handle.h"
|
|
#include "net/socket/client_socket_pool.h"
|
|
#include "net/socket/next_proto.h"
|
|
#include "net/socket/ssl_client_socket.h"
|
|
#include "net/socket/stream_socket.h"
|
|
#include "net/spdy/buffered_spdy_framer.h"
|
|
#include "net/spdy/http2_priority_dependencies.h"
|
|
#include "net/spdy/http2_push_promise_index.h"
|
|
#include "net/spdy/multiplexed_session.h"
|
|
#include "net/spdy/server_push_delegate.h"
|
|
#include "net/spdy/spdy_buffer.h"
|
|
#include "net/spdy/spdy_session_pool.h"
|
|
#include "net/spdy/spdy_stream.h"
|
|
#include "net/spdy/spdy_write_queue.h"
|
|
#include "net/ssl/ssl_config_service.h"
|
|
#include "net/third_party/spdy/core/spdy_alt_svc_wire_format.h"
|
|
#include "net/third_party/spdy/core/spdy_framer.h"
|
|
#include "net/third_party/spdy/core/spdy_header_block.h"
|
|
#include "net/third_party/spdy/core/spdy_protocol.h"
|
|
#include "net/traffic_annotation/network_traffic_annotation.h"
|
|
#include "url/gurl.h"
|
|
#include "url/scheme_host_port.h"
|
|
|
|
namespace crypto {
|
|
class ECPrivateKey;
|
|
}
|
|
|
|
namespace net {
|
|
|
|
namespace test {
|
|
class SpdyStreamTest;
|
|
}
|
|
|
|
// This is somewhat arbitrary and not really fixed, but it will always work
|
|
// reasonably with ethernet. Chop the world into 2-packet chunks. This is
|
|
// somewhat arbitrary, but is reasonably small and ensures that we elicit
|
|
// ACKs quickly from TCP (because TCP tries to only ACK every other packet).
|
|
const int kMss = 1430;
|
|
// The 8 is the size of the SPDY frame header.
|
|
const int kMaxSpdyFrameChunkSize = (2 * kMss) - 8;
|
|
|
|
// Default value of spdy::SETTINGS_INITIAL_WINDOW_SIZE per protocol
|
|
// specification. A session is always created with this initial window size.
|
|
const int32_t kDefaultInitialWindowSize = 65535;
|
|
|
|
// Maximum number of concurrent streams we will create, unless the server
|
|
// sends a SETTINGS frame with a different value.
|
|
const size_t kInitialMaxConcurrentStreams = 100;
|
|
|
|
// If more than this many bytes have been read or more than that many
|
|
// milliseconds have passed, return ERR_IO_PENDING from ReadLoop.
|
|
const int kYieldAfterBytesRead = 32 * 1024;
|
|
const int kYieldAfterDurationMilliseconds = 20;
|
|
|
|
// First and last valid stream IDs. As we always act as the client,
|
|
// start at 1 for the first stream id.
|
|
const spdy::SpdyStreamId kFirstStreamId = 1;
|
|
const spdy::SpdyStreamId kLastStreamId = 0x7fffffff;
|
|
|
|
struct LoadTimingInfo;
|
|
class NetLog;
|
|
class SpdyStream;
|
|
class SSLInfo;
|
|
class TransportSecurityState;
|
|
|
|
// NOTE: There is an enum called SpdyProtocolErrorDetails2 (also with numeric
|
|
// suffixes) in tools/metrics/histograms/enums.xml. Be sure to add new values
|
|
// there also.
|
|
enum SpdyProtocolErrorDetails {
|
|
// http2::Http2DecoderAdapter::SpdyFramerError mappings.
|
|
SPDY_ERROR_NO_ERROR = 0,
|
|
SPDY_ERROR_INVALID_STREAM_ID = 38,
|
|
SPDY_ERROR_INVALID_CONTROL_FRAME = 1,
|
|
SPDY_ERROR_CONTROL_PAYLOAD_TOO_LARGE = 2,
|
|
SPDY_ERROR_ZLIB_INIT_FAILURE = 3,
|
|
SPDY_ERROR_UNSUPPORTED_VERSION = 4,
|
|
SPDY_ERROR_DECOMPRESS_FAILURE = 5,
|
|
SPDY_ERROR_COMPRESS_FAILURE = 6,
|
|
SPDY_ERROR_GOAWAY_FRAME_CORRUPT = 29,
|
|
SPDY_ERROR_RST_STREAM_FRAME_CORRUPT = 30,
|
|
SPDY_ERROR_INVALID_PADDING = 39,
|
|
SPDY_ERROR_INVALID_DATA_FRAME_FLAGS = 8,
|
|
SPDY_ERROR_INVALID_CONTROL_FRAME_FLAGS = 9,
|
|
SPDY_ERROR_UNEXPECTED_FRAME = 31,
|
|
SPDY_ERROR_INTERNAL_FRAMER_ERROR = 41,
|
|
SPDY_ERROR_INVALID_CONTROL_FRAME_SIZE = 37,
|
|
SPDY_ERROR_OVERSIZED_PAYLOAD = 40,
|
|
// spdy::SpdyErrorCode mappings.
|
|
STATUS_CODE_NO_ERROR = 41,
|
|
STATUS_CODE_PROTOCOL_ERROR = 11,
|
|
STATUS_CODE_INTERNAL_ERROR = 16,
|
|
STATUS_CODE_FLOW_CONTROL_ERROR = 17,
|
|
STATUS_CODE_SETTINGS_TIMEOUT = 32,
|
|
STATUS_CODE_STREAM_CLOSED = 12,
|
|
STATUS_CODE_FRAME_SIZE_ERROR = 21,
|
|
STATUS_CODE_REFUSED_STREAM = 13,
|
|
STATUS_CODE_CANCEL = 15,
|
|
STATUS_CODE_COMPRESSION_ERROR = 42,
|
|
STATUS_CODE_CONNECT_ERROR = 33,
|
|
STATUS_CODE_ENHANCE_YOUR_CALM = 34,
|
|
STATUS_CODE_INADEQUATE_SECURITY = 35,
|
|
STATUS_CODE_HTTP_1_1_REQUIRED = 36,
|
|
// Deprecated SpdyRstStrreamStatus mappings.
|
|
STATUS_CODE_UNSUPPORTED_VERSION = 14,
|
|
STATUS_CODE_STREAM_IN_USE = 18,
|
|
STATUS_CODE_STREAM_ALREADY_CLOSED = 19,
|
|
|
|
// SpdySession errors
|
|
PROTOCOL_ERROR_UNEXPECTED_PING = 22,
|
|
PROTOCOL_ERROR_RST_STREAM_FOR_NON_ACTIVE_STREAM = 23,
|
|
PROTOCOL_ERROR_SPDY_COMPRESSION_FAILURE = 24,
|
|
PROTOCOL_ERROR_REQUEST_FOR_SECURE_CONTENT_OVER_INSECURE_SESSION = 25,
|
|
PROTOCOL_ERROR_SYN_REPLY_NOT_RECEIVED = 26,
|
|
PROTOCOL_ERROR_INVALID_WINDOW_UPDATE_SIZE = 27,
|
|
PROTOCOL_ERROR_RECEIVE_WINDOW_VIOLATION = 28,
|
|
|
|
// Next free value.
