mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-24 22:36:09 +03:00
414 lines
12 KiB
JavaScript
414 lines
12 KiB
JavaScript
// Protocol Buffers - Google's data interchange format
|
|
// Copyright 2008 Google Inc. All rights reserved.
|
|
// https://developers.google.com/protocol-buffers/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
/**
|
|
* @fileoverview This file contains helper code used by jspb.utils to
|
|
* handle 64-bit integer conversion to/from strings.
|
|
*
|
|
* @author cfallin@google.com (Chris Fallin)
|
|
*
|
|
* TODO(haberman): move this to javascript/closure/math?
|
|
*/
|
|
|
|
goog.provide('jspb.arith.Int64');
|
|
goog.provide('jspb.arith.UInt64');
|
|
|
|
/**
|
|
* UInt64 implements some 64-bit arithmetic routines necessary for properly
|
|
* handling 64-bit integer fields. It implements lossless integer arithmetic on
|
|
* top of JavaScript's number type, which has only 53 bits of precision, by
|
|
* representing 64-bit integers as two 32-bit halves.
|
|
*
|
|
* @param {number} lo The low 32 bits.
|
|
* @param {number} hi The high 32 bits.
|
|
* @constructor
|
|
*/
|
|
jspb.arith.UInt64 = function(lo, hi) {
|
|
/**
|
|
* The low 32 bits.
|
|
* @public {number}
|
|
*/
|
|
this.lo = lo;
|
|
/**
|
|
* The high 32 bits.
|
|
* @public {number}
|
|
*/
|
|
this.hi = hi;
|
|
};
|
|
|
|
|
|
/**
|
|
* Compare two 64-bit numbers. Returns -1 if the first is
|
|
* less, +1 if the first is greater, or 0 if both are equal.
|
|
* @param {!jspb.arith.UInt64} other
|
|
* @return {number}
|
|
*/
|
|
jspb.arith.UInt64.prototype.cmp = function(other) {
|
|
if (this.hi < other.hi || (this.hi == other.hi && this.lo < other.lo)) {
|
|
return -1;
|
|
} else if (this.hi == other.hi && this.lo == other.lo) {
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* Right-shift this number by one bit.
|
|
* @return {!jspb.arith.UInt64}
|
|
*/
|
|
jspb.arith.UInt64.prototype.rightShift = function() {
|
|
var hi = this.hi >>> 1;
|
|
var lo = (this.lo >>> 1) | ((this.hi & 1) << 31);
|
|
return new jspb.arith.UInt64(lo >>> 0, hi >>> 0);
|
|
};
|
|
|
|
|
|
/**
|
|
* Left-shift this number by one bit.
|
|
* @return {!jspb.arith.UInt64}
|
|
*/
|
|
jspb.arith.UInt64.prototype.leftShift = function() {
|
|
var lo = this.lo << 1;
|
|
var hi = (this.hi << 1) | (this.lo >>> 31);
|
|
return new jspb.arith.UInt64(lo >>> 0, hi >>> 0);
|
|
};
|
|
|
|
|
|
/**
|
|
* Test the MSB.
|
|
* @return {boolean}
|
|
*/
|
|
jspb.arith.UInt64.prototype.msb = function() {
|
|
return !!(this.hi & 0x80000000);
|
|
};
|
|
|
|
|
|
/**
|
|
* Test the LSB.
|
|
* @return {boolean}
|
|
*/
|
|
jspb.arith.UInt64.prototype.lsb = function() {
|
|
return !!(this.lo & 1);
|
|
};
|
|
|
|
|
|
/**
|
|
* Test whether this number is zero.
|
|
* @return {boolean}
|
|
*/
|
|
jspb.arith.UInt64.prototype.zero = function() {
|
|
return this.lo == 0 && this.hi == 0;
|
|
};
|
|
|
|
|
|
/**
|
|
* Add two 64-bit numbers to produce a 64-bit number.
