mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-24 22:36:09 +03:00
907 lines
28 KiB
C++
907 lines
28 KiB
C++
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "net/disk_cache/blockfile/sparse_control.h"
|
|
|
|
#include <stdint.h>
|
|
|
|
#include "base/bind.h"
|
|
#include "base/format_macros.h"
|
|
#include "base/location.h"
|
|
#include "base/logging.h"
|
|
#include "base/macros.h"
|
|
#include "base/single_thread_task_runner.h"
|
|
#include "base/strings/string_util.h"
|
|
#include "base/strings/stringprintf.h"
|
|
#include "base/threading/thread_task_runner_handle.h"
|
|
#include "base/time/time.h"
|
|
#include "net/base/io_buffer.h"
|
|
#include "net/base/net_errors.h"
|
|
#include "net/disk_cache/blockfile/backend_impl.h"
|
|
#include "net/disk_cache/blockfile/entry_impl.h"
|
|
#include "net/disk_cache/blockfile/file.h"
|
|
#include "net/disk_cache/net_log_parameters.h"
|
|
#include "net/log/net_log.h"
|
|
#include "net/log/net_log_event_type.h"
|
|
#include "net/log/net_log_with_source.h"
|
|
|
|
using base::Time;
|
|
|
|
namespace {
|
|
|
|
// Stream of the sparse data index.
|
|
const int kSparseIndex = 2;
|
|
|
|
// Stream of the sparse data.
|
|
const int kSparseData = 1;
|
|
|
|
// We can have up to 64k children.
|
|
const int kMaxMapSize = 8 * 1024;
|
|
|
|
// The maximum number of bytes that a child can store.
|
|
const int kMaxEntrySize = 0x100000;
|
|
|
|
// The size of each data block (tracked by the child allocation bitmap).
|
|
const int kBlockSize = 1024;
|
|
|
|
// Returns the name of a child entry given the base_name and signature of the
|
|
// parent and the child_id.
|
|
// If the entry is called entry_name, child entries will be named something
|
|
// like Range_entry_name:XXX:YYY where XXX is the entry signature and YYY is the
|
|
// number of the particular child.
|
|
std::string GenerateChildName(const std::string& base_name,
|
|
int64_t signature,
|
|
int64_t child_id) {
|
|
return base::StringPrintf("Range_%s:%" PRIx64 ":%" PRIx64, base_name.c_str(),
|
|
signature, child_id);
|
|
}
|
|
|
|
// This class deletes the children of a sparse entry.
|
|
class ChildrenDeleter
|
|
: public base::RefCounted<ChildrenDeleter>,
|
|
public disk_cache::FileIOCallback {
|
|
public:
|
|
ChildrenDeleter(disk_cache::BackendImpl* backend, const std::string& name)
|
|
: backend_(backend->GetWeakPtr()), name_(name), signature_(0) {}
|
|
|
|
void OnFileIOComplete(int bytes_copied) override;
|
|
|
|
// Two ways of deleting the children: if we have the children map, use Start()
|
|
// directly, otherwise pass the data address to ReadData().
|
|
void Start(char* buffer, int len);
|
|
void ReadData(disk_cache::Addr address, int len);
|
|
|
|
private:
|
|
friend class base::RefCounted<ChildrenDeleter>;
|
|
~ChildrenDeleter() override = default;
|
|
|
|
void DeleteChildren();
|
|
|
|
base::WeakPtr<disk_cache::BackendImpl> backend_;
|
|
std::string name_;
|
|
disk_cache::Bitmap children_map_;
|
|
int64_t signature_;
|
|
std::unique_ptr<char[]> buffer_;
|
|
DISALLOW_COPY_AND_ASSIGN(ChildrenDeleter);
|
|
};
|
|
|
|
// This is the callback of the file operation.
|
|
void ChildrenDeleter::OnFileIOComplete(int bytes_copied) {
|
|
char* buffer = buffer_.release();
|
|
Start(buffer, bytes_copied);
|
|
}
|
|
|
|
void ChildrenDeleter::Start(char* buffer, int len) {
|
|
buffer_.reset(buffer);
|
|
if (len < static_cast<int>(sizeof(disk_cache::SparseData)))
|
|
return Release();
|
|
|
|
// Just copy the information from |buffer|, delete |buffer| and start deleting
|
|
// the child entries.
