naiveproxy/base/debug/activity_analyzer.cc
2018-02-02 05:49:39 -05:00

413 lines
14 KiB
C++

// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/debug/activity_analyzer.h"
#include <algorithm>
#include <utility>
#include "base/files/file.h"
#include "base/files/file_path.h"
#include "base/files/memory_mapped_file.h"
#include "base/lazy_instance.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/metrics/histogram_macros.h"
#include "base/stl_util.h"
#include "base/strings/string_util.h"
namespace base {
namespace debug {
namespace {
// An empty snapshot that can be returned when there otherwise is none.
LazyInstance<ActivityUserData::Snapshot>::Leaky g_empty_user_data_snapshot;
// DO NOT CHANGE VALUES. This is logged persistently in a histogram.
enum AnalyzerCreationError {
kInvalidMemoryMappedFile,
kPmaBadFile,
kPmaUninitialized,
kPmaDeleted,
kPmaCorrupt,
kAnalyzerCreationErrorMax // Keep this last.
};
void LogAnalyzerCreationError(AnalyzerCreationError error) {
UMA_HISTOGRAM_ENUMERATION("ActivityTracker.Collect.AnalyzerCreationError",
error, kAnalyzerCreationErrorMax);
}
} // namespace
ThreadActivityAnalyzer::Snapshot::Snapshot() = default;
ThreadActivityAnalyzer::Snapshot::~Snapshot() = default;
ThreadActivityAnalyzer::ThreadActivityAnalyzer(
const ThreadActivityTracker& tracker)
: activity_snapshot_valid_(tracker.CreateSnapshot(&activity_snapshot_)) {}
ThreadActivityAnalyzer::ThreadActivityAnalyzer(void* base, size_t size)
: ThreadActivityAnalyzer(ThreadActivityTracker(base, size)) {}
ThreadActivityAnalyzer::ThreadActivityAnalyzer(
PersistentMemoryAllocator* allocator,
PersistentMemoryAllocator::Reference reference)
: ThreadActivityAnalyzer(allocator->GetAsArray<char>(
reference,
GlobalActivityTracker::kTypeIdActivityTracker,
PersistentMemoryAllocator::kSizeAny),
allocator->GetAllocSize(reference)) {}
ThreadActivityAnalyzer::~ThreadActivityAnalyzer() = default;
void ThreadActivityAnalyzer::AddGlobalInformation(
GlobalActivityAnalyzer* global) {
if (!IsValid())
return;
// User-data is held at the global scope even though it's referenced at the
// thread scope.
activity_snapshot_.user_data_stack.clear();
for (auto& activity : activity_snapshot_.activity_stack) {
// The global GetUserDataSnapshot will return an empty snapshot if the ref
// or id is not valid.
activity_snapshot_.user_data_stack.push_back(global->GetUserDataSnapshot(
activity_snapshot_.process_id, activity.user_data_ref,
activity.user_data_id));
}
}
GlobalActivityAnalyzer::GlobalActivityAnalyzer(
std::unique_ptr<PersistentMemoryAllocator> allocator)
: allocator_(std::move(allocator)),
analysis_stamp_(0LL),
allocator_iterator_(allocator_.get()) {
DCHECK(allocator_);
}
GlobalActivityAnalyzer::~GlobalActivityAnalyzer() = default;
// static
std::unique_ptr<GlobalActivityAnalyzer>
GlobalActivityAnalyzer::CreateWithAllocator(
std::unique_ptr<PersistentMemoryAllocator> allocator) {
if (allocator->GetMemoryState() ==
PersistentMemoryAllocator::MEMORY_UNINITIALIZED) {
LogAnalyzerCreationError(kPmaUninitialized);
return nullptr;
}
if (allocator->GetMemoryState() ==
PersistentMemoryAllocator::MEMORY_DELETED) {
LogAnalyzerCreationError(kPmaDeleted);
return nullptr;
}
if (allocator->IsCorrupt()) {
LogAnalyzerCreationError(kPmaCorrupt);
return nullptr;
}
return WrapUnique(new GlobalActivityAnalyzer(std::move(allocator)));
}
#if !defined(OS_NACL)
// static
std::unique_ptr<GlobalActivityAnalyzer> GlobalActivityAnalyzer::CreateWithFile(
const FilePath& file_path) {
// Map the file read-write so it can guarantee consistency between
// the analyzer and any trackers that my still be active.