|
|
NUM_SPDY_PROTOCOL_ERROR_DETAILS = 43,
|
|
};
|
|
SpdyProtocolErrorDetails NET_EXPORT_PRIVATE MapFramerErrorToProtocolError(
|
|
http2::Http2DecoderAdapter::SpdyFramerError error);
|
|
Error NET_EXPORT_PRIVATE
|
|
MapFramerErrorToNetError(http2::Http2DecoderAdapter::SpdyFramerError error);
|
|
SpdyProtocolErrorDetails NET_EXPORT_PRIVATE
|
|
MapRstStreamStatusToProtocolError(spdy::SpdyErrorCode error_code);
|
|
spdy::SpdyErrorCode NET_EXPORT_PRIVATE MapNetErrorToGoAwayStatus(Error err);
|
|
|
|
// There is an enum of the same name in tools/metrics/histograms/enums.xml.
|
|
// Be sure to add new values there also.
|
|
enum class SpdyPushedStreamFate {
|
|
kTooManyPushedStreams = 0,
|
|
kTimeout = 1,
|
|
kPromisedStreamIdParityError = 2,
|
|
kAssociatedStreamIdParityError = 3,
|
|
kStreamIdOutOfOrder = 4,
|
|
kGoingAway = 5,
|
|
kInvalidUrl = 6,
|
|
kInactiveAssociatedStream = 7,
|
|
kNonHttpSchemeFromTrustedProxy = 8,
|
|
kNonHttpsPushedScheme = 9,
|
|
kNonHttpsAssociatedScheme = 10,
|
|
kCertificateMismatch = 11,
|
|
kDuplicateUrl = 12,
|
|
kClientRequestNotRange = 13,
|
|
kPushedRequestNotRange = 14,
|
|
kRangeMismatch = 15,
|
|
kVaryMismatch = 16,
|
|
kAcceptedNoVary = 17,
|
|
kAcceptedMatchingVary = 18,
|
|
kPushDisabled = 19,
|
|
kAlreadyInCache = 20,
|
|
kMaxValue = kAlreadyInCache
|
|
};
|
|
|
|
// If these compile asserts fail then SpdyProtocolErrorDetails needs
|
|
// to be updated with new values, as do the mapping functions above.
|
|
static_assert(17 == http2::Http2DecoderAdapter::LAST_ERROR,
|
|
"SpdyProtocolErrorDetails / Spdy Errors mismatch");
|
|
static_assert(13 == spdy::SpdyErrorCode::ERROR_CODE_MAX,
|
|
"SpdyProtocolErrorDetails / spdy::SpdyErrorCode mismatch");
|
|
|
|
// A helper class used to manage a request to create a stream.
|
|
class NET_EXPORT_PRIVATE SpdyStreamRequest {
|
|
public:
|
|
SpdyStreamRequest();
|
|
// Calls CancelRequest().
|
|
~SpdyStreamRequest();
|
|
|
|
// Starts the request to create a stream. If OK is returned, then
|
|
// ReleaseStream() may be called. If ERR_IO_PENDING is returned,
|
|
// then when the stream is created, |callback| will be called, at
|
|
// which point ReleaseStream() may be called. Otherwise, the stream
|
|
// is not created, an error is returned, and ReleaseStream() may not
|
|
// be called.
|
|
//
|
|
// If OK is returned, must not be called again without
|
|
// ReleaseStream() being called first. If ERR_IO_PENDING is
|
|
// returned, must not be called again without CancelRequest() or
|
|
// ReleaseStream() being called first. Otherwise, in case of an
|
|
// immediate error, this may be called again.
|
|
int StartRequest(SpdyStreamType type,
|
|
const base::WeakPtr<SpdySession>& session,
|
|
const GURL& url,
|
|
RequestPriority priority,
|
|
const SocketTag& socket_tag,
|
|
const NetLogWithSource& net_log,
|
|
CompletionOnceCallback callback,
|
|
const NetworkTrafficAnnotationTag& traffic_annotation);
|
|
|
|
// Cancels any pending stream creation request. May be called
|
|
// repeatedly.
|
|
void CancelRequest();
|
|
|
|
// Transfers the created stream (guaranteed to not be NULL) to the
|
|
// caller. Must be called at most once after StartRequest() returns
|
|
// OK or |callback| is called with OK. The caller must immediately
|
|
// set a delegate for the returned stream (except for test code).
|
|
base::WeakPtr<SpdyStream> ReleaseStream();
|
|
|
|
// Returns the estimate of dynamically allocated memory in bytes.
|
|
size_t EstimateMemoryUsage() const;
|
|
|
|
const NetworkTrafficAnnotationTag traffic_annotation() const {
|
|
return NetworkTrafficAnnotationTag(traffic_annotation_);
|
|
}
|
|
|
|
private:
|
|
friend class SpdySession;
|
|
|
|
// Called by |session_| when the stream attempt has finished
|
|
// successfully.
|
|
void OnRequestCompleteSuccess(const base::WeakPtr<SpdyStream>& stream);
|
|
|
|
// Called by |session_| when the stream attempt has finished with an
|
|
// error. Also called with ERR_ABORTED if |session_| is destroyed
|
|
// while the stream attempt is still pending.
|
|
void OnRequestCompleteFailure(int rv);
|
|
|
|
// Accessors called by |session_|.
|
|
SpdyStreamType type() const { return type_; }
|
|
const GURL& url() const { return url_; }
|
|
RequestPriority priority() const { return priority_; }
|
|
const NetLogWithSource& net_log() const { return net_log_; }
|
|
|
|
void Reset();
|
|
|
|
SpdyStreamType type_;
|
|
base::WeakPtr<SpdySession> session_;
|
|
base::WeakPtr<SpdyStream> stream_;
|
|
GURL url_;
|
|
RequestPriority priority_;
|
|
SocketTag socket_tag_;
|
|
NetLogWithSource net_log_;
|
|
CompletionOnceCallback callback_;
|
|
MutableNetworkTrafficAnnotationTag traffic_annotation_;
|
|
|
|
base::WeakPtrFactory<SpdyStreamRequest> weak_ptr_factory_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(SpdyStreamRequest);
|
|
};
|
|
|
|
class NET_EXPORT SpdySession : public BufferedSpdyFramerVisitorInterface,
|
|
public spdy::SpdyFramerDebugVisitorInterface,
|
|
public MultiplexedSession,
|
|
public HigherLayeredPool,
|
|
public Http2PushPromiseIndex::Delegate {
|
|
public:
|
|
// TODO(akalin): Use base::TickClock when it becomes available.
|
|
typedef base::TimeTicks (*TimeFunc)(void);
|
|
|
|
// Returns true if |new_hostname| can be pooled into an existing connection to
|
|
// |old_hostname| associated with |ssl_info|.