|
|
disk_cache::SparseData* data =
|
|
reinterpret_cast<disk_cache::SparseData*>(buffer);
|
|
signature_ = data->header.signature;
|
|
|
|
int num_bits = (len - sizeof(disk_cache::SparseHeader)) * 8;
|
|
children_map_.Resize(num_bits, false);
|
|
children_map_.SetMap(data->bitmap, num_bits / 32);
|
|
buffer_.reset();
|
|
|
|
DeleteChildren();
|
|
}
|
|
|
|
void ChildrenDeleter::ReadData(disk_cache::Addr address, int len) {
|
|
DCHECK(address.is_block_file());
|
|
if (!backend_.get())
|
|
return Release();
|
|
|
|
disk_cache::File* file(backend_->File(address));
|
|
if (!file)
|
|
return Release();
|
|
|
|
size_t file_offset = address.start_block() * address.BlockSize() +
|
|
disk_cache::kBlockHeaderSize;
|
|
|
|
buffer_.reset(new char[len]);
|
|
bool completed;
|
|
if (!file->Read(buffer_.get(), len, file_offset, this, &completed))
|
|
return Release();
|
|
|
|
if (completed)
|
|
OnFileIOComplete(len);
|
|
|
|
// And wait until OnFileIOComplete gets called.
|
|
}
|
|
|
|
void ChildrenDeleter::DeleteChildren() {
|
|
int child_id = 0;
|
|
if (!children_map_.FindNextSetBit(&child_id) || !backend_.get()) {
|
|
// We are done. Just delete this object.
|
|
return Release();
|
|
}
|
|
std::string child_name = GenerateChildName(name_, signature_, child_id);
|
|
backend_->SyncDoomEntry(child_name);
|
|
children_map_.Set(child_id, false);
|
|
|
|
// Post a task to delete the next child.
|
|
base::ThreadTaskRunnerHandle::Get()->PostTask(
|
|
FROM_HERE, base::Bind(&ChildrenDeleter::DeleteChildren, this));
|
|
}
|
|
|
|
// Returns the NetLog event type corresponding to a SparseOperation.
|
|
net::NetLogEventType GetSparseEventType(
|
|
disk_cache::SparseControl::SparseOperation operation) {
|
|
switch (operation) {
|
|
case disk_cache::SparseControl::kReadOperation:
|
|
return net::NetLogEventType::SPARSE_READ;
|
|
case disk_cache::SparseControl::kWriteOperation:
|
|
return net::NetLogEventType::SPARSE_WRITE;
|
|
case disk_cache::SparseControl::kGetRangeOperation:
|
|
return net::NetLogEventType::SPARSE_GET_RANGE;
|
|
default:
|
|
NOTREACHED();
|
|
return net::NetLogEventType::CANCELLED;
|
|
}
|
|
}
|
|
|
|
// Logs the end event for |operation| on a child entry. Range operations log
|
|
// no events for each child they search through.
|
|
void LogChildOperationEnd(const net::NetLogWithSource& net_log,
|
|
disk_cache::SparseControl::SparseOperation operation,
|
|
int result) {
|
|
if (net_log.IsCapturing()) {
|
|
net::NetLogEventType event_type;
|
|
switch (operation) {
|
|
case disk_cache::SparseControl::kReadOperation:
|
|
event_type = net::NetLogEventType::SPARSE_READ_CHILD_DATA;
|
|
break;
|
|
case disk_cache::SparseControl::kWriteOperation:
|
|
event_type = net::NetLogEventType::SPARSE_WRITE_CHILD_DATA;
|
|
break;
|
|
case disk_cache::SparseControl::kGetRangeOperation:
|
|
return;
|
|
default:
|
|
NOTREACHED();
|
|
return;
|
|
}
|
|
net_log.EndEventWithNetErrorCode(event_type, result);
|
|
}
|
|
}
|
|
|
|
} // namespace.
|
|
|
|
namespace disk_cache {
|
|
|
|
SparseControl::SparseControl(EntryImpl* entry)
|
|
: entry_(entry),
|
|
child_(NULL),
|
|
operation_(kNoOperation),
|
|
pending_(false),
|
|
finished_(false),
|
|
init_(false),
|
|
range_found_(false),
|
|
abort_(false),
|
|
child_map_(child_data_.bitmap, kNumSparseBits, kNumSparseBits / 32),
|
|
offset_(0),
|
|
buf_len_(0),
|
|
child_offset_(0),
|
|
child_len_(0),
|
|
result_(0) {
|
|
memset(&sparse_header_, 0, sizeof(sparse_header_));
|
|
memset(&child_data_, 0, sizeof(child_data_));
|
|
}
|
|
|
|
SparseControl::~SparseControl() {
|
|
if (child_)
|
|
CloseChild();
|
|
if (init_)
|
|
WriteSparseData();
|
|
}
|
|
|
|
int SparseControl::Init() {
|
|
DCHECK(!init_);
|
|
|
|
// We should not have sparse data for the exposed entry.