std::unique_ptr<MemoryMappedFile> mmfile(new MemoryMappedFile());
mmfile->Initialize(file_path, MemoryMappedFile::READ_WRITE);
if (!mmfile->IsValid()) {
LogAnalyzerCreationError(kInvalidMemoryMappedFile);
return nullptr;
}
if (!FilePersistentMemoryAllocator::IsFileAcceptable(*mmfile, true)) {
LogAnalyzerCreationError(kPmaBadFile);
return nullptr;
}
return CreateWithAllocator(std::make_unique<FilePersistentMemoryAllocator>(
std::move(mmfile), 0, 0, StringPiece(), /*readonly=*/true));
}
#endif // !defined(OS_NACL)
// static
std::unique_ptr<GlobalActivityAnalyzer>
GlobalActivityAnalyzer::CreateWithSharedMemory(
std::unique_ptr<SharedMemory> shm) {
if (shm->mapped_size() == 0 ||
!SharedPersistentMemoryAllocator::IsSharedMemoryAcceptable(*shm)) {
return nullptr;
}
return CreateWithAllocator(std::make_unique<SharedPersistentMemoryAllocator>(
std::move(shm), 0, StringPiece(), /*readonly=*/true));
}
// static
std::unique_ptr<GlobalActivityAnalyzer>
GlobalActivityAnalyzer::CreateWithSharedMemoryHandle(
const SharedMemoryHandle& handle,
size_t size) {
std::unique_ptr<SharedMemory> shm(
new SharedMemory(handle, /*readonly=*/true));
if (!shm->Map(size))
return nullptr;
return CreateWithSharedMemory(std::move(shm));
}
int64_t GlobalActivityAnalyzer::GetFirstProcess() {
PrepareAllAnalyzers();
return GetNextProcess();
}
int64_t GlobalActivityAnalyzer::GetNextProcess() {
if (process_ids_.empty())
return 0;
int64_t pid = process_ids_.back();
process_ids_.pop_back();
return pid;
}
ThreadActivityAnalyzer* GlobalActivityAnalyzer::GetFirstAnalyzer(int64_t pid) {
analyzers_iterator_ = analyzers_.begin();
analyzers_iterator_pid_ = pid;
if (analyzers_iterator_ == analyzers_.end())
return nullptr;
int64_t create_stamp;
if (analyzers_iterator_->second->GetProcessId(&create_stamp) == pid &&
create_stamp <= analysis_stamp_) {
return analyzers_iterator_->second.get();
}
return GetNextAnalyzer();
}
ThreadActivityAnalyzer* GlobalActivityAnalyzer::GetNextAnalyzer() {
DCHECK(analyzers_iterator_ != analyzers_.end());
int64_t create_stamp;
do {
++analyzers_iterator_;
if (analyzers_iterator_ == analyzers_.end())
return nullptr;
} while (analyzers_iterator_->second->GetProcessId(&create_stamp) !=
analyzers_iterator_pid_ ||
create_stamp > analysis_stamp_);
return analyzers_iterator_->second.get();
}
ThreadActivityAnalyzer* GlobalActivityAnalyzer::GetAnalyzerForThread(
const ThreadKey& key) {
auto found = analyzers_.find(key);
if (found == analyzers_.end())
return nullptr;
return found->second.get();
}
ActivityUserData::Snapshot GlobalActivityAnalyzer::GetUserDataSnapshot(
int64_t pid,
uint32_t ref,
uint32_t id) {
ActivityUserData::Snapshot snapshot;
void* memory = allocator_->GetAsArray<char>(
ref, GlobalActivityTracker::kTypeIdUserDataRecord,
PersistentMemoryAllocator::kSizeAny);
if (memory) {
size_t size = allocator_->GetAllocSize(ref);
const ActivityUserData user_data(memory, size);
user_data.CreateSnapshot(&snapshot);
int64_t process_id;
int64_t create_stamp;
if (!ActivityUserData::GetOwningProcessId(memory, &process_id,
&create_stamp) ||
process_id != pid || user_data.id() != id) {
// This allocation has been overwritten since it was created. Return an
// empty snapshot because whatever was captured is incorrect.
snapshot.clear();
}
}
return snapshot;
}
const ActivityUserData::Snapshot&
GlobalActivityAnalyzer::GetProcessDataSnapshot(int64_t pid) {
auto iter = process_data_.find(pid);
if (iter == process_data_.end())
return g_empty_user_data_snapshot.Get();
if (iter->second.create_stamp > analysis_stamp_)
return g_empty_user_data_snapshot.Get();
DCHECK_EQ(pid, iter->second.process_id);
return iter->second.data;
}
std::vector<std::string> GlobalActivityAnalyzer::GetLogMessages() {
std::vector<std::string> messages;
PersistentMemoryAllocator::Reference ref;
PersistentMemoryAllocator::Iterator iter(allocator_.get());
while ((ref = iter.GetNextOfType(
GlobalActivityTracker::kTypeIdGlobalLogMessage)) != 0) {
const char* message = allocator_->GetAsArray<char>(
ref, GlobalActivityTracker::kTypeIdGlobalLogMessage,
PersistentMemoryAllocator::kSizeAny);
if (message)
messages.push_back(message);
}
return messages;
}
std::vector<GlobalActivityTracker::ModuleInfo>
GlobalActivityAnalyzer::GetModules(int64_t pid) {
std::vector<GlobalActivityTracker::ModuleInfo> modules;
PersistentMemoryAllocator::Iterator iter(allocator_.get());
const GlobalActivityTracker::ModuleInfoRecord* record;
while (
(record =
iter.GetNextOfObject<GlobalActivityTracker::ModuleInfoRecord>()) !=
nullptr) {
int64_t process_id;
int64_t create_stamp;
if (!OwningProcess::GetOwningProcessId(&record->owner, &process_id,
&create_stamp) ||
pid != process_id || create_stamp > analysis_stamp_) {
continue;
}
GlobalActivityTracker::ModuleInfo info;
if (record->DecodeTo(&info, allocator_->GetAllocSize(
allocator_->GetAsReference(record)))) {
modules.push_back(std::move(info));
}
}
return modules;
}
GlobalActivityAnalyzer::ProgramLocation
GlobalActivityAnalyzer::GetProgramLocationFromAddress(uint64_t address) {
// TODO(bcwhite): Implement this.