|
|
* @param {!jspb.arith.UInt64} other
|
|
* @return {!jspb.arith.UInt64}
|
|
*/
|
|
jspb.arith.UInt64.prototype.add = function(other) {
|
|
var lo = ((this.lo + other.lo) & 0xffffffff) >>> 0;
|
|
var hi =
|
|
(((this.hi + other.hi) & 0xffffffff) >>> 0) +
|
|
(((this.lo + other.lo) >= 0x100000000) ? 1 : 0);
|
|
return new jspb.arith.UInt64(lo >>> 0, hi >>> 0);
|
|
};
|
|
|
|
|
|
/**
|
|
* Subtract two 64-bit numbers to produce a 64-bit number.
|
|
* @param {!jspb.arith.UInt64} other
|
|
* @return {!jspb.arith.UInt64}
|
|
*/
|
|
jspb.arith.UInt64.prototype.sub = function(other) {
|
|
var lo = ((this.lo - other.lo) & 0xffffffff) >>> 0;
|
|
var hi =
|
|
(((this.hi - other.hi) & 0xffffffff) >>> 0) -
|
|
(((this.lo - other.lo) < 0) ? 1 : 0);
|
|
return new jspb.arith.UInt64(lo >>> 0, hi >>> 0);
|
|
};
|
|
|
|
|
|
/**
|
|
* Multiply two 32-bit numbers to produce a 64-bit number.
|
|
* @param {number} a The first integer: must be in [0, 2^32-1).
|
|
* @param {number} b The second integer: must be in [0, 2^32-1).
|
|
* @return {!jspb.arith.UInt64}
|
|
*/
|
|
jspb.arith.UInt64.mul32x32 = function(a, b) {
|
|
// Directly multiplying two 32-bit numbers may produce up to 64 bits of
|
|
// precision, thus losing precision because of the 53-bit mantissa of
|
|
// JavaScript numbers. So we multiply with 16-bit digits (radix 65536)
|
|
// instead.
|
|
var aLow = (a & 0xffff);
|
|
var aHigh = (a >>> 16);
|
|
var bLow = (b & 0xffff);
|
|
var bHigh = (b >>> 16);
|
|
var productLow =
|
|
// 32-bit result, result bits 0-31, take all 32 bits
|
|
(aLow * bLow) +
|
|
// 32-bit result, result bits 16-47, take bottom 16 as our top 16
|
|
((aLow * bHigh) & 0xffff) * 0x10000 +
|
|
// 32-bit result, result bits 16-47, take bottom 16 as our top 16
|
|
((aHigh * bLow) & 0xffff) * 0x10000;
|
|
var productHigh =
|
|
// 32-bit result, result bits 32-63, take all 32 bits
|
|
(aHigh * bHigh) +
|
|
// 32-bit result, result bits 16-47, take top 16 as our bottom 16
|
|
((aLow * bHigh) >>> 16) +
|
|
// 32-bit result, result bits 16-47, take top 16 as our bottom 16
|
|
((aHigh * bLow) >>> 16);
|
|
|
|
// Carry. Note that we actually have up to *two* carries due to addition of
|
|
// three terms.
|
|
while (productLow >= 0x100000000) {
|
|
productLow -= 0x100000000;
|
|
productHigh += 1;
|
|
}
|
|
|
|
return new jspb.arith.UInt64(productLow >>> 0, productHigh >>> 0);
|
|
};
|
|
|
|
|
|
/**
|
|
* Multiply this number by a 32-bit number, producing a 96-bit number, then
|
|
* truncate the top 32 bits.
|
|
* @param {number} a The multiplier.
|
|
* @return {!jspb.arith.UInt64}
|
|
*/
|
|
jspb.arith.UInt64.prototype.mul = function(a) {
|
|
// Produce two parts: at bits 0-63, and 32-95.
|
|
var lo = jspb.arith.UInt64.mul32x32(this.lo, a);
|
|
var hi = jspb.arith.UInt64.mul32x32(this.hi, a);
|
|
// Left-shift hi by 32 bits, truncating its top bits. The parts will then be
|
|
// aligned for addition.