|
|
static bool CanPool(TransportSecurityState* transport_security_state,
|
|
const SSLInfo& ssl_info,
|
|
const SSLConfigService& ssl_config_service,
|
|
const std::string& old_hostname,
|
|
const std::string& new_hostname);
|
|
|
|
// Create a new SpdySession.
|
|
// |spdy_session_key| is the host/port that this session connects to, privacy
|
|
// and proxy configuration settings that it's using.
|
|
// |net_log| is the NetLog that we log network events to.
|
|
SpdySession(const SpdySessionKey& spdy_session_key,
|
|
HttpServerProperties* http_server_properties,
|
|
TransportSecurityState* transport_security_state,
|
|
SSLConfigService* ssl_config_service,
|
|
const quic::QuicTransportVersionVector& quic_supported_versions,
|
|
bool enable_sending_initial_data,
|
|
bool enable_ping_based_connection_checking,
|
|
bool support_ietf_format_quic_altsvc,
|
|
bool is_trusted_proxy,
|
|
size_t session_max_recv_window_size,
|
|
const spdy::SettingsMap& initial_settings,
|
|
TimeFunc time_func,
|
|
ServerPushDelegate* push_delegate,
|
|
NetLog* net_log);
|
|
|
|
~SpdySession() override;
|
|
|
|
const HostPortPair& host_port_pair() const {
|
|
return spdy_session_key_.host_port_proxy_pair().first;
|
|
}
|
|
const HostPortProxyPair& host_port_proxy_pair() const {
|
|
return spdy_session_key_.host_port_proxy_pair();
|
|
}
|
|
const SpdySessionKey& spdy_session_key() const {
|
|
return spdy_session_key_;
|
|
}
|
|
// Get a pushed stream for a given |url|. If the server initiates a
|
|
// stream, it might already exist for a given path. The server
|
|
// might also not have initiated the stream yet, but indicated it
|
|
// will via X-Associated-Content. Returns OK if a stream was found
|
|
// and put into |spdy_stream|, or if one was not found but it is
|
|
// okay to create a new stream (in which case |spdy_stream| is
|
|
// reset). Returns an error (not ERR_IO_PENDING) otherwise, and
|
|
// resets |spdy_stream|.
|
|
//
|
|
// If |pushed_stream_id != kNoPushedStreamFound|, then the pushed stream with
|
|
// pushed_stream_id is used. An error is returned if that stream is not
|
|
// available.
|
|
//
|
|
// If |pushed_stream_id == kNoPushedStreamFound|, then any matching pushed
|
|
// stream that has not been claimed by another request can be used. This can
|
|
// happen, for example, with http scheme pushed streams, or if the pushed
|
|
// stream was received from the server in the meanwhile.
|
|
//
|
|
// If a stream was found and the stream is still open, the priority
|
|
// of that stream is updated to match |priority|.
|
|
int GetPushedStream(const GURL& url,
|
|
spdy::SpdyStreamId pushed_stream_id,
|
|
RequestPriority priority,
|
|
SpdyStream** spdy_stream,
|
|
const NetLogWithSource& stream_net_log);
|
|
|
|
// Called when the pushed stream should be cancelled. If the pushed stream is
|
|
// not claimed and active, sends RST to the server to cancel the stream.
|
|
void CancelPush(const GURL& url);
|
|
|
|
// Initialize the session with the given connection.
|
|
//
|
|
// |pool| is the SpdySessionPool that owns us. Its lifetime must
|
|
// strictly be greater than |this|.
|
|
//
|
|
// The session begins reading from |connection| on a subsequent event loop
|
|
// iteration, so the SpdySession may close immediately afterwards if the first
|
|
// read of |connection| fails.
|
|
void InitializeWithSocket(std::unique_ptr<ClientSocketHandle> connection,
|
|
SpdySessionPool* pool);
|
|
|
|
// Check to see if this SPDY session can support an additional domain.
|
|
// If the session is un-authenticated, then this call always returns true.
|
|
// For SSL-based sessions, verifies that the server certificate in use by
|
|
// this session provides authentication for the domain and no client
|
|
// certificate or channel ID was sent to the original server during the SSL
|
|
// handshake. NOTE: This function can have false negatives on some
|
|
// platforms.
|
|
// TODO(wtc): rename this function and the Net.SpdyIPPoolDomainMatch
|
|
// histogram because this function does more than verifying domain
|
|
// authentication now.
|
|
bool VerifyDomainAuthentication(const std::string& domain) const;
|
|
|
|
// Pushes the given producer into the write queue for
|
|
// |stream|. |stream| is guaranteed to be activated before the
|
|
// producer is used to produce its frame.
|
|
void EnqueueStreamWrite(const base::WeakPtr<SpdyStream>& stream,
|
|
spdy::SpdyFrameType frame_type,
|
|
std::unique_ptr<SpdyBufferProducer> producer);
|
|
|
|
// Creates and returns a HEADERS frame for |stream_id|.
|
|
std::unique_ptr<spdy::SpdySerializedFrame> CreateHeaders(
|
|
spdy::SpdyStreamId stream_id,
|
|
RequestPriority priority,
|
|
spdy::SpdyControlFlags flags,
|
|
spdy::SpdyHeaderBlock headers,
|
|
NetLogSource source_dependency);
|
|
|
|
// Creates and returns a SpdyBuffer holding a data frame with the
|
|
// given data. May return NULL if stalled by flow control.
|
|
std::unique_ptr<SpdyBuffer> CreateDataBuffer(spdy::SpdyStreamId stream_id,
|
|
IOBuffer* data,
|
|
int len,
|
|
spdy::SpdyDataFlags flags);
|
|
|
|
// Send PRIORITY frames according to the new priority of an existing stream.
|
|
void UpdateStreamPriority(SpdyStream* stream,
|
|
RequestPriority old_priority,
|
|
RequestPriority new_priority);
|
|
|
|
// Close the stream with the given ID, which must exist and be
|
|
// active. Note that that stream may hold the last reference to the
|
|
// session.
|
|
void CloseActiveStream(spdy::SpdyStreamId stream_id, int status);
|
|
|
|
// Close the given created stream, which must exist but not yet be
|
|
// active. Note that |stream| may hold the last reference to the
|
|
// session.
|
|
void CloseCreatedStream(const base::WeakPtr<SpdyStream>& stream, int status);
|
|
|
|
// Send a RST_STREAM frame with the given status code and close the
|
|
// stream with the given ID, which must exist and be active. Note
|
|
// that that stream may hold the last reference to the session.
|
|
void ResetStream(spdy::SpdyStreamId stream_id,
|
|
int error,
|
|
const std::string& description);
|
|
|
|
// Check if a stream is active.
|
|
bool IsStreamActive(spdy::SpdyStreamId stream_id) const;
|
|
|
|
// The LoadState is used for informing the user of the current network
|
|
// status, such as "resolving host", "connecting", etc.
|
|
LoadState GetLoadState() const;
|
|
|
|
// MultiplexedSession methods:
|
|
bool GetRemoteEndpoint(IPEndPoint* endpoint) override;
|
|
bool GetSSLInfo(SSLInfo* ssl_info) const override;
|
|
Error GetTokenBindingSignature(crypto::ECPrivateKey* key,
|
|
TokenBindingType tb_type,
|
|
std::vector<uint8_t>* out) override;
|
|
|
|
// Returns true if ALPN was negotiated for the underlying socket.