|
|
if (entry_->GetDataSize(kSparseData))
|
|
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
|
|
|
|
// Now see if there is something where we store our data.
|
|
int rv = net::OK;
|
|
int data_len = entry_->GetDataSize(kSparseIndex);
|
|
if (!data_len) {
|
|
rv = CreateSparseEntry();
|
|
} else {
|
|
rv = OpenSparseEntry(data_len);
|
|
}
|
|
|
|
if (rv == net::OK)
|
|
init_ = true;
|
|
return rv;
|
|
}
|
|
|
|
bool SparseControl::CouldBeSparse() const {
|
|
DCHECK(!init_);
|
|
|
|
if (entry_->GetDataSize(kSparseData))
|
|
return false;
|
|
|
|
// We don't verify the data, just see if it could be there.
|
|
return (entry_->GetDataSize(kSparseIndex) != 0);
|
|
}
|
|
|
|
int SparseControl::StartIO(SparseOperation op,
|
|
int64_t offset,
|
|
net::IOBuffer* buf,
|
|
int buf_len,
|
|
const CompletionCallback& callback) {
|
|
DCHECK(init_);
|
|
// We don't support simultaneous IO for sparse data.
|
|
if (operation_ != kNoOperation)
|
|
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
|
|
|
|
if (offset < 0 || buf_len < 0)
|
|
return net::ERR_INVALID_ARGUMENT;
|
|
|
|
// We only support up to 64 GB.
|
|
if (static_cast<uint64_t>(offset) + static_cast<unsigned int>(buf_len) >=
|
|
UINT64_C(0x1000000000)) {
|
|
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
|
|
}
|
|
|
|
DCHECK(!user_buf_.get());
|
|
DCHECK(user_callback_.is_null());
|
|
|
|
if (!buf && (op == kReadOperation || op == kWriteOperation))
|
|
return 0;
|
|
|
|
// Copy the operation parameters.
|
|
operation_ = op;
|
|
offset_ = offset;
|
|
user_buf_ = buf ? new net::DrainableIOBuffer(buf, buf_len) : NULL;
|
|
buf_len_ = buf_len;
|
|
user_callback_ = callback;
|
|
|
|
result_ = 0;
|
|
pending_ = false;
|
|
finished_ = false;
|
|
abort_ = false;
|
|
|
|
if (entry_->net_log().IsCapturing()) {
|
|
entry_->net_log().BeginEvent(
|
|
GetSparseEventType(operation_),
|
|
CreateNetLogSparseOperationCallback(offset_, buf_len_));
|
|
}
|
|
DoChildrenIO();
|
|
|
|
if (!pending_) {
|
|
// Everything was done synchronously.
|
|
operation_ = kNoOperation;
|
|
user_buf_ = NULL;
|
|
user_callback_.Reset();
|
|
return result_;
|
|
}
|
|
|
|
return net::ERR_IO_PENDING;
|
|
}
|
|
|
|
int SparseControl::GetAvailableRange(int64_t offset, int len, int64_t* start) {
|
|
DCHECK(init_);
|
|
// We don't support simultaneous IO for sparse data.
|
|
if (operation_ != kNoOperation)
|
|
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
|
|
|
|
DCHECK(start);
|
|
|
|
range_found_ = false;
|
|
int result = StartIO(
|
|
kGetRangeOperation, offset, NULL, len, CompletionCallback());
|
|
if (range_found_) {
|
|
*start = offset_;
|
|
return result;
|
|
}
|
|
|
|
// This is a failure. We want to return a valid start value in any case.
|
|
*start = offset;
|
|
return result < 0 ? result : 0; // Don't mask error codes to the caller.
|
|
}
|
|
|
|
void SparseControl::CancelIO() {
|
|
if (operation_ == kNoOperation)
|
|
return;
|
|
abort_ = true;
|
|
}
|
|
|
|
int SparseControl::ReadyToUse(const CompletionCallback& callback) {
|
|
if (!abort_)
|
|
return net::OK;
|
|
|
|
// We'll grab another reference to keep this object alive because we just have
|
|
// one extra reference due to the pending IO operation itself, but we'll
|
|
// release that one before invoking user_callback_.
|
|
entry_->AddRef(); // Balanced in DoAbortCallbacks.