return { 0, 0 };
}
bool GlobalActivityAnalyzer::IsDataComplete() const {
DCHECK(allocator_);
return !allocator_->IsFull();
}
GlobalActivityAnalyzer::UserDataSnapshot::UserDataSnapshot() = default;
GlobalActivityAnalyzer::UserDataSnapshot::UserDataSnapshot(
const UserDataSnapshot& rhs) = default;
GlobalActivityAnalyzer::UserDataSnapshot::UserDataSnapshot(
UserDataSnapshot&& rhs) = default;
GlobalActivityAnalyzer::UserDataSnapshot::~UserDataSnapshot() = default;
void GlobalActivityAnalyzer::PrepareAllAnalyzers() {
// Record the time when analysis started.
analysis_stamp_ = base::Time::Now().ToInternalValue();
// Fetch all the records. This will retrieve only ones created since the
// last run since the PMA iterator will continue from where it left off.
uint32_t type;
PersistentMemoryAllocator::Reference ref;
while ((ref = allocator_iterator_.GetNext(&type)) != 0) {
switch (type) {
case GlobalActivityTracker::kTypeIdActivityTracker:
case GlobalActivityTracker::kTypeIdActivityTrackerFree:
case GlobalActivityTracker::kTypeIdProcessDataRecord:
case GlobalActivityTracker::kTypeIdProcessDataRecordFree:
case PersistentMemoryAllocator::kTypeIdTransitioning:
// Active, free, or transitioning: add it to the list of references
// for later analysis.
memory_references_.insert(ref);
break;
}
}
// Clear out any old information.
analyzers_.clear();
process_data_.clear();
process_ids_.clear();
std::set<int64_t> seen_pids;
// Go through all the known references and create objects for them with
// snapshots of the current state.
for (PersistentMemoryAllocator::Reference memory_ref : memory_references_) {
// Get the actual data segment for the tracker. Any type will do since it
// is checked below.
void* const base = allocator_->GetAsArray<char>(
memory_ref, PersistentMemoryAllocator::kTypeIdAny,
PersistentMemoryAllocator::kSizeAny);
const size_t size = allocator_->GetAllocSize(memory_ref);
if (!base)
continue;
switch (allocator_->GetType(memory_ref)) {
case GlobalActivityTracker::kTypeIdActivityTracker: {
// Create the analyzer on the data. This will capture a snapshot of the
// tracker state. This can fail if the tracker is somehow corrupted or
// is in the process of shutting down.
std::unique_ptr<ThreadActivityAnalyzer> analyzer(
new ThreadActivityAnalyzer(base, size));
if (!analyzer->IsValid())
continue;
analyzer->AddGlobalInformation(this);
// Track PIDs.
int64_t pid = analyzer->GetProcessId();
if (seen_pids.find(pid) == seen_pids.end()) {
process_ids_.push_back(pid);
seen_pids.insert(pid);
}
// Add this analyzer to the map of known ones, indexed by a unique
// thread
// identifier.
DCHECK(!base::ContainsKey(analyzers_, analyzer->GetThreadKey()));
analyzer->allocator_reference_ = ref;
analyzers_[analyzer->GetThreadKey()] = std::move(analyzer);
} break;
case GlobalActivityTracker::kTypeIdProcessDataRecord: {
// Get the PID associated with this data record.
int64_t process_id;
int64_t create_stamp;
ActivityUserData::GetOwningProcessId(base, &process_id, &create_stamp);
DCHECK(!base::ContainsKey(process_data_, process_id));
// Create a snapshot of the data. This can fail if the data is somehow
// corrupted or the process shutdown and the memory being released.
UserDataSnapshot& snapshot = process_data_[process_id];
snapshot.process_id = process_id;
snapshot.create_stamp = create_stamp;
const ActivityUserData process_data(base, size);
if (!process_data.CreateSnapshot(&snapshot.data))
break;
// Check that nothing changed. If it did, forget what was recorded.
ActivityUserData::GetOwningProcessId(base, &process_id, &create_stamp);
if (process_id != snapshot.process_id ||
create_stamp != snapshot.create_stamp) {
process_data_.erase(process_id);
break;
}
// Track PIDs.
if (seen_pids.find(process_id) == seen_pids.end()) {
process_ids_.push_back(process_id);
seen_pids.insert(process_id);
}
} break;
}
}
// Reverse the list of PIDs so that they get popped in the order found.
std::reverse(process_ids_.begin(), process_ids_.end());
}
} // namespace debug
} // namespace base