|
|
bool WasAlpnNegotiated() const;
|
|
|
|
// Returns the protocol negotiated via ALPN for the underlying socket.
|
|
NextProto GetNegotiatedProtocol() const;
|
|
|
|
// Send a WINDOW_UPDATE frame for a stream. Called by a stream
|
|
// whenever receive window size is increased.
|
|
void SendStreamWindowUpdate(spdy::SpdyStreamId stream_id,
|
|
uint32_t delta_window_size);
|
|
|
|
// Accessors for the session's availability state.
|
|
bool IsAvailable() const { return availability_state_ == STATE_AVAILABLE; }
|
|
bool IsGoingAway() const { return availability_state_ == STATE_GOING_AWAY; }
|
|
bool IsDraining() const { return availability_state_ == STATE_DRAINING; }
|
|
|
|
// Closes this session. This will close all active streams and mark
|
|
// the session as permanently closed. Callers must assume that the
|
|
// session is destroyed after this is called. (However, it may not
|
|
// be destroyed right away, e.g. when a SpdySession function is
|
|
// present in the call stack.)
|
|
//
|
|
// |err| should be < ERR_IO_PENDING; this function is intended to be
|
|
// called on error.
|
|
// |description| indicates the reason for the error.
|
|
void CloseSessionOnError(Error err, const std::string& description);
|
|
|
|
// Mark this session as unavailable, meaning that it will not be used to
|
|
// service new streams. Unlike when a GOAWAY frame is received, this function
|
|
// will not close any streams.
|
|
void MakeUnavailable();
|
|
|
|
// Closes all active streams with stream id's greater than
|
|
// |last_good_stream_id|, as well as any created or pending
|
|
// streams. Must be called only when |availability_state_| >=
|
|
// STATE_GOING_AWAY. After this function, DcheckGoingAway() will
|
|
// pass. May be called multiple times.
|
|
void StartGoingAway(spdy::SpdyStreamId last_good_stream_id, Error status);
|
|
|
|
// Must be called only when going away (i.e., DcheckGoingAway()
|
|
// passes). If there are no more active streams and the session
|
|
// isn't closed yet, close it.
|
|
void MaybeFinishGoingAway();
|
|
|
|
// Retrieves information on the current state of the SPDY session as a
|
|
// Value.
|
|
std::unique_ptr<base::Value> GetInfoAsValue() const;
|
|
|
|
// Indicates whether the session is being reused after having successfully
|
|
// used to send/receive data in the past or if the underlying socket was idle
|
|
// before being used for a SPDY session.
|
|
bool IsReused() const;
|
|
|
|
// Returns true if the underlying transport socket ever had any reads or
|
|
// writes.
|
|
bool WasEverUsed() const {
|
|
return connection_->socket()->WasEverUsed();
|
|
}
|
|
|
|
// Returns the load timing information from the perspective of the given
|
|
// stream. If it's not the first stream, the connection is considered reused
|
|
// for that stream.
|
|
//
|
|
// This uses a different notion of reuse than IsReused(). This function
|
|
// sets |socket_reused| to false only if |stream_id| is the ID of the first
|
|
// stream using the session. IsReused(), on the other hand, indicates if the
|
|
// session has been used to send/receive data at all.
|
|
bool GetLoadTimingInfo(spdy::SpdyStreamId stream_id,
|
|
LoadTimingInfo* load_timing_info) const;
|
|
|
|
// Returns true if session is currently active.
|
|
bool is_active() const {
|
|
return !active_streams_.empty() || !created_streams_.empty();
|
|
}
|
|
|
|
// True if the server supports WebSocket protocol.
|
|
bool support_websocket() const { return support_websocket_; }
|
|
|
|
// Returns true if no stream in the session can send data due to
|
|
// session flow control.
|
|
bool IsSendStalled() const { return session_send_window_size_ == 0; }
|
|
|
|
const NetLogWithSource& net_log() const { return net_log_; }
|
|
|
|
int GetPeerAddress(IPEndPoint* address) const;
|
|
int GetLocalAddress(IPEndPoint* address) const;
|
|
|
|
// Adds |alias| to set of aliases associated with this session.
|
|
void AddPooledAlias(const SpdySessionKey& alias_key);
|
|
|
|
// Removes |alias| from set of aliases associated with this session.
|
|
void RemovePooledAlias(const SpdySessionKey& alias_key);
|
|
|
|
// Returns the set of aliases associated with this session.
|
|
const std::set<SpdySessionKey>& pooled_aliases() const {
|
|
return pooled_aliases_;
|
|
}
|
|
|
|
// https://http2.github.io/http2-spec/#TLSUsage mandates minimum security
|
|
// standards for TLS.
|
|
bool HasAcceptableTransportSecurity() const;
|
|
|
|
// Must be used only by |pool_| (including |pool_.push_promise_index_|).
|
|
base::WeakPtr<SpdySession> GetWeakPtr();
|
|
|
|
// HigherLayeredPool implementation:
|
|
bool CloseOneIdleConnection() override;
|
|
|
|
// Http2PushPromiseIndex::Delegate implementation:
|
|
bool ValidatePushedStream(spdy::SpdyStreamId stream_id,
|
|
const GURL& url,
|
|
const HttpRequestInfo& request_info,
|
|
const SpdySessionKey& key) const override;
|
|
base::WeakPtr<SpdySession> GetWeakPtrToSession() override;
|
|
|
|
// Dumps memory allocation stats to |stats|. Sets |*is_session_active| to
|
|
// indicate whether session is active.
|
|
// |stats| can be assumed as being default initialized upon entry.
|
|
// Implementation overrides fields in |stats|.
|
|
// Returns the estimate of dynamically allocated memory in bytes, which
|
|
// includes the size attributed to the underlying socket.
|
|
size_t DumpMemoryStats(StreamSocket::SocketMemoryStats* stats,
|
|
bool* is_session_active) const;
|
|
|
|
// Change this session's socket tag to |new_tag|. Returns true on success.
|
|
bool ChangeSocketTag(const SocketTag& new_tag);
|
|
|
|
static void RecordSpdyPushedStreamFateHistogram(SpdyPushedStreamFate value);
|
|
|
|
private:
|
|
friend class test::SpdyStreamTest;
|
|
friend class base::RefCounted<SpdySession>;
|
|
friend class HttpNetworkTransactionTest;
|
|
friend class HttpProxyClientSocketPoolTest;
|
|
friend class SpdyHttpStreamTest;
|
|
friend class SpdyNetworkTransactionTest;
|
|
friend class SpdyProxyClientSocketTest;
|
|
friend class SpdySessionPoolTest;
|
|
friend class SpdySessionTest;
|
|
friend class SpdyStreamRequest;
|
|
|
|
FRIEND_TEST_ALL_PREFIXES(RecordPushedStreamHistogramTest, VaryResponseHeader);
|
|
|
|
using PendingStreamRequestQueue =
|
|
base::circular_deque<base::WeakPtr<SpdyStreamRequest>>;
|
|
using ActiveStreamMap = std::map<spdy::SpdyStreamId, SpdyStream*>;
|
|
using CreatedStreamSet = std::set<SpdyStream*>;
|
|
|
|
enum AvailabilityState {
|
|
// The session is available in its socket pool and can be used
|
|
// freely.
