mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-12-01 01:36:09 +03:00
360 lines
11 KiB
C++
360 lines
11 KiB
C++
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "base/time/time.h"
|
|
|
|
#include <cmath>
|
|
#include <ios>
|
|
#include <limits>
|
|
#include <ostream>
|
|
#include <sstream>
|
|
|
|
#include "base/lazy_instance.h"
|
|
#include "base/logging.h"
|
|
#include "base/macros.h"
|
|
#include "base/strings/stringprintf.h"
|
|
#include "base/third_party/nspr/prtime.h"
|
|
#include "build/build_config.h"
|
|
|
|
namespace base {
|
|
|
|
// TimeDelta ------------------------------------------------------------------
|
|
|
|
int TimeDelta::InDays() const {
|
|
if (is_max()) {
|
|
// Preserve max to prevent overflow.
|
|
return std::numeric_limits<int>::max();
|
|
}
|
|
return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
|
|
}
|
|
|
|
int TimeDelta::InHours() const {
|
|
if (is_max()) {
|
|
// Preserve max to prevent overflow.
|
|
return std::numeric_limits<int>::max();
|
|
}
|
|
return static_cast<int>(delta_ / Time::kMicrosecondsPerHour);
|
|
}
|
|
|
|
int TimeDelta::InMinutes() const {
|
|
if (is_max()) {
|
|
// Preserve max to prevent overflow.
|
|
return std::numeric_limits<int>::max();
|
|
}
|
|
return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
|
|
}
|
|
|
|
double TimeDelta::InSecondsF() const {
|
|
if (is_max()) {
|
|
// Preserve max to prevent overflow.
|
|
return std::numeric_limits<double>::infinity();
|
|
}
|
|
return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
|
|
}
|
|
|
|
int64_t TimeDelta::InSeconds() const {
|
|
if (is_max()) {
|
|
// Preserve max to prevent overflow.
|
|
return std::numeric_limits<int64_t>::max();
|
|
}
|
|
return delta_ / Time::kMicrosecondsPerSecond;
|
|
}
|
|
|
|
double TimeDelta::InMillisecondsF() const {
|
|
if (is_max()) {
|
|
// Preserve max to prevent overflow.
|
|
return std::numeric_limits<double>::infinity();
|
|
}
|
|
return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
|
|
}
|
|
|
|
int64_t TimeDelta::InMilliseconds() const {
|
|
if (is_max()) {
|
|
// Preserve max to prevent overflow.
|
|
return std::numeric_limits<int64_t>::max();
|
|
}
|
|
return delta_ / Time::kMicrosecondsPerMillisecond;
|
|
}
|
|
|
|
int64_t TimeDelta::InMillisecondsRoundedUp() const {
|
|
if (is_max()) {
|
|
// Preserve max to prevent overflow.
|
|
return std::numeric_limits<int64_t>::max();
|
|
}
|
|
return (delta_ + Time::kMicrosecondsPerMillisecond - 1) /
|
|
Time::kMicrosecondsPerMillisecond;
|
|
}
|
|
|
|
int64_t TimeDelta::InMicroseconds() const {
|
|
if (is_max()) {
|
|
// Preserve max to prevent overflow.
|
|
return std::numeric_limits<int64_t>::max();
|
|
}
|
|
return delta_;
|
|
}
|
|
|
|
int64_t TimeDelta::InNanoseconds() const {
|
|
if (is_max()) {
|
|
// Preserve max to prevent overflow.
|
|
return std::numeric_limits<int64_t>::max();
|
|
}
|
|
return delta_ * Time::kNanosecondsPerMicrosecond;
|
|
}
|
|
|
|
namespace time_internal {
|
|
|
|
int64_t SaturatedAdd(TimeDelta delta, int64_t value) {
|
|
CheckedNumeric<int64_t> rv(delta.delta_);
|
|
rv += value;
|
|
if (rv.IsValid())
|
|
return rv.ValueOrDie();
|
|
// Positive RHS overflows. Negative RHS underflows.
|
|
if (value < 0)
|
|
return std::numeric_limits<int64_t>::min();
|
|
return std::numeric_limits<int64_t>::max();
|
|
}
|
|
|
|
int64_t SaturatedSub(TimeDelta delta, int64_t value) {
|
|
CheckedNumeric<int64_t> rv(delta.delta_);
|
|
rv -= value;
|
|
if (rv.IsValid())
|
|
return rv.ValueOrDie();
|
|
// Negative RHS overflows. Positive RHS underflows.
|
|
if (value < 0)
|
|
return std::numeric_limits<int64_t>::max();
|
|
return std::numeric_limits<int64_t>::min();
|
|
}
|
|
|
|
} // namespace time_internal
|
|
|
|
std::ostream& operator<<(std::ostream& os, TimeDelta time_delta) {
|
|
return os << time_delta.InSecondsF() << " s";
|
|
}
|
|
|
|
// Time -----------------------------------------------------------------------
|
|
|
|
// static
|
|
Time Time::FromTimeT(time_t tt) {
|
|
if (tt == 0)
|
|
return Time(); // Preserve 0 so we can tell it doesn't exist.