|
|
abort_callbacks_.push_back(callback);
|
|
return net::ERR_IO_PENDING;
|
|
}
|
|
|
|
// Static
|
|
void SparseControl::DeleteChildren(EntryImpl* entry) {
|
|
DCHECK(entry->GetEntryFlags() & PARENT_ENTRY);
|
|
int data_len = entry->GetDataSize(kSparseIndex);
|
|
if (data_len < static_cast<int>(sizeof(SparseData)) ||
|
|
entry->GetDataSize(kSparseData))
|
|
return;
|
|
|
|
int map_len = data_len - sizeof(SparseHeader);
|
|
if (map_len > kMaxMapSize || map_len % 4)
|
|
return;
|
|
|
|
char* buffer;
|
|
Addr address;
|
|
entry->GetData(kSparseIndex, &buffer, &address);
|
|
if (!buffer && !address.is_initialized())
|
|
return;
|
|
|
|
entry->net_log().AddEvent(net::NetLogEventType::SPARSE_DELETE_CHILDREN);
|
|
|
|
DCHECK(entry->backend_.get());
|
|
ChildrenDeleter* deleter = new ChildrenDeleter(entry->backend_.get(),
|
|
entry->GetKey());
|
|
// The object will self destruct when finished.
|
|
deleter->AddRef();
|
|
|
|
if (buffer) {
|
|
base::ThreadTaskRunnerHandle::Get()->PostTask(
|
|
FROM_HERE,
|
|
base::Bind(&ChildrenDeleter::Start, deleter, buffer, data_len));
|
|
} else {
|
|
base::ThreadTaskRunnerHandle::Get()->PostTask(
|
|
FROM_HERE,
|
|
base::Bind(&ChildrenDeleter::ReadData, deleter, address, data_len));
|
|
}
|
|
}
|
|
|
|
// We are going to start using this entry to store sparse data, so we have to
|
|
// initialize our control info.
|
|
int SparseControl::CreateSparseEntry() {
|
|
if (CHILD_ENTRY & entry_->GetEntryFlags())
|
|
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
|
|
|
|
memset(&sparse_header_, 0, sizeof(sparse_header_));
|
|
sparse_header_.signature = Time::Now().ToInternalValue();
|
|
sparse_header_.magic = kIndexMagic;
|
|
sparse_header_.parent_key_len = entry_->GetKey().size();
|
|
children_map_.Resize(kNumSparseBits, true);
|
|
|
|
// Save the header. The bitmap is saved in the destructor.
|
|
scoped_refptr<net::IOBuffer> buf(
|
|
new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_)));
|
|
|
|
int rv = entry_->WriteData(kSparseIndex, 0, buf.get(), sizeof(sparse_header_),
|
|
CompletionCallback(), false);
|
|
if (rv != sizeof(sparse_header_)) {
|
|
DLOG(ERROR) << "Unable to save sparse_header_";
|
|
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
|
|
}
|
|
|
|
entry_->SetEntryFlags(PARENT_ENTRY);
|
|
return net::OK;
|
|
}
|
|
|
|
// We are opening an entry from disk. Make sure that our control data is there.
|
|
int SparseControl::OpenSparseEntry(int data_len) {
|
|
if (data_len < static_cast<int>(sizeof(SparseData)))
|
|
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
|
|
|
|
if (entry_->GetDataSize(kSparseData))
|
|
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
|
|
|
|
if (!(PARENT_ENTRY & entry_->GetEntryFlags()))
|
|
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
|
|
|
|
// Dont't go over board with the bitmap. 8 KB gives us offsets up to 64 GB.
|
|
int map_len = data_len - sizeof(sparse_header_);
|
|
if (map_len > kMaxMapSize || map_len % 4)
|
|
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
|
|
|
|
scoped_refptr<net::IOBuffer> buf(
|
|
new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_)));
|
|
|
|
// Read header.
|
|
int rv = entry_->ReadData(kSparseIndex, 0, buf.get(), sizeof(sparse_header_),
|
|
CompletionCallback());
|
|
if (rv != static_cast<int>(sizeof(sparse_header_)))
|
|
return net::ERR_CACHE_READ_FAILURE;
|
|
|
|
// The real validation should be performed by the caller. This is just to
|
|
// double check.
|
|
if (sparse_header_.magic != kIndexMagic ||
|
|
sparse_header_.parent_key_len !=
|
|
static_cast<int>(entry_->GetKey().size()))
|
|
return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
|
|
|
|
// Read the actual bitmap.
|
|
buf = new net::IOBuffer(map_len);
|
|
rv = entry_->ReadData(kSparseIndex, sizeof(sparse_header_), buf.get(),
|
|
map_len, CompletionCallback());
|
|
if (rv != map_len)
|
|
return net::ERR_CACHE_READ_FAILURE;
|
|
|
|
// Grow the bitmap to the current size and copy the bits.