|
|
STATE_AVAILABLE,
|
|
// The session can process data on existing streams but will
|
|
// refuse to create new ones.
|
|
STATE_GOING_AWAY,
|
|
// The session is draining its write queue in preparation of closing.
|
|
// Further writes will not be queued, and further reads will not be issued
|
|
// (though the remainder of a current read may be processed). The session
|
|
// will be destroyed by its write loop once the write queue is drained.
|
|
STATE_DRAINING,
|
|
};
|
|
|
|
enum ReadState {
|
|
READ_STATE_DO_READ,
|
|
READ_STATE_DO_READ_COMPLETE,
|
|
};
|
|
|
|
enum WriteState {
|
|
// There is no in-flight write and the write queue is empty.
|
|
WRITE_STATE_IDLE,
|
|
WRITE_STATE_DO_WRITE,
|
|
WRITE_STATE_DO_WRITE_COMPLETE,
|
|
};
|
|
|
|
// Called by SpdyStreamRequest to start a request to create a
|
|
// stream. If OK is returned, then |stream| will be filled in with a
|
|
// valid stream. If ERR_IO_PENDING is returned, then
|
|
// |request->OnRequestComplete{Success,Failure}()| will be called
|
|
// when the stream is created (unless it is cancelled). Otherwise,
|
|
// no stream is created and the error is returned.
|
|
int TryCreateStream(const base::WeakPtr<SpdyStreamRequest>& request,
|
|
base::WeakPtr<SpdyStream>* stream);
|
|
|
|
// Actually create a stream into |stream|. Returns OK if successful;
|
|
// otherwise, returns an error and |stream| is not filled.
|
|
int CreateStream(const SpdyStreamRequest& request,
|
|
base::WeakPtr<SpdyStream>* stream);
|
|
|
|
// Called by SpdyStreamRequest to remove |request| from the stream
|
|
// creation queue.
|
|
void CancelStreamRequest(const base::WeakPtr<SpdyStreamRequest>& request);
|
|
|
|
// Returns the next pending stream request to process, or NULL if
|
|
// there is none.
|
|
base::WeakPtr<SpdyStreamRequest> GetNextPendingStreamRequest();
|
|
|
|
// Called when there is room to create more streams (e.g., a stream
|
|
// was closed). Processes as many pending stream requests as
|
|
// possible.
|
|
void ProcessPendingStreamRequests();
|
|
|
|
void TryCreatePushStream(spdy::SpdyStreamId stream_id,
|
|
spdy::SpdyStreamId associated_stream_id,
|
|
spdy::SpdyHeaderBlock headers);
|
|
|
|
// Close the stream pointed to by the given iterator. Note that that
|
|
// stream may hold the last reference to the session.
|
|
void CloseActiveStreamIterator(ActiveStreamMap::iterator it, int status);
|
|
|
|
// Close the stream pointed to by the given iterator. Note that that
|
|
// stream may hold the last reference to the session.
|
|
void CloseCreatedStreamIterator(CreatedStreamSet::iterator it, int status);
|
|
|
|
// Calls EnqueueResetStreamFrame() and then
|
|
// CloseActiveStreamIterator().
|
|
void ResetStreamIterator(ActiveStreamMap::iterator it,
|
|
int status,
|
|
const std::string& description);
|
|
|
|
// Send a RST_STREAM frame with the given parameters. There should
|
|
// either be no active stream with the given ID, or that active
|
|
// stream should be closed shortly after this function is called.
|
|
void EnqueueResetStreamFrame(spdy::SpdyStreamId stream_id,
|
|
RequestPriority priority,
|
|
spdy::SpdyErrorCode error_code,
|
|
const std::string& description);
|
|
|
|
// Send a PRIORITY frame with the given parameters.
|
|
void EnqueuePriorityFrame(spdy::SpdyStreamId stream_id,
|
|
spdy::SpdyStreamId dependency_id,
|
|
int weight,
|
|
bool exclusive);
|
|
|
|
// Calls DoReadLoop. Use this function instead of DoReadLoop when
|
|
// posting a task to pump the read loop.
|
|
void PumpReadLoop(ReadState expected_read_state, int result);
|
|
|
|
// Advance the ReadState state machine. |expected_read_state| is the
|
|
// expected starting read state.
|
|
//
|
|
// This function must always be called via PumpReadLoop().
|
|
int DoReadLoop(ReadState expected_read_state, int result);
|
|
// The implementations of the states of the ReadState state machine.
|
|
int DoRead();
|
|
int DoReadComplete(int result);
|
|
|
|
// Calls DoWriteLoop. If |availability_state_| is STATE_DRAINING and no
|
|
// writes remain, the session is removed from the session pool and
|
|
// destroyed.
|
|
//
|
|
// Use this function instead of DoWriteLoop when posting a task to
|
|
// pump the write loop.
|
|
void PumpWriteLoop(WriteState expected_write_state, int result);
|
|
|
|
// Iff the write loop is not currently active, posts a callback into
|
|
// PumpWriteLoop().
|
|
void MaybePostWriteLoop();
|
|
|
|
// Advance the WriteState state machine. |expected_write_state| is
|
|
// the expected starting write state.
|
|
//
|
|
// This function must always be called via PumpWriteLoop().
|
|
int DoWriteLoop(WriteState expected_write_state, int result);
|
|
// The implementations of the states of the WriteState state machine.
|
|
int DoWrite();
|
|
int DoWriteComplete(int result);
|
|
|
|
// TODO(akalin): Rename the Send* and Write* functions below to
|
|
// Enqueue*.
|
|
|
|
// Send initial data. Called when a connection is successfully
|
|
// established in InitializeWithSocket() and
|
|
// |enable_sending_initial_data_| is true.
|
|
void SendInitialData();
|
|
|
|
// Handle SETTING. Either when we send settings, or when we receive a
|
|
// SETTINGS control frame, update our SpdySession accordingly.
|
|
void HandleSetting(uint32_t id, uint32_t value);
|
|
|
|
// Adjust the send window size of all ActiveStreams and PendingStreamRequests.
|
|
void UpdateStreamsSendWindowSize(int32_t delta_window_size);
|
|
|
|
// Send PING frame if all previous PING frames have been ACKed,
|
|
// all posted CheckPingStatus() tasks have been executed,
|
|
// and too long time has passed since last read from server.
|
|
void MaybeSendPrefacePing();
|
|
|
|
// Send a single WINDOW_UPDATE frame.
|
|
void SendWindowUpdateFrame(spdy::SpdyStreamId stream_id,
|
|
uint32_t delta_window_size,
|
|
RequestPriority priority);
|
|
|
|
// Send the PING frame.