|
|
if (tt == std::numeric_limits<time_t>::max())
|
|
return Max();
|
|
return Time(kTimeTToMicrosecondsOffset) + TimeDelta::FromSeconds(tt);
|
|
}
|
|
|
|
time_t Time::ToTimeT() const {
|
|
if (is_null())
|
|
return 0; // Preserve 0 so we can tell it doesn't exist.
|
|
if (is_max()) {
|
|
// Preserve max without offset to prevent overflow.
|
|
return std::numeric_limits<time_t>::max();
|
|
}
|
|
if (std::numeric_limits<int64_t>::max() - kTimeTToMicrosecondsOffset <= us_) {
|
|
DLOG(WARNING) << "Overflow when converting base::Time with internal " <<
|
|
"value " << us_ << " to time_t.";
|
|
return std::numeric_limits<time_t>::max();
|
|
}
|
|
return (us_ - kTimeTToMicrosecondsOffset) / kMicrosecondsPerSecond;
|
|
}
|
|
|
|
// static
|
|
Time Time::FromDoubleT(double dt) {
|
|
if (dt == 0 || std::isnan(dt))
|
|
return Time(); // Preserve 0 so we can tell it doesn't exist.
|
|
return Time(kTimeTToMicrosecondsOffset) + TimeDelta::FromSecondsD(dt);
|
|
}
|
|
|
|
double Time::ToDoubleT() const {
|
|
if (is_null())
|
|
return 0; // Preserve 0 so we can tell it doesn't exist.
|
|
if (is_max()) {
|
|
// Preserve max without offset to prevent overflow.
|
|
return std::numeric_limits<double>::infinity();
|
|
}
|
|
return (static_cast<double>(us_ - kTimeTToMicrosecondsOffset) /
|
|
static_cast<double>(kMicrosecondsPerSecond));
|
|
}
|
|
|
|
#if defined(OS_POSIX)
|
|
// static
|
|
Time Time::FromTimeSpec(const timespec& ts) {
|
|
return FromDoubleT(ts.tv_sec +
|
|
static_cast<double>(ts.tv_nsec) /
|
|
base::Time::kNanosecondsPerSecond);
|
|
}
|
|
#endif
|
|
|
|
// static
|
|
Time Time::FromJsTime(double ms_since_epoch) {
|
|
// The epoch is a valid time, so this constructor doesn't interpret
|
|
// 0 as the null time.
|
|
return Time(kTimeTToMicrosecondsOffset) +
|
|
TimeDelta::FromMillisecondsD(ms_since_epoch);
|
|
}
|
|
|
|
double Time::ToJsTime() const {
|
|
if (is_null()) {
|
|
// Preserve 0 so the invalid result doesn't depend on the platform.
|
|
return 0;
|
|
}
|
|
if (is_max()) {
|
|
// Preserve max without offset to prevent overflow.
|
|
return std::numeric_limits<double>::infinity();
|
|
}
|
|
return (static_cast<double>(us_ - kTimeTToMicrosecondsOffset) /
|
|
kMicrosecondsPerMillisecond);
|
|
}
|
|
|
|
Time Time::FromJavaTime(int64_t ms_since_epoch) {
|
|
return base::Time::UnixEpoch() +
|
|
base::TimeDelta::FromMilliseconds(ms_since_epoch);
|
|
}
|
|
|
|
int64_t Time::ToJavaTime() const {
|
|
if (is_null()) {
|
|
// Preserve 0 so the invalid result doesn't depend on the platform.
|
|
return 0;
|
|
}
|
|
if (is_max()) {
|
|
// Preserve max without offset to prevent overflow.
|
|
return std::numeric_limits<int64_t>::max();
|
|
}
|
|
return ((us_ - kTimeTToMicrosecondsOffset) /
|
|
kMicrosecondsPerMillisecond);
|
|
}
|
|
|
|
// static
|
|
Time Time::UnixEpoch() {
|
|
Time time;
|
|
time.us_ = kTimeTToMicrosecondsOffset;
|
|
return time;
|
|
}
|
|
|
|
Time Time::LocalMidnight() const {
|
|
Exploded exploded;
|
|
LocalExplode(&exploded);
|
|
exploded.hour = 0;
|
|
exploded.minute = 0;
|
|
exploded.second = 0;
|
|
exploded.millisecond = 0;
|
|
Time out_time;
|
|
if (FromLocalExploded(exploded, &out_time))
|
|
return out_time;
|
|
// This function must not fail.