|
|
hi.hi = hi.lo;
|
|
hi.lo = 0;
|
|
return lo.add(hi);
|
|
};
|
|
|
|
|
|
/**
|
|
* Divide a 64-bit number by a 32-bit number to produce a
|
|
* 64-bit quotient and a 32-bit remainder.
|
|
* @param {number} _divisor
|
|
* @return {Array.<jspb.arith.UInt64>} array of [quotient, remainder],
|
|
* unless divisor is 0, in which case an empty array is returned.
|
|
*/
|
|
jspb.arith.UInt64.prototype.div = function(_divisor) {
|
|
if (_divisor == 0) {
|
|
return [];
|
|
}
|
|
|
|
// We perform long division using a radix-2 algorithm, for simplicity (i.e.,
|
|
// one bit at a time). TODO: optimize to a radix-2^32 algorithm, taking care
|
|
// to get the variable shifts right.
|
|
var quotient = new jspb.arith.UInt64(0, 0);
|
|
var remainder = new jspb.arith.UInt64(this.lo, this.hi);
|
|
var divisor = new jspb.arith.UInt64(_divisor, 0);
|
|
var unit = new jspb.arith.UInt64(1, 0);
|
|
|
|
// Left-shift the divisor and unit until the high bit of divisor is set.
|
|
while (!divisor.msb()) {
|
|
divisor = divisor.leftShift();
|
|
unit = unit.leftShift();
|
|
}
|
|
|
|
// Perform long division one bit at a time.
|
|
while (!unit.zero()) {
|
|
// If divisor < remainder, add unit to quotient and subtract divisor from
|
|
// remainder.
|
|
if (divisor.cmp(remainder) <= 0) {
|
|
quotient = quotient.add(unit);
|
|
remainder = remainder.sub(divisor);
|
|
}
|
|
// Right-shift the divisor and unit.
|
|
divisor = divisor.rightShift();
|
|
unit = unit.rightShift();
|
|
}
|
|
|
|
return [quotient, remainder];
|
|
};
|
|
|
|
|
|
/**
|
|
* Convert a 64-bit number to a string.
|
|
* @return {string}
|
|
* @override
|
|
*/
|
|
jspb.arith.UInt64.prototype.toString = function() {
|
|
var result = '';
|
|
var num = this;
|
|
while (!num.zero()) {
|
|
var divResult = num.div(10);
|
|
var quotient = divResult[0], remainder = divResult[1];
|
|
result = remainder.lo + result;
|
|
num = quotient;
|
|
}
|
|
if (result == '') {
|
|
result = '0';
|
|
}
|
|
return result;
|
|
};
|
|
|
|
|
|
/**
|
|
* Parse a string into a 64-bit number. Returns `null` on a parse error.
|
|
* @param {string} s
|
|
* @return {?jspb.arith.UInt64}
|
|
*/
|
|
jspb.arith.UInt64.fromString = function(s) {
|
|
var result = new jspb.arith.UInt64(0, 0);
|
|
// optimization: reuse this instance for each digit.
|
|
var digit64 = new jspb.arith.UInt64(0, 0);
|
|
for (var i = 0; i < s.length; i++) {
|
|
if (s[i] < '0' || s[i] > '9') {
|
|
return null;
|
|
}
|
|
var digit = parseInt(s[i], 10);
|
|
digit64.lo = digit;
|
|
result = result.mul(10).add(digit64);
|
|
}
|
|
return result;
|
|
};
|
|
|
|
|
|
/**
|
|
* Make a copy of the uint64.
|
|
* @return {!jspb.arith.UInt64}
|
|
*/
|
|
jspb.arith.UInt64.prototype.clone = function() {
|
|
return new jspb.arith.UInt64(this.lo, this.hi);
|
|
};
|
|
|
|
|
|
/**
|
|
* Int64 is like UInt64, but modifies string conversions to interpret the stored
|
|
* 64-bit value as a twos-complement-signed integer. It does *not* support the
|
|
* full range of operations that UInt64 does: only add, subtract, and string
|
|
* conversions.