|
|
children_map_.Resize(map_len * 8, false);
|
|
children_map_.SetMap(reinterpret_cast<uint32_t*>(buf->data()), map_len);
|
|
return net::OK;
|
|
}
|
|
|
|
bool SparseControl::OpenChild() {
|
|
DCHECK_GE(result_, 0);
|
|
|
|
std::string key = GenerateChildKey();
|
|
if (child_) {
|
|
// Keep using the same child or open another one?.
|
|
if (key == child_->GetKey())
|
|
return true;
|
|
CloseChild();
|
|
}
|
|
|
|
// See if we are tracking this child.
|
|
if (!ChildPresent())
|
|
return ContinueWithoutChild(key);
|
|
|
|
if (!entry_->backend_.get())
|
|
return false;
|
|
|
|
child_ = entry_->backend_->OpenEntryImpl(key);
|
|
if (!child_)
|
|
return ContinueWithoutChild(key);
|
|
|
|
if (!(CHILD_ENTRY & child_->GetEntryFlags()) ||
|
|
child_->GetDataSize(kSparseIndex) < static_cast<int>(sizeof(child_data_)))
|
|
return KillChildAndContinue(key, false);
|
|
|
|
scoped_refptr<net::WrappedIOBuffer> buf(
|
|
new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
|
|
|
|
// Read signature.
|
|
int rv = child_->ReadData(kSparseIndex, 0, buf.get(), sizeof(child_data_),
|
|
CompletionCallback());
|
|
if (rv != sizeof(child_data_))
|
|
return KillChildAndContinue(key, true); // This is a fatal failure.
|
|
|
|
if (child_data_.header.signature != sparse_header_.signature ||
|
|
child_data_.header.magic != kIndexMagic)
|
|
return KillChildAndContinue(key, false);
|
|
|
|
if (child_data_.header.last_block_len < 0 ||
|
|
child_data_.header.last_block_len >= kBlockSize) {
|
|
// Make sure these values are always within range.
|
|
child_data_.header.last_block_len = 0;
|
|
child_data_.header.last_block = -1;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void SparseControl::CloseChild() {
|
|
scoped_refptr<net::WrappedIOBuffer> buf(
|
|
new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
|
|
|
|
// Save the allocation bitmap before closing the child entry.
|
|
int rv = child_->WriteData(kSparseIndex, 0, buf.get(), sizeof(child_data_),
|
|
CompletionCallback(), false);
|
|
if (rv != sizeof(child_data_))
|
|
DLOG(ERROR) << "Failed to save child data";
|
|
child_ = NULL;
|
|
}
|
|
|
|
std::string SparseControl::GenerateChildKey() {
|
|
return GenerateChildName(entry_->GetKey(), sparse_header_.signature,
|
|
offset_ >> 20);
|
|
}
|
|
|
|
// We are deleting the child because something went wrong.
|
|
bool SparseControl::KillChildAndContinue(const std::string& key, bool fatal) {
|
|
SetChildBit(false);
|
|
child_->DoomImpl();
|
|
child_ = NULL;
|
|
if (fatal) {
|
|
result_ = net::ERR_CACHE_READ_FAILURE;
|
|
return false;
|
|
}
|
|
return ContinueWithoutChild(key);
|
|
}
|
|
|
|
// We were not able to open this child; see what we can do.
|
|
bool SparseControl::ContinueWithoutChild(const std::string& key) {
|
|
if (kReadOperation == operation_)
|
|
return false;
|
|
if (kGetRangeOperation == operation_)
|
|
return true;
|
|
|
|
if (!entry_->backend_.get())
|
|
return false;
|
|
|
|
child_ = entry_->backend_->CreateEntryImpl(key);
|
|
if (!child_) {
|
|
child_ = NULL;
|
|
result_ = net::ERR_CACHE_READ_FAILURE;
|
|
return false;
|
|
}
|
|
// Write signature.
|
|
InitChildData();
|
|
return true;
|
|
}
|
|
|
|
bool SparseControl::ChildPresent() {
|
|
int child_bit = static_cast<int>(offset_ >> 20);
|
|
if (children_map_.Size() <= child_bit)
|
|
return false;
|
|
|
|
return children_map_.Get(child_bit);
|
|
}
|
|
|
|
void SparseControl::SetChildBit(bool value) {
|
|
int child_bit = static_cast<int>(offset_ >> 20);
|
|
|
|
// We may have to increase the bitmap of child entries.
|
|
if (children_map_.Size() <= child_bit)
|
|
children_map_.Resize(Bitmap::RequiredArraySize(child_bit + 1) * 32, true);
|
|
|
|
children_map_.Set(child_bit, value);
|
|
}
|
|
|
|
void SparseControl::WriteSparseData() {
|
|
scoped_refptr<net::IOBuffer> buf(new net::WrappedIOBuffer(
|
|
reinterpret_cast<const char*>(children_map_.GetMap())));
|
|
|
|
int len = children_map_.ArraySize() * 4;
|
|
int rv = entry_->WriteData(kSparseIndex, sizeof(sparse_header_), buf.get(),
|
|
len, CompletionCallback(), false);
|
|
if (rv != len) {
|
|
DLOG(ERROR) << "Unable to save sparse map";
|
|
}
|
|
}
|
|
|
|
bool SparseControl::VerifyRange() {
|
|
DCHECK_GE(result_, 0);
|
|
|
|
child_offset_ = static_cast<int>(offset_) & (kMaxEntrySize - 1);
|
|
child_len_ = std::min(buf_len_, kMaxEntrySize - child_offset_);
|
|
|
|
// We can write to (or get info from) anywhere in this child.
|
|
if (operation_ != kReadOperation)
|
|
return true;
|
|
|
|
// Check that there are no holes in this range.
|
|
int last_bit = (child_offset_ + child_len_ + 1023) >> 10;
|
|
int start = child_offset_ >> 10;
|
|
if (child_map_.FindNextBit(&start, last_bit, false)) {
|
|
// Something is not here.
|
|
DCHECK_GE(child_data_.header.last_block_len, 0);
|
|
DCHECK_LT(child_data_.header.last_block_len, kBlockSize);
|
|
int partial_block_len = PartialBlockLength(start);
|
|
if (start == child_offset_ >> 10) {
|
|
// It looks like we don't have anything.
|
|
if (partial_block_len <= (child_offset_ & (kBlockSize - 1)))
|
|
return false;
|
|
}
|
|
|
|
// We have the first part.
|
|
child_len_ = (start << 10) - child_offset_;
|
|
if (partial_block_len) {
|
|
// We may have a few extra bytes.
|
|
child_len_ = std::min(child_len_ + partial_block_len, buf_len_);
|
|
}
|
|
// There is no need to read more after this one.
|
|
buf_len_ = child_len_;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void SparseControl::UpdateRange(int result) {
|
|
if (result <= 0 || operation_ != kWriteOperation)
|
|
return;
|
|
|
|
DCHECK_GE(child_data_.header.last_block_len, 0);
|
|
DCHECK_LT(child_data_.header.last_block_len, kBlockSize);
|
|
|
|
// Write the bitmap.
|
|
int first_bit = child_offset_ >> 10;
|
|
int block_offset = child_offset_ & (kBlockSize - 1);
|
|
if (block_offset && (child_data_.header.last_block != first_bit ||
|
|
child_data_.header.last_block_len < block_offset)) {
|
|
// The first block is not completely filled; ignore it.
|
|
first_bit++;
|
|
}
|
|
|
|
int last_bit = (child_offset_ + result) >> 10;
|
|
block_offset = (child_offset_ + result) & (kBlockSize - 1);
|
|
|
|
// This condition will hit with the following criteria:
|
|
// 1. The first byte doesn't follow the last write.
|
|
// 2. The first byte is in the middle of a block.
|
|
// 3. The first byte and the last byte are in the same block.
|
|
if (first_bit > last_bit)
|
|
return;
|
|
|
|
if (block_offset && !child_map_.Get(last_bit)) {
|
|
// The last block is not completely filled; save it for later.
|
|
child_data_.header.last_block = last_bit;
|
|
child_data_.header.last_block_len = block_offset;
|
|
} else {
|
|
child_data_.header.last_block = -1;
|
|
}
|
|
|
|
child_map_.SetRange(first_bit, last_bit, true);
|
|
}
|
|
|
|
int SparseControl::PartialBlockLength(int block_index) const {
|
|
if (block_index == child_data_.header.last_block)
|
|
return child_data_.header.last_block_len;
|
|
|
|
// This is really empty.
|
|
return 0;
|
|
}
|
|
|
|
void SparseControl::InitChildData() {
|
|
child_->SetEntryFlags(CHILD_ENTRY);
|
|
|
|
memset(&child_data_, 0, sizeof(child_data_));
|
|
child_data_.header = sparse_header_;
|
|
|
|
scoped_refptr<net::WrappedIOBuffer> buf(
|
|
new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
|
|
|
|
int rv = child_->WriteData(kSparseIndex, 0, buf.get(), sizeof(child_data_),
|
|
CompletionCallback(), false);
|
|
if (rv != sizeof(child_data_))
|
|
DLOG(ERROR) << "Failed to save child data";
|
|
SetChildBit(true);
|
|
}
|
|
|
|
void SparseControl::DoChildrenIO() {
|
|
while (DoChildIO()) continue;
|
|
|
|
// Range operations are finished synchronously, often without setting
|
|
// |finished_| to true.
|
|
if (kGetRangeOperation == operation_ && entry_->net_log().IsCapturing()) {
|
|
entry_->net_log().EndEvent(
|
|
net::NetLogEventType::SPARSE_GET_RANGE,
|
|
CreateNetLogGetAvailableRangeResultCallback(offset_, result_));
|
|
}
|
|
if (finished_) {
|
|
if (kGetRangeOperation != operation_ && entry_->net_log().IsCapturing()) {
|
|
entry_->net_log().EndEvent(GetSparseEventType(operation_));
|
|
}
|
|
if (pending_)
|
|
DoUserCallback(); // Don't touch this object after this point.
|
|
}
|
|
}
|
|
|
|
bool SparseControl::DoChildIO() {
|
|
finished_ = true;
|
|
if (!buf_len_ || result_ < 0)
|
|
return false;
|
|
|
|
if (!OpenChild())
|
|
return false;
|
|
|
|
if (!VerifyRange())
|
|
return false;
|
|
|
|
// We have more work to do. Let's not trigger a callback to the caller.
|
|
finished_ = false;
|
|
CompletionCallback callback;
|
|
if (!user_callback_.is_null()) {
|
|
callback =
|
|
base::Bind(&SparseControl::OnChildIOCompleted, base::Unretained(this));
|
|
}
|
|
|
|
int rv = 0;
|
|
switch (operation_) {
|
|
case kReadOperation:
|
|
if (entry_->net_log().IsCapturing()) {
|
|
entry_->net_log().BeginEvent(
|
|
net::NetLogEventType::SPARSE_READ_CHILD_DATA,
|
|
CreateNetLogSparseReadWriteCallback(child_->net_log().source(),
|
|
child_len_));
|
|
}
|
|
rv = child_->ReadDataImpl(kSparseData, child_offset_, user_buf_.get(),
|
|
child_len_, callback);
|
|
break;
|
|
case kWriteOperation:
|
|
if (entry_->net_log().IsCapturing()) {
|
|
entry_->net_log().BeginEvent(
|
|
net::NetLogEventType::SPARSE_WRITE_CHILD_DATA,
|
|
CreateNetLogSparseReadWriteCallback(child_->net_log().source(),
|
|
child_len_));
|
|
}
|
|
rv = child_->WriteDataImpl(kSparseData, child_offset_, user_buf_.get(),
|
|
child_len_, callback, false);
|
|
break;
|
|
case kGetRangeOperation:
|
|
rv = DoGetAvailableRange();
|
|
break;
|
|
default:
|
|
NOTREACHED();
|
|
}
|
|
|
|
if (rv == net::ERR_IO_PENDING) {
|
|
if (!pending_) {
|
|
pending_ = true;
|
|
// The child will protect himself against closing the entry while IO is in
|
|
// progress. However, this entry can still be closed, and that would not
|
|
// be a good thing for us, so we increase the refcount until we're
|
|
// finished doing sparse stuff.
|
|
entry_->AddRef(); // Balanced in DoUserCallback.
|
|
}
|
|
return false;
|
|
}
|
|
if (!rv)
|
|
return false;
|
|
|
|
DoChildIOCompleted(rv);
|
|
return true;
|
|
}
|
|
|
|
int SparseControl::DoGetAvailableRange() {
|
|
if (!child_)
|
|
return child_len_; // Move on to the next child.
|
|
|
|
// Bits on the bitmap should only be set when the corresponding block was
|
|
// fully written (it's really being used). If a block is partially used, it
|
|
// has to start with valid data, the length of the valid data is saved in
|
|
// |header.last_block_len| and the block itself should match
|
|
// |header.last_block|.
|
|
//
|
|
// In other words, (|header.last_block| + |header.last_block_len|) is the
|
|
// offset where the last write ended, and data in that block (which is not
|
|
// marked as used because it is not full) will only be reused if the next
|
|
// write continues at that point.
|
|
//
|
|
// This code has to find if there is any data between child_offset_ and
|
|
// child_offset_ + child_len_.
|
|
int last_bit = (child_offset_ + child_len_ + kBlockSize - 1) >> 10;
|
|
int start = child_offset_ >> 10;
|
|
int partial_start_bytes = PartialBlockLength(start);
|
|
int found = start;
|
|
int bits_found = child_map_.FindBits(&found, last_bit, true);
|
|
bool is_last_block_in_range = start < child_data_.header.last_block &&
|
|
child_data_.header.last_block < last_bit;
|
|
|
|
int block_offset = child_offset_ & (kBlockSize - 1);
|
|
if (!bits_found && partial_start_bytes <= block_offset) {
|
|
if (!is_last_block_in_range)
|
|
return child_len_;
|
|
found = last_bit - 1; // There are some bytes here.
|
|
}
|
|
|
|
// We are done. Just break the loop and reset result_ to our real result.
|
|
range_found_ = true;
|
|
|
|
int bytes_found = bits_found << 10;
|
|
bytes_found += PartialBlockLength(found + bits_found);
|
|
|
|
// found now points to the first bytes. Lets see if we have data before it.
|
|
int empty_start = std::max((found << 10) - child_offset_, 0);
|
|
if (empty_start >= child_len_)
|
|
return child_len_;
|
|
|
|
// At this point we have bytes_found stored after (found << 10), and we want
|
|
// child_len_ bytes after child_offset_. The first empty_start bytes after
|
|
// child_offset_ are invalid.
|
|
|
|
if (start == found)
|
|
bytes_found -= block_offset;
|
|
|
|
// If the user is searching past the end of this child, bits_found is the
|
|
// right result; otherwise, we have some empty space at the start of this
|
|
// query that we have to subtract from the range that we searched.
|
|
result_ = std::min(bytes_found, child_len_ - empty_start);
|
|
|
|
if (partial_start_bytes) {
|
|
result_ = std::min(partial_start_bytes - block_offset, child_len_);
|
|
empty_start = 0;
|
|
}
|
|
|
|
// Only update offset_ when this query found zeros at the start.
|
|
if (empty_start)
|
|
offset_ += empty_start;
|
|
|
|
// This will actually break the loop.
|
|
buf_len_ = 0;
|
|
return 0;
|
|
}
|
|
|
|
void SparseControl::DoChildIOCompleted(int result) {
|
|
LogChildOperationEnd(entry_->net_log(), operation_, result);
|
|
if (result < 0) {
|
|
// We fail the whole operation if we encounter an error.
|
|
result_ = result;
|
|
return;
|
|
}
|
|
|
|
UpdateRange(result);
|
|
|
|
result_ += result;
|
|
offset_ += result;
|
|
buf_len_ -= result;
|
|
|
|
// We'll be reusing the user provided buffer for the next chunk.
|
|
if (buf_len_ && user_buf_.get())
|
|
user_buf_->DidConsume(result);
|
|
}
|
|
|
|
void SparseControl::OnChildIOCompleted(int result) {
|
|
DCHECK_NE(net::ERR_IO_PENDING, result);
|
|
DoChildIOCompleted(result);
|
|
|
|
if (abort_) {
|
|
// We'll return the current result of the operation, which may be less than
|
|
// the bytes to read or write, but the user cancelled the operation.
|
|
abort_ = false;
|
|
if (entry_->net_log().IsCapturing()) {
|
|
entry_->net_log().AddEvent(net::NetLogEventType::CANCELLED);
|
|
entry_->net_log().EndEvent(GetSparseEventType(operation_));
|
|
}
|
|
// We have an indirect reference to this object for every callback so if
|
|
// there is only one callback, we may delete this object before reaching
|
|
// DoAbortCallbacks.
|
|
bool has_abort_callbacks = !abort_callbacks_.empty();
|
|
DoUserCallback();
|
|
if (has_abort_callbacks)
|
|
DoAbortCallbacks();
|
|
return;
|
|
}
|
|
|
|
// We are running a callback from the message loop. It's time to restart what
|
|
// we were doing before.
|
|
DoChildrenIO();
|
|
}
|
|
|
|
void SparseControl::DoUserCallback() {
|
|
DCHECK(!user_callback_.is_null());
|
|
CompletionCallback cb = user_callback_;
|
|
user_callback_.Reset();
|
|
user_buf_ = NULL;
|
|
pending_ = false;
|
|
operation_ = kNoOperation;
|
|
int rv = result_;
|
|
entry_->Release(); // Don't touch object after this line.
|
|
cb.Run(rv);
|
|
}
|
|
|
|
void SparseControl::DoAbortCallbacks() {
|
|
std::vector<CompletionCallback> abort_callbacks;
|
|
abort_callbacks.swap(abort_callbacks_);
|
|
|
|
for (CompletionCallback& callback : abort_callbacks) {
|
|
// Releasing all references to entry_ may result in the destruction of this
|
|
// object so we should not be touching it after the last Release().
|
|
entry_->Release();
|
|
callback.Run(net::OK);
|
|
}
|
|
}
|
|
|
|
} // namespace disk_cache
|