|
|
void WritePingFrame(spdy::SpdyPingId unique_id, bool is_ack);
|
|
|
|
// Post a CheckPingStatus call after delay. Don't post if there is already
|
|
// CheckPingStatus running.
|
|
void PlanToCheckPingStatus();
|
|
|
|
// Check the status of the connection. It calls |CloseSessionOnError| if we
|
|
// haven't received any data in |kHungInterval| time period.
|
|
void CheckPingStatus(base::TimeTicks last_check_time);
|
|
|
|
// Get a new stream id.
|
|
spdy::SpdyStreamId GetNewStreamId();
|
|
|
|
// Pushes the given frame with the given priority into the write
|
|
// queue for the session.
|
|
void EnqueueSessionWrite(RequestPriority priority,
|
|
spdy::SpdyFrameType frame_type,
|
|
std::unique_ptr<spdy::SpdySerializedFrame> frame);
|
|
|
|
// Puts |producer| associated with |stream| onto the write queue
|
|
// with the given priority.
|
|
void EnqueueWrite(RequestPriority priority,
|
|
spdy::SpdyFrameType frame_type,
|
|
std::unique_ptr<SpdyBufferProducer> producer,
|
|
const base::WeakPtr<SpdyStream>& stream,
|
|
const NetworkTrafficAnnotationTag& traffic_annotation);
|
|
|
|
// Inserts a newly-created stream into |created_streams_|.
|
|
void InsertCreatedStream(std::unique_ptr<SpdyStream> stream);
|
|
|
|
// Activates |stream| (which must be in |created_streams_|) by
|
|
// assigning it an ID and returns it.
|
|
std::unique_ptr<SpdyStream> ActivateCreatedStream(SpdyStream* stream);
|
|
|
|
// Inserts a newly-activated stream into |active_streams_|.
|
|
void InsertActivatedStream(std::unique_ptr<SpdyStream> stream);
|
|
|
|
// Remove all internal references to |stream|, call OnClose() on it,
|
|
// and process any pending stream requests before deleting it. Note
|
|
// that |stream| may hold the last reference to the session.
|
|
void DeleteStream(std::unique_ptr<SpdyStream> stream, int status);
|
|
|
|
void RecordPingRTTHistogram(base::TimeDelta duration);
|
|
void RecordHistograms();
|
|
void RecordProtocolErrorHistogram(SpdyProtocolErrorDetails details);
|
|
static void RecordPushedStreamVaryResponseHeaderHistogram(
|
|
const spdy::SpdyHeaderBlock& headers);
|
|
|
|
// DCHECKs that |availability_state_| >= STATE_GOING_AWAY, that
|
|
// there are no pending stream creation requests, and that there are
|
|
// no created streams.
|
|
void DcheckGoingAway() const;
|
|
|
|
// Calls DcheckGoingAway(), then DCHECKs that |availability_state_|
|
|
// == STATE_DRAINING, |error_on_close_| has a valid value, and that there
|
|
// are no active streams or unclaimed pushed streams.
|
|
void DcheckDraining() const;
|
|
|
|
// If the session is already draining, does nothing. Otherwise, moves
|
|
// the session to the draining state.
|
|
void DoDrainSession(Error err, const std::string& description);
|
|
|
|
// Called right before closing a (possibly-inactive) stream for a
|
|
// reason other than being requested to by the stream.
|
|
void LogAbandonedStream(SpdyStream* stream, Error status);
|
|
|
|
// Called right before closing an active stream for a reason other
|
|
// than being requested to by the stream.
|
|
void LogAbandonedActiveStream(ActiveStreamMap::const_iterator it,
|
|
Error status);
|
|
|
|
// Invokes a user callback for stream creation. We provide this method so it
|
|
// can be deferred to the MessageLoop, so we avoid re-entrancy problems.
|
|
void CompleteStreamRequest(
|
|
const base::WeakPtr<SpdyStreamRequest>& pending_request);
|
|
|
|
// Cancel pushed stream with |stream_id|, if still unclaimed. Identifying a
|
|
// pushed stream by GURL instead of stream ID could result in incorrect
|
|
// behavior if a pushed stream was claimed but later another stream was pushed
|
|
// for the same GURL.
|
|
void CancelPushedStreamIfUnclaimed(spdy::SpdyStreamId stream_id);
|
|
|
|
// BufferedSpdyFramerVisitorInterface:
|
|
void OnError(
|
|
http2::Http2DecoderAdapter::SpdyFramerError spdy_framer_error) override;
|
|
void OnStreamError(spdy::SpdyStreamId stream_id,
|
|
const std::string& description) override;
|
|
void OnPing(spdy::SpdyPingId unique_id, bool is_ack) override;
|
|
void OnRstStream(spdy::SpdyStreamId stream_id,
|
|
spdy::SpdyErrorCode error_code) override;
|
|
void OnGoAway(spdy::SpdyStreamId last_accepted_stream_id,
|
|
spdy::SpdyErrorCode error_code,
|
|
base::StringPiece debug_data) override;
|
|
void OnDataFrameHeader(spdy::SpdyStreamId stream_id,
|
|
size_t length,
|
|
bool fin) override;
|
|
void OnStreamFrameData(spdy::SpdyStreamId stream_id,
|
|
const char* data,
|
|
size_t len) override;
|
|
void OnStreamEnd(spdy::SpdyStreamId stream_id) override;
|
|
void OnStreamPadding(spdy::SpdyStreamId stream_id, size_t len) override;
|
|
void OnSettings() override;
|
|
void OnSettingsAck() override;
|
|
void OnSetting(spdy::SpdySettingsId id, uint32_t value) override;
|
|
void OnSettingsEnd() override {}
|
|
void OnWindowUpdate(spdy::SpdyStreamId stream_id,
|
|
int delta_window_size) override;
|
|
void OnPushPromise(spdy::SpdyStreamId stream_id,
|
|
spdy::SpdyStreamId promised_stream_id,
|
|
spdy::SpdyHeaderBlock headers) override;
|
|
void OnHeaders(spdy::SpdyStreamId stream_id,
|
|
bool has_priority,
|
|
int weight,
|
|
spdy::SpdyStreamId parent_stream_id,
|
|
bool exclusive,
|
|
bool fin,
|
|
spdy::SpdyHeaderBlock headers) override;
|
|
void OnAltSvc(spdy::SpdyStreamId stream_id,
|
|
base::StringPiece origin,
|
|
const spdy::SpdyAltSvcWireFormat::AlternativeServiceVector&
|
|
altsvc_vector) override;
|
|
bool OnUnknownFrame(spdy::SpdyStreamId stream_id,
|
|
uint8_t frame_type) override;
|
|
|
|
// spdy::SpdyFramerDebugVisitorInterface
|
|
void OnSendCompressedFrame(spdy::SpdyStreamId stream_id,
|
|
spdy::SpdyFrameType type,
|
|
size_t payload_len,
|
|
size_t frame_len) override;
|
|
void OnReceiveCompressedFrame(spdy::SpdyStreamId stream_id,
|
|
spdy::SpdyFrameType type,
|
|
size_t frame_len) override;
|
|
|
|
// Called when bytes are consumed from a SpdyBuffer for a DATA frame
|
|
// that is to be written or is being written. Increases the send
|
|
// window size accordingly if some or all of the SpdyBuffer is being
|
|
// discarded.
