mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-12-01 01:36:09 +03:00
271 lines
7.7 KiB
C++
271 lines
7.7 KiB
C++
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
// This code implements SPAKE2, a variant of EKE:
|
|
// http://www.di.ens.fr/~pointche/pub.php?reference=AbPo04
|
|
|
|
#include "crypto/p224_spake.h"
|
|
|
|
#include <algorithm>
|
|
|
|
#include "base/logging.h"
|
|
#include "crypto/p224.h"
|
|
#include "crypto/random.h"
|
|
#include "crypto/secure_util.h"
|
|
|
|
namespace {
|
|
|
|
// The following two points (M and N in the protocol) are verifiable random
|
|
// points on the curve and can be generated with the following code:
|
|
|
|
// #include <stdint.h>
|
|
// #include <stdio.h>
|
|
// #include <string.h>
|
|
//
|
|
// #include <openssl/ec.h>
|
|
// #include <openssl/obj_mac.h>
|
|
// #include <openssl/sha.h>
|
|
//
|
|
// // Silence a presubmit.
|
|
// #define PRINTF printf
|
|
//
|
|
// static const char kSeed1[] = "P224 point generation seed (M)";
|
|
// static const char kSeed2[] = "P224 point generation seed (N)";
|
|
//
|
|
// void find_seed(const char* seed) {
|
|
// SHA256_CTX sha256;
|
|
// uint8_t digest[SHA256_DIGEST_LENGTH];
|
|
//
|
|
// SHA256_Init(&sha256);
|
|
// SHA256_Update(&sha256, seed, strlen(seed));
|
|
// SHA256_Final(digest, &sha256);
|
|
//
|
|
// BIGNUM x, y;
|
|
// EC_GROUP* p224 = EC_GROUP_new_by_curve_name(NID_secp224r1);
|
|
// EC_POINT* p = EC_POINT_new(p224);
|
|
//
|
|
// for (unsigned i = 0;; i++) {
|
|
// BN_init(&x);
|
|
// BN_bin2bn(digest, 28, &x);
|
|
//
|
|
// if (EC_POINT_set_compressed_coordinates_GFp(
|
|
// p224, p, &x, digest[28] & 1, NULL)) {
|
|
// BN_init(&y);
|
|
// EC_POINT_get_affine_coordinates_GFp(p224, p, &x, &y, NULL);
|
|
// char* x_str = BN_bn2hex(&x);
|
|
// char* y_str = BN_bn2hex(&y);
|
|
// PRINTF("Found after %u iterations:\n%s\n%s\n", i, x_str, y_str);
|
|
// OPENSSL_free(x_str);
|
|
// OPENSSL_free(y_str);
|
|
// BN_free(&x);
|
|
// BN_free(&y);
|
|
// break;
|
|
// }
|
|
//
|
|
// SHA256_Init(&sha256);
|
|
// SHA256_Update(&sha256, digest, sizeof(digest));
|
|
// SHA256_Final(digest, &sha256);
|
|
//
|
|
// BN_free(&x);
|
|
// }
|
|
//
|
|
// EC_POINT_free(p);
|
|
// EC_GROUP_free(p224);
|
|
// }
|
|
//
|
|
// int main() {
|
|
// find_seed(kSeed1);
|
|
// find_seed(kSeed2);
|
|
// return 0;
|
|
// }
|
|
|
|
const crypto::p224::Point kM = {
|
|
{174237515, 77186811, 235213682, 33849492,
|
|
33188520, 48266885, 177021753, 81038478},
|
|
{104523827, 245682244, 266509668, 236196369,
|
|
28372046, 145351378, 198520366, 113345994},
|
|
{1, 0, 0, 0, 0, 0, 0, 0},
|
|
};
|
|
|
|
const crypto::p224::Point kN = {
|
|
{136176322, 263523628, 251628795, 229292285,
|
|
5034302, 185981975, 171998428, 11653062},
|
|
{197567436, 51226044, 60372156, 175772188,
|
|
42075930, 8083165, 160827401, 65097570},
|
|
{1, 0, 0, 0, 0, 0, 0, 0},
|
|
};
|
|
|
|
} // anonymous namespace
|
|
|
|
namespace crypto {
|
|
|
|
P224EncryptedKeyExchange::P224EncryptedKeyExchange(PeerType peer_type,
|
|
base::StringPiece password)
|
|
: state_(kStateInitial), is_server_(peer_type == kPeerTypeServer) {
|
|
memset(&x_, 0, sizeof(x_));
|
|
memset(&expected_authenticator_, 0, sizeof(expected_authenticator_));
|
|
|
|
// x_ is a random scalar.
|
|
RandBytes(x_, sizeof(x_));
|
|
|
|
// Calculate |password| hash to get SPAKE password value.
|
|
SHA256HashString(std::string(password.data(), password.length()),
|
|
pw_, sizeof(pw_));
|
|
|
|
Init();
|
|
}
|
|
|
|
void P224EncryptedKeyExchange::Init() {
|
|
// X = g**x_
|
|
p224::Point X;
|
|
p224::ScalarBaseMult(x_, &X);
|
|
|
|
// The client masks the Diffie-Hellman value, X, by adding M**pw and the
|
|
// server uses N**pw.