|
|
*
|
|
* N.B. that multiply and divide routines are *NOT* supported. They will throw
|
|
* exceptions. (They are not necessary to implement string conversions, which
|
|
* are the only operations we really need in jspb.)
|
|
*
|
|
* @param {number} lo The low 32 bits.
|
|
* @param {number} hi The high 32 bits.
|
|
* @constructor
|
|
*/
|
|
jspb.arith.Int64 = function(lo, hi) {
|
|
/**
|
|
* The low 32 bits.
|
|
* @public {number}
|
|
*/
|
|
this.lo = lo;
|
|
/**
|
|
* The high 32 bits.
|
|
* @public {number}
|
|
*/
|
|
this.hi = hi;
|
|
};
|
|
|
|
|
|
/**
|
|
* Add two 64-bit numbers to produce a 64-bit number.
|
|
* @param {!jspb.arith.Int64} other
|
|
* @return {!jspb.arith.Int64}
|
|
*/
|
|
jspb.arith.Int64.prototype.add = function(other) {
|
|
var lo = ((this.lo + other.lo) & 0xffffffff) >>> 0;
|
|
var hi =
|
|
(((this.hi + other.hi) & 0xffffffff) >>> 0) +
|
|
(((this.lo + other.lo) >= 0x100000000) ? 1 : 0);
|
|
return new jspb.arith.Int64(lo >>> 0, hi >>> 0);
|
|
};
|
|
|
|
|
|
/**
|
|
* Subtract two 64-bit numbers to produce a 64-bit number.
|
|
* @param {!jspb.arith.Int64} other
|
|
* @return {!jspb.arith.Int64}
|
|
*/
|
|
jspb.arith.Int64.prototype.sub = function(other) {
|
|
var lo = ((this.lo - other.lo) & 0xffffffff) >>> 0;
|
|
var hi =
|
|
(((this.hi - other.hi) & 0xffffffff) >>> 0) -
|
|
(((this.lo - other.lo) < 0) ? 1 : 0);
|
|
return new jspb.arith.Int64(lo >>> 0, hi >>> 0);
|
|
};
|
|
|
|
|
|
/**
|
|
* Make a copy of the int64.
|
|
* @return {!jspb.arith.Int64}
|
|
*/
|
|
jspb.arith.Int64.prototype.clone = function() {
|
|
return new jspb.arith.Int64(this.lo, this.hi);
|
|
};
|
|
|
|
|
|
/**
|
|
* Convert a 64-bit number to a string.
|
|
* @return {string}
|
|
* @override
|
|
*/
|
|
jspb.arith.Int64.prototype.toString = function() {
|
|
// If the number is negative, find its twos-complement inverse.
|
|
var sign = (this.hi & 0x80000000) != 0;
|
|
var num = new jspb.arith.UInt64(this.lo, this.hi);
|
|
if (sign) {
|
|
num = new jspb.arith.UInt64(0, 0).sub(num);
|
|
}
|
|
return (sign ? '-' : '') + num.toString();
|
|
};
|
|
|
|
|
|
/**
|
|
* Parse a string into a 64-bit number. Returns `null` on a parse error.
|
|
* @param {string} s
|
|
* @return {?jspb.arith.Int64}
|
|
*/
|
|
jspb.arith.Int64.fromString = function(s) {
|
|
var hasNegative = (s.length > 0 && s[0] == '-');
|
|
if (hasNegative) {
|
|
s = s.substring(1);
|
|
}
|
|
var num = jspb.arith.UInt64.fromString(s);
|
|
if (num === null) {
|
|
return null;
|
|
}
|
|
if (hasNegative) {
|
|
num = new jspb.arith.UInt64(0, 0).sub(num);
|
|
}
|
|
return new jspb.arith.Int64(num.lo, num.hi);
|
|
};
|