|
|
NOTREACHED();
|
|
return Time();
|
|
}
|
|
|
|
// static
|
|
bool Time::FromStringInternal(const char* time_string,
|
|
bool is_local,
|
|
Time* parsed_time) {
|
|
DCHECK((time_string != NULL) && (parsed_time != NULL));
|
|
|
|
if (time_string[0] == '\0')
|
|
return false;
|
|
|
|
PRTime result_time = 0;
|
|
PRStatus result = PR_ParseTimeString(time_string,
|
|
is_local ? PR_FALSE : PR_TRUE,
|
|
&result_time);
|
|
if (PR_SUCCESS != result)
|
|
return false;
|
|
|
|
result_time += kTimeTToMicrosecondsOffset;
|
|
*parsed_time = Time(result_time);
|
|
return true;
|
|
}
|
|
|
|
// static
|
|
bool Time::ExplodedMostlyEquals(const Exploded& lhs, const Exploded& rhs) {
|
|
return lhs.year == rhs.year && lhs.month == rhs.month &&
|
|
lhs.day_of_month == rhs.day_of_month && lhs.hour == rhs.hour &&
|
|
lhs.minute == rhs.minute && lhs.second == rhs.second &&
|
|
lhs.millisecond == rhs.millisecond;
|
|
}
|
|
|
|
std::ostream& operator<<(std::ostream& os, Time time) {
|
|
Time::Exploded exploded;
|
|
time.UTCExplode(&exploded);
|
|
// Use StringPrintf because iostreams formatting is painful.
|
|
return os << StringPrintf("%04d-%02d-%02d %02d:%02d:%02d.%03d UTC",
|
|
exploded.year,
|
|
exploded.month,
|
|
exploded.day_of_month,
|
|
exploded.hour,
|
|
exploded.minute,
|
|
exploded.second,
|
|
exploded.millisecond);
|
|
}
|
|
|
|
// Local helper class to hold the conversion from Time to TickTime at the
|
|
// time of the Unix epoch.
|
|
class UnixEpochSingleton {
|
|
public:
|
|
UnixEpochSingleton()
|
|
: unix_epoch_(TimeTicks::Now() - (Time::Now() - Time::UnixEpoch())) {}
|
|
|
|
TimeTicks unix_epoch() const { return unix_epoch_; }
|
|
|
|
private:
|
|
const TimeTicks unix_epoch_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(UnixEpochSingleton);
|
|
};
|
|
|
|
static LazyInstance<UnixEpochSingleton>::Leaky
|
|
leaky_unix_epoch_singleton_instance = LAZY_INSTANCE_INITIALIZER;
|
|
|
|
// Static
|
|
TimeTicks TimeTicks::UnixEpoch() {
|
|
return leaky_unix_epoch_singleton_instance.Get().unix_epoch();
|
|
}
|
|
|
|
TimeTicks TimeTicks::SnappedToNextTick(TimeTicks tick_phase,
|
|
TimeDelta tick_interval) const {
|
|
// |interval_offset| is the offset from |this| to the next multiple of
|
|
// |tick_interval| after |tick_phase|, possibly negative if in the past.
|
|
TimeDelta interval_offset = (tick_phase - *this) % tick_interval;
|
|
// If |this| is exactly on the interval (i.e. offset==0), don't adjust.
|
|
// Otherwise, if |tick_phase| was in the past, adjust forward to the next
|
|
// tick after |this|.
|
|
if (!interval_offset.is_zero() && tick_phase < *this)
|
|
interval_offset += tick_interval;
|
|
return *this + interval_offset;
|
|
}
|
|
|
|
std::ostream& operator<<(std::ostream& os, TimeTicks time_ticks) {
|
|
// This function formats a TimeTicks object as "bogo-microseconds".
|
|
// The origin and granularity of the count are platform-specific, and may very
|
|
// from run to run. Although bogo-microseconds usually roughly correspond to
|
|
// real microseconds, the only real guarantee is that the number never goes
|
|
// down during a single run.
|
|
const TimeDelta as_time_delta = time_ticks - TimeTicks();
|
|
return os << as_time_delta.InMicroseconds() << " bogo-microseconds";
|
|
}
|
|
|
|
std::ostream& operator<<(std::ostream& os, ThreadTicks thread_ticks) {
|
|
const TimeDelta as_time_delta = thread_ticks - ThreadTicks();
|
|
return os << as_time_delta.InMicroseconds() << " bogo-thread-microseconds";
|
|
}
|
|
|
|
// Time::Exploded -------------------------------------------------------------
|
|
|
|
inline bool is_in_range(int value, int lo, int hi) {
|
|
return lo <= value && value <= hi;
|
|
}
|
|
|
|
bool Time::Exploded::HasValidValues() const {
|
|
return is_in_range(month, 1, 12) &&
|
|
is_in_range(day_of_week, 0, 6) &&
|
|
is_in_range(day_of_month, 1, 31) &&
|
|
is_in_range(hour, 0, 23) &&
|
|
is_in_range(minute, 0, 59) &&
|
|
is_in_range(second, 0, 60) &&
|
|
is_in_range(millisecond, 0, 999);
|
|
}
|
|
|
|
} // namespace base
|