|
|
//
|
|
// If session flow control is turned off, this must not be called.
|
|
void OnWriteBufferConsumed(size_t frame_payload_size,
|
|
size_t consume_size,
|
|
SpdyBuffer::ConsumeSource consume_source);
|
|
|
|
// Called by OnWindowUpdate() (which is in turn called by the
|
|
// framer) to increase this session's send window size by
|
|
// |delta_window_size| from a WINDOW_UPDATE frome, which must be at
|
|
// least 1. If |delta_window_size| would cause this session's send
|
|
// window size to overflow, does nothing.
|
|
//
|
|
// If session flow control is turned off, this must not be called.
|
|
void IncreaseSendWindowSize(int delta_window_size);
|
|
|
|
// If session flow control is turned on, called by CreateDataFrame()
|
|
// (which is in turn called by a stream) to decrease this session's
|
|
// send window size by |delta_window_size|, which must be at least 1
|
|
// and at most kMaxSpdyFrameChunkSize. |delta_window_size| must not
|
|
// cause this session's send window size to go negative.
|
|
//
|
|
// If session flow control is turned off, this must not be called.
|
|
void DecreaseSendWindowSize(int32_t delta_window_size);
|
|
|
|
// Called when bytes are consumed by the delegate from a SpdyBuffer
|
|
// containing received data. Increases the receive window size
|
|
// accordingly.
|
|
//
|
|
// If session flow control is turned off, this must not be called.
|
|
void OnReadBufferConsumed(size_t consume_size,
|
|
SpdyBuffer::ConsumeSource consume_source);
|
|
|
|
// Called by OnReadBufferConsume to increase this session's receive
|
|
// window size by |delta_window_size|, which must be at least 1 and
|
|
// must not cause this session's receive window size to overflow,
|
|
// possibly also sending a WINDOW_UPDATE frame. Also called during
|
|
// initialization to set the initial receive window size.
|
|
//
|
|
// If session flow control is turned off, this must not be called.
|
|
void IncreaseRecvWindowSize(int32_t delta_window_size);
|
|
|
|
// Called by OnStreamFrameData (which is in turn called by the
|
|
// framer) to decrease this session's receive window size by
|
|
// |delta_window_size|, which must be at least 1 and must not cause
|
|
// this session's receive window size to go negative.
|
|
//
|
|
// If session flow control is turned off, this must not be called.
|
|
void DecreaseRecvWindowSize(int32_t delta_window_size);
|
|
|
|
// Queue a send-stalled stream for possibly resuming once we're not
|
|
// send-stalled anymore.
|
|
void QueueSendStalledStream(const SpdyStream& stream);
|
|
|
|
// Go through the queue of send-stalled streams and try to resume as
|
|
// many as possible.
|
|
void ResumeSendStalledStreams();
|
|
|
|
// Returns the next stream to possibly resume, or 0 if the queue is
|
|
// empty.
|
|
spdy::SpdyStreamId PopStreamToPossiblyResume();
|
|
|
|
// Whether Do{Read,Write}Loop() is in the call stack. Useful for
|
|
// making sure we don't destroy ourselves prematurely in that case.
|
|
bool in_io_loop_;
|
|
|
|
// The key used to identify this session.
|
|
SpdySessionKey spdy_session_key_;
|
|
|
|
// Set set of SpdySessionKeys for which this session has serviced
|
|
// requests.
|
|
std::set<SpdySessionKey> pooled_aliases_;
|
|
|
|
// |pool_| owns us, therefore its lifetime must exceed ours.
|
|
SpdySessionPool* pool_;
|
|
HttpServerProperties* http_server_properties_;
|
|
|
|
TransportSecurityState* transport_security_state_;
|
|
SSLConfigService* ssl_config_service_;
|
|
|
|
// The socket handle for this session.
|
|
std::unique_ptr<ClientSocketHandle> connection_;
|
|
|
|
// The read buffer used to read data from the socket.
|
|
// Non-null if there is a Read() pending.
|
|
scoped_refptr<IOBuffer> read_buffer_;
|
|
|
|
spdy::SpdyStreamId stream_hi_water_mark_; // The next stream id to use.
|
|
|
|
// Used to ensure the server increments push stream ids correctly.
|
|
spdy::SpdyStreamId last_accepted_push_stream_id_;
|
|
|
|
// Queue, for each priority, of pending stream requests that have
|
|
// not yet been satisfied.
|
|
PendingStreamRequestQueue pending_create_stream_queues_[NUM_PRIORITIES];
|
|
|
|
// Map from stream id to all active streams. Streams are active in the sense
|
|
// that they have a consumer (typically SpdyNetworkTransaction and regardless
|
|
// of whether or not there is currently any ongoing IO [might be waiting for
|
|
// the server to start pushing the stream]) or there are still network events
|
|
// incoming even though the consumer has already gone away (cancellation).
|
|
//
|
|
// |active_streams_| owns all its SpdyStream objects.
|
|
//
|
|
// TODO(willchan): Perhaps we should separate out cancelled streams and move
|
|
// them into a separate ActiveStreamMap, and not deliver network events to
|
|
// them?
|
|
ActiveStreamMap active_streams_;
|
|
|
|
// Not owned. |push_delegate_| outlives the session and handles server pushes
|
|
// received by session.
|
|
ServerPushDelegate* push_delegate_;
|
|
|
|
// Set of all created streams but that have not yet sent any frames.
|
|
//
|
|
// |created_streams_| owns all its SpdyStream objects.
|
|
CreatedStreamSet created_streams_;
|
|
|
|
// Number of pushed streams. All active streams are stored in
|
|
// |active_streams_|, but it's better to know the number of push streams
|
|
// without traversing the whole collection.
|
|
size_t num_pushed_streams_;
|
|
|
|
// Number of active pushed streams in |active_streams_|, i.e. not in reserved
|
|
// remote state. Streams in reserved state are not counted towards any
|
|
// concurrency limits.
|
|
size_t num_active_pushed_streams_;
|
|
|
|
// Number of bytes that has been pushed by the server.
|
|
uint64_t bytes_pushed_count_;
|
|
|
|
// Number of bytes that has been pushed by the server but never claimed.
|
|
uint64_t bytes_pushed_and_unclaimed_count_;
|
|
|
|
// The write queue.
|
|
SpdyWriteQueue write_queue_;
|
|
|
|
// Data for the frame we are currently sending.
|
|
|
|
// The buffer we're currently writing.
|
|
std::unique_ptr<SpdyBuffer> in_flight_write_;
|
|
// The type of the frame in |in_flight_write_|.
|
|
spdy::SpdyFrameType in_flight_write_frame_type_;
|
|
// The size of the frame in |in_flight_write_|.
|
|
size_t in_flight_write_frame_size_;
|
|
// The stream to notify when |in_flight_write_| has been written to
|
|
// the socket completely.
|
|
base::WeakPtr<SpdyStream> in_flight_write_stream_;
|
|
|
|
// Traffic annotation for the write in progress.
|
|
MutableNetworkTrafficAnnotationTag in_flight_write_traffic_annotation;
|
|
|
|
// Spdy Frame state.
|
|
std::unique_ptr<BufferedSpdyFramer> buffered_spdy_framer_;
|
|
|
|
// The state variables.
|
|
AvailabilityState availability_state_;
|
|
ReadState read_state_;
|
|
WriteState write_state_;
|
|
|
|
// If the session is closing (i.e., |availability_state_| is STATE_DRAINING),
|
|
// then |error_on_close_| holds the error with which it was closed, which
|
|
// may be OK (upon a polite GOAWAY) or an error < ERR_IO_PENDING otherwise.
|
|
// Initialized to OK.
|
|
Error error_on_close_;
|
|
|
|
// Settings that are sent in the initial SETTINGS frame
|
|
// (if |enable_sending_initial_data_| is true),
|
|
// and also control SpdySession parameters like initial receive window size
|
|
// and maximum HPACK dynamic table size.
|
|
const spdy::SettingsMap initial_settings_;
|
|
|
|
// Limits
|
|
size_t max_concurrent_streams_;
|
|
size_t max_concurrent_pushed_streams_;
|
|
|
|
// Some statistics counters for the session.
|
|
int streams_initiated_count_;
|
|
int streams_pushed_count_;
|
|
int streams_pushed_and_claimed_count_;
|
|
int streams_abandoned_count_;
|
|
|
|
// True if there has been a ping sent for which we have not received a
|
|
// response yet. There is always at most one ping in flight.
|
|
bool ping_in_flight_;
|
|
|
|
// This is the next ping_id (unique_id) to be sent in PING frame.
|
|
spdy::SpdyPingId next_ping_id_;
|
|
|
|
// This is the last time we have sent a PING.
|
|
base::TimeTicks last_ping_sent_time_;
|
|
|
|
// This is the last time we had read activity in the session.
|
|
base::TimeTicks last_read_time_;
|
|
|
|
// This is the length of the last compressed frame.
|
|
size_t last_compressed_frame_len_;
|
|
|
|
// True if there is a CheckPingStatus() task posted on the message loop.
|
|
bool check_ping_status_pending_;
|
|
|
|
// Current send window size. Zero unless session flow control is turned on.
|
|
int32_t session_send_window_size_;
|
|
|
|
// Maximum receive window size. Each time a WINDOW_UPDATE is sent, it
|
|
// restores the receive window size to this value. Zero unless session flow
|
|
// control is turned on.
|
|
int32_t session_max_recv_window_size_;
|
|
|
|
// Sum of |session_unacked_recv_window_bytes_| and current receive window
|
|
// size. Zero unless session flow control is turned on.
|
|
// TODO(bnc): Rename or change semantics so that |window_size_| is actual
|
|
// window size.
|
|
int32_t session_recv_window_size_;
|
|
|
|
// When bytes are consumed, SpdyIOBuffer destructor calls back to SpdySession,
|
|
// and this member keeps count of them until the corresponding WINDOW_UPDATEs
|
|
// are sent. Zero unless session flow control is turned on.
|
|
int32_t session_unacked_recv_window_bytes_;
|
|
|
|
// Initial send window size for this session's streams. Can be
|
|
// changed by an arriving SETTINGS frame. Newly created streams use
|
|
// this value for the initial send window size.
|
|
int32_t stream_initial_send_window_size_;
|
|
|
|
// The maximum HPACK dynamic table size the server is allowed to set.
|
|
uint32_t max_header_table_size_;
|
|
|
|
// Initial receive window size for this session's streams. There are
|
|
// plans to add a command line switch that would cause a SETTINGS
|
|
// frame with window size announcement to be sent on startup. Newly
|
|
// created streams will use this value for the initial receive
|
|
// window size.
|
|
int32_t stream_max_recv_window_size_;
|
|
|
|
// A queue of stream IDs that have been send-stalled at some point
|
|
// in the past.
|
|
base::circular_deque<spdy::SpdyStreamId>
|
|
stream_send_unstall_queue_[NUM_PRIORITIES];
|
|
|
|
NetLogWithSource net_log_;
|
|
|
|
// Versions of QUIC which may be used.
|
|
const quic::QuicTransportVersionVector quic_supported_versions_;
|
|
|
|
// Outside of tests, these should always be true.
|
|
const bool enable_sending_initial_data_;
|
|
const bool enable_ping_based_connection_checking_;
|
|
|
|
// If true, alt-svc headers advertising QUIC in IETF format will be supported.
|
|
const bool support_ietf_format_quic_altsvc_;
|
|
|
|
// If true, this session is being made to a trusted SPDY/HTTP2 proxy that is
|
|
// allowed to push cross-origin resources.
|
|
const bool is_trusted_proxy_;
|
|
|
|
// If true, accept pushed streams from server.
|
|
// If false, reset pushed streams immediately.
|
|
const bool enable_push_;
|
|
|
|
// True if the server has advertised WebSocket support via
|
|
// spdy::SETTINGS_ENABLE_CONNECT_PROTOCOL, see
|
|
// https://tools.ietf.org/html/draft-ietf-httpbis-h2-websockets-00.
|
|
bool support_websocket_;
|
|
|
|
// |connection_at_risk_of_loss_time_| is an optimization to avoid sending
|
|
// wasteful preface pings (when we just got some data).
|
|
//
|
|
// If it is zero (the most conservative figure), then we always send the
|
|
// preface ping (when none are in flight).
|
|
//
|
|
// It is common for TCP/IP sessions to time out in about 3-5 minutes.
|
|
// Certainly if it has been more than 3 minutes, we do want to send a preface
|
|
// ping.
|
|
//
|
|
// We don't think any connection will time out in under about 10 seconds. So
|
|
// this might as well be set to something conservative like 10 seconds. Later,
|
|
// we could adjust it to send fewer pings perhaps.
|
|
base::TimeDelta connection_at_risk_of_loss_time_;
|
|
|
|
// The amount of time that we are willing to tolerate with no activity (of any
|
|
// form), while there is a ping in flight, before we declare the connection to
|
|
// be hung. TODO(rtenneti): When hung, instead of resetting connection, race
|
|
// to build a new connection, and see if that completes before we (finally)
|
|
// get a PING response (http://crbug.com/127812).
|
|
base::TimeDelta hung_interval_;
|
|
|
|
TimeFunc time_func_;
|
|
|
|
Http2PriorityDependencies priority_dependency_state_;
|
|
|
|
// Used for posting asynchronous IO tasks. We use this even though
|
|
// SpdySession is refcounted because we don't need to keep the SpdySession
|
|
// alive if the last reference is within a RunnableMethod. Just revoke the
|
|
// method.
|
|
base::WeakPtrFactory<SpdySession> weak_factory_;
|
|
};
|
|
|
|
} // namespace net
|
|
|
|
#endif // NET_SPDY_SPDY_SESSION_H_
|