|
|
p224::Point MNpw;
|
|
p224::ScalarMult(is_server_ ? kN : kM, pw_, &MNpw);
|
|
|
|
// X* = X + (N|M)**pw
|
|
p224::Point Xstar;
|
|
p224::Add(X, MNpw, &Xstar);
|
|
|
|
next_message_ = Xstar.ToString();
|
|
}
|
|
|
|
const std::string& P224EncryptedKeyExchange::GetNextMessage() {
|
|
if (state_ == kStateInitial) {
|
|
state_ = kStateRecvDH;
|
|
return next_message_;
|
|
} else if (state_ == kStateSendHash) {
|
|
state_ = kStateRecvHash;
|
|
return next_message_;
|
|
}
|
|
|
|
LOG(FATAL) << "P224EncryptedKeyExchange::GetNextMessage called in"
|
|
" bad state " << state_;
|
|
next_message_ = "";
|
|
return next_message_;
|
|
}
|
|
|
|
P224EncryptedKeyExchange::Result P224EncryptedKeyExchange::ProcessMessage(
|
|
base::StringPiece message) {
|
|
if (state_ == kStateRecvHash) {
|
|
// This is the final state of the protocol: we are reading the peer's
|
|
// authentication hash and checking that it matches the one that we expect.
|
|
if (message.size() != sizeof(expected_authenticator_)) {
|
|
error_ = "peer's hash had an incorrect size";
|
|
return kResultFailed;
|
|
}
|
|
if (!SecureMemEqual(message.data(), expected_authenticator_,
|
|
message.size())) {
|
|
error_ = "peer's hash had incorrect value";
|
|
return kResultFailed;
|
|
}
|
|
state_ = kStateDone;
|
|
return kResultSuccess;
|
|
}
|
|
|
|
if (state_ != kStateRecvDH) {
|
|
LOG(FATAL) << "P224EncryptedKeyExchange::ProcessMessage called in"
|
|
" bad state " << state_;
|
|
error_ = "internal error";
|
|
return kResultFailed;
|
|
}
|
|
|
|
// Y* is the other party's masked, Diffie-Hellman value.
|
|
p224::Point Ystar;
|
|
if (!Ystar.SetFromString(message)) {
|
|
error_ = "failed to parse peer's masked Diffie-Hellman value";
|
|
return kResultFailed;
|
|
}
|
|
|
|
// We calculate the mask value: (N|M)**pw
|
|
p224::Point MNpw, minus_MNpw, Y, k;
|
|
p224::ScalarMult(is_server_ ? kM : kN, pw_, &MNpw);
|
|
p224::Negate(MNpw, &minus_MNpw);
|
|
|
|
// Y = Y* - (N|M)**pw
|
|
p224::Add(Ystar, minus_MNpw, &Y);
|
|
|
|
// K = Y**x_
|
|
p224::ScalarMult(Y, x_, &k);
|
|
|
|
// If everything worked out, then K is the same for both parties.
|
|
key_ = k.ToString();
|
|
|
|
std::string client_masked_dh, server_masked_dh;
|
|
if (is_server_) {
|
|
client_masked_dh = message.as_string();
|
|
server_masked_dh = next_message_;
|
|
} else {
|
|
client_masked_dh = next_message_;
|
|
server_masked_dh = message.as_string();
|
|
}
|
|
|
|
// Now we calculate the hashes that each side will use to prove to the other
|
|
// that they derived the correct value for K.
|
|
uint8_t client_hash[kSHA256Length], server_hash[kSHA256Length];
|
|
CalculateHash(kPeerTypeClient, client_masked_dh, server_masked_dh, key_,
|
|
client_hash);
|
|
CalculateHash(kPeerTypeServer, client_masked_dh, server_masked_dh, key_,
|
|
server_hash);
|
|
|
|
const uint8_t* my_hash = is_server_ ? server_hash : client_hash;
|
|
const uint8_t* their_hash = is_server_ ? client_hash : server_hash;
|
|
|
|
next_message_ =
|
|
std::string(reinterpret_cast<const char*>(my_hash), kSHA256Length);
|
|
memcpy(expected_authenticator_, their_hash, kSHA256Length);
|
|
state_ = kStateSendHash;
|
|
return kResultPending;
|
|
}
|
|
|
|
void P224EncryptedKeyExchange::CalculateHash(
|
|
PeerType peer_type,
|
|
const std::string& client_masked_dh,
|
|
const std::string& server_masked_dh,
|
|
const std::string& k,
|
|
uint8_t* out_digest) {
|
|
std::string hash_contents;
|
|
|
|
if (peer_type == kPeerTypeServer) {
|
|
hash_contents = "server";
|
|
} else {
|
|
hash_contents = "client";
|
|
}
|
|
|
|
hash_contents += client_masked_dh;
|
|
hash_contents += server_masked_dh;
|
|
hash_contents +=
|
|
std::string(reinterpret_cast<const char *>(pw_), sizeof(pw_));
|
|
hash_contents += k;
|
|
|
|
SHA256HashString(hash_contents, out_digest, kSHA256Length);
|
|
}
|
|
|
|
const std::string& P224EncryptedKeyExchange::error() const {
|
|
return error_;
|
|
}
|
|
|
|
const std::string& P224EncryptedKeyExchange::GetKey() const {
|
|
DCHECK_EQ(state_, kStateDone);
|
|
return GetUnverifiedKey();
|
|
}
|
|
|
|
const std::string& P224EncryptedKeyExchange::GetUnverifiedKey() const {
|
|
// Key is already final when state is kStateSendHash. Subsequent states are
|
|
// used only for verification of the key. Some users may combine verification
|
|
// with sending verifiable data instead of |expected_authenticator_|.
|
|
DCHECK_GE(state_, kStateSendHash);
|
|
return key_;
|
|
}
|
|
|
|
void P224EncryptedKeyExchange::SetXForTesting(const std::string& x) {
|
|
memset(&x_, 0, sizeof(x_));
|
|
memcpy(&x_, x.data(), std::min(x.size(), sizeof(x_)));
|
|
Init();
|
|
}
|
|
|
|
} // namespace crypto
|