naiveproxy/build/toolchain/win/BUILD.gn
2018-01-28 13:32:06 -05:00

479 lines
16 KiB
Plaintext

# Copyright (c) 2013 The Chromium Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
import("//build/config/clang/clang.gni")
import("//build/config/compiler/compiler.gni")
import("//build/config/sanitizers/sanitizers.gni")
import("//build/config/win/visual_studio_version.gni")
import("//build/toolchain/clang_static_analyzer.gni")
import("//build/toolchain/goma.gni")
import("//build/toolchain/toolchain.gni")
# Should only be running on Windows.
assert(is_win)
# Setup the Visual Studio state.
#
# Its arguments are the VS path and the compiler wrapper tool. It will write
# "environment.x86" and "environment.x64" to the build directory and return a
# list to us.
# This tool will is used as a wrapper for various commands below.
tool_wrapper_path = rebase_path("tool_wrapper.py", root_build_dir)
if (use_goma) {
if (host_os == "win") {
goma_prefix = "$goma_dir/gomacc.exe "
} else {
goma_prefix = "$goma_dir/gomacc "
}
} else {
goma_prefix = ""
}
if (disable_goma) {
goma_disabled = "true"
} else {
goma_disabled = "false"
}
# Copy the VS runtime DLL for the default toolchain to the root build directory
# so things will run.
if (current_toolchain == default_toolchain) {
if (is_debug) {
configuration_name = "Debug"
} else {
configuration_name = "Release"
}
exec_script("../../vs_toolchain.py",
[
"copy_dlls",
rebase_path(root_build_dir),
configuration_name,
target_cpu,
])
}
# Parameters:
# environment: File name of environment file.
#
# You would also define a toolchain_args variable with at least these set:
# current_cpu: current_cpu to pass as a build arg
# current_os: current_os to pass as a build arg
template("msvc_toolchain") {
toolchain(target_name) {
# When invoking this toolchain not as the default one, these args will be
# passed to the build. They are ignored when this is the default toolchain.
assert(defined(invoker.toolchain_args))
toolchain_args = {
if (defined(invoker.toolchain_args)) {
forward_variables_from(invoker.toolchain_args, "*")
}
# This value needs to be passed through unchanged.
host_toolchain = host_toolchain
current_os = "win"
}
# Make these apply to all tools below.
lib_switch = ""
lib_dir_switch = "/LIBPATH:"
# Object files go in this directory.
object_subdir = "{{target_out_dir}}/{{label_name}}"
env = invoker.environment
# When the invoker has explicitly overridden use_goma or cc_wrapper in the
# toolchain args, use those values, otherwise default to the global one.
# This works because the only reasonable override that toolchains might
# supply for these values are to force-disable them.
if (defined(toolchain_args.is_clang)) {
toolchain_uses_clang = toolchain_args.is_clang
} else {
toolchain_uses_clang = is_clang
}
if (toolchain_uses_clang && host_os != "win") {
# This toolchain definition uses response files for compilations. GN uses
# the quoting rules of the host OS, while clang-cl always defaults to
# cmd.exe quoting rules for parsing response files. Tell clang-cl to use
# POSIX quoting rules, so it can understand what GN generates.
cl = "${invoker.cl} --rsp-quoting=posix"
} else {
cl = invoker.cl
}
if (toolchain_uses_clang && use_clang_static_analyzer) {
analyzer_prefix =
"$python_path " +
rebase_path("//build/toolchain/clang_static_analyzer_wrapper.py",
root_build_dir) + " --mode=cl"
cl = "${analyzer_prefix} ${cl}"
}
if (use_lld) {
if (host_os == "win") {
lld_link = "lld-link.exe"
} else {
lld_link = "lld-link"
}
prefix = rebase_path("$clang_base_path/bin", root_build_dir)
# lld-link includes a replacement for lib.exe that can produce thin
# archives and understands bitcode (for lto builds).
lib = "$prefix/$lld_link /lib /llvmlibthin"
link = "$prefix/$lld_link"
if (host_os != "win") {
# See comment adding --rsp-quoting to $cl above for more information.
link = "$link --rsp-quoting=posix"
}
} else {
lib = "lib.exe"
link = "link.exe"
}
# If possible, pass system includes as flags to the compiler. When that's
# not possible, load a full environment file (containing %INCLUDE% and
# %PATH%) -- e.g. 32-bit MSVS builds require %PATH% to be set and just
# passing in a list of include directories isn't enough.
if (defined(invoker.sys_include_flags)) {
if (disable_goma) {
# If disable_goma = true, need to pass GOMA_DISABLED env to
# gomacc.exe via environment.{x86,x64}.
env_wrapper = "ninja -t msvc -e $env -- " # Note trailing space.
} else {
env_wrapper = ""
}
sys_include_flags = "${invoker.sys_include_flags} " # Note trailing space.
} else {
# clang-cl doesn't need this env hoop, so omit it there.
assert(!toolchain_uses_clang)
env_wrapper = "ninja -t msvc -e $env -- " # Note trailing space.
sys_include_flags = ""
}
clflags = ""
# Pass /FC flag to the compiler if needed.
if (msvc_use_absolute_paths) {
clflags += "/FC "
}
tool("cc") {
rspfile = "{{output}}.rsp"
precompiled_header_type = "msvc"
pdbname = "{{target_out_dir}}/{{label_name}}_c.pdb"
# Label names may have spaces in them so the pdbname must be quoted. The
# source and output don't need to be quoted because GN knows they're a
# full file name and will quote automatically when necessary.
command = "$env_wrapper$cl /nologo /showIncludes ${clflags} @$rspfile /c {{source}} /Fo{{output}} /Fd\"$pdbname\""
depsformat = "msvc"
description = "CC {{output}}"
outputs = [
"$object_subdir/{{source_name_part}}.obj",
]
rspfile_content = "$sys_include_flags{{defines}} {{include_dirs}} {{cflags}} {{cflags_c}}"
}
tool("cxx") {
rspfile = "{{output}}.rsp"
precompiled_header_type = "msvc"
# The PDB name needs to be different between C and C++ compiled files.
pdbname = "{{target_out_dir}}/{{label_name}}_cc.pdb"
# See comment in CC tool about quoting.
command = "$env_wrapper$cl /nologo /showIncludes ${clflags} @$rspfile /c {{source}} /Fo{{output}} /Fd\"$pdbname\""
depsformat = "msvc"
description = "CXX {{output}}"
outputs = [
"$object_subdir/{{source_name_part}}.obj",
]
rspfile_content = "$sys_include_flags{{defines}} {{include_dirs}} {{cflags}} {{cflags_cc}}"
}
tool("rc") {
command = "$python_path $tool_wrapper_path rc-wrapper $env rc.exe {{defines}} {{include_dirs}} /fo{{output}} {{source}}"
depsformat = "msvc"
outputs = [
"$object_subdir/{{source_name_part}}.res",
]
description = "RC {{output}}"
}
tool("asm") {
if (toolchain_args.current_cpu == "x64") {
ml = "ml64.exe"
} else {
ml = "ml.exe"
}
command = "$python_path $tool_wrapper_path asm-wrapper $env $ml {{defines}} {{include_dirs}} {{asmflags}} /c /Fo{{output}} {{source}}"
description = "ASM {{output}}"
outputs = [
"$object_subdir/{{source_name_part}}.obj",
]
}
tool("alink") {
rspfile = "{{output}}.rsp"
command = "$python_path $tool_wrapper_path link-wrapper $env False $lib /nologo {{arflags}} /OUT:{{output}} @$rspfile"
description = "LIB {{output}}"
outputs = [
# Ignore {{output_extension}} and always use .lib, there's no reason to
# allow targets to override this extension on Windows.
"{{output_dir}}/{{target_output_name}}.lib",
]
default_output_extension = ".lib"
default_output_dir = "{{target_out_dir}}"
# The use of inputs_newline is to work around a fixed per-line buffer
# size in the linker.
rspfile_content = "{{inputs_newline}}"
}
tool("solink") {
dllname = "{{output_dir}}/{{target_output_name}}{{output_extension}}" # e.g. foo.dll
libname = "${dllname}.lib" # e.g. foo.dll.lib
pdbname = "${dllname}.pdb"
rspfile = "${dllname}.rsp"
pool = "//build/toolchain:link_pool($default_toolchain)"
command = "$python_path $tool_wrapper_path link-wrapper $env False $link /nologo /IMPLIB:$libname /DLL /OUT:$dllname /PDB:$pdbname @$rspfile"
default_output_extension = ".dll"
default_output_dir = "{{root_out_dir}}"
description = "LINK(DLL) {{output}}"
outputs = [
dllname,
libname,
]
link_output = libname
depend_output = libname
runtime_outputs = [ dllname ]
if (symbol_level != 0) {
outputs += [ pdbname ]
runtime_outputs += [ pdbname ]
}
# Since the above commands only updates the .lib file when it changes, ask
# Ninja to check if the timestamp actually changed to know if downstream
# dependencies should be recompiled.
restat = true
# The use of inputs_newline is to work around a fixed per-line buffer
# size in the linker.
rspfile_content = "{{libs}} {{solibs}} {{inputs_newline}} {{ldflags}}"
}
tool("solink_module") {
dllname = "{{output_dir}}/{{target_output_name}}{{output_extension}}" # e.g. foo.dll
pdbname = "${dllname}.pdb"
rspfile = "${dllname}.rsp"
pool = "//build/toolchain:link_pool($default_toolchain)"
command = "$python_path $tool_wrapper_path link-wrapper $env False $link /nologo /DLL /OUT:$dllname /PDB:$pdbname @$rspfile"
default_output_extension = ".dll"
default_output_dir = "{{root_out_dir}}"
description = "LINK_MODULE(DLL) {{output}}"
outputs = [
dllname,
]
if (symbol_level != 0) {
outputs += [ pdbname ]
}
runtime_outputs = outputs
# The use of inputs_newline is to work around a fixed per-line buffer
# size in the linker.
rspfile_content = "{{libs}} {{solibs}} {{inputs_newline}} {{ldflags}}"
}
tool("link") {
exename = "{{output_dir}}/{{target_output_name}}{{output_extension}}"
pdbname = "$exename.pdb"
rspfile = "$exename.rsp"
pool = "//build/toolchain:link_pool($default_toolchain)"
command = "$python_path $tool_wrapper_path link-wrapper $env False $link /nologo /OUT:$exename /PDB:$pdbname @$rspfile"
if (is_official_build) {
# On bots, the binary's PDB grow and eventually exceed 4G, causing the
# link to fail. As there's no utility to keeping the PDB around
# incrementally anyway in this config (because we're doing
# non-incremental LTCG builds), delete it before linking.
command = "cmd /c $python_path $tool_wrapper_path delete-file $pdbname && $command"
}
if (linkrepro_root_dir != "") {
# Create the directory that will receive the link repro for this target
# if needed. Note that this will create one directory per link target
# even if this target doesn't generate a link repro. This is necessary
# because the linker doesn't generate the directory specified to the
# /LINKREPRO flag if it doesn't exist.
linkrepro_dir = "$linkrepro_root_dir\\{{target_output_name}}"
command = "cmd /c mkdir $linkrepro_dir && $command"
}
default_output_extension = ".exe"
default_output_dir = "{{root_out_dir}}"
description = "LINK {{output}}"
outputs = [
exename,
]
if (symbol_level != 0) {
outputs += [ pdbname ]
}
runtime_outputs = outputs
# The use of inputs_newline is to work around a fixed per-line buffer
# size in the linker.
rspfile_content = "{{inputs_newline}} {{libs}} {{solibs}} {{ldflags}}"
}
# These two are really entirely generic, but have to be repeated in
# each toolchain because GN doesn't allow a template to be used here.
# See //build/toolchain/toolchain.gni for details.
tool("stamp") {
command = stamp_command
description = stamp_description
}
tool("copy") {
command = copy_command
description = copy_description
}
}
}
if (host_os == "win") {
clang_cl = "clang-cl.exe"
} else {
clang_cl = "clang-cl"
}
# 32-bit toolchains. Only define these when the target architecture is 32-bit
# since we don't do any 32-bit cross compiles when targeting 64-bit (the
# build does generate some 64-bit stuff from 32-bit target builds).
if (target_cpu == "x86") {
x86_toolchain_data = exec_script("setup_toolchain.py",
[
visual_studio_path,
windows_sdk_path,
visual_studio_runtime_dirs,
"x86",
goma_disabled,
],
"scope")
msvc_toolchain("x86") {
environment = "environment.x86"
cl = "${goma_prefix}\"${x86_toolchain_data.vc_bin_dir}/cl.exe\""
toolchain_args = {
current_cpu = "x86"
is_clang = false
}
}
msvc_toolchain("win_clang_x86") {
environment = "environment.x86"
prefix = rebase_path("$clang_base_path/bin", root_build_dir)
cl = "${goma_prefix}$prefix/${clang_cl}"
sys_include_flags = "${x86_toolchain_data.include_flags_imsvc}"
toolchain_args = {
current_cpu = "x86"
is_clang = true
}
}
}
# 64-bit toolchains.
x64_toolchain_data = exec_script("setup_toolchain.py",
[
visual_studio_path,
windows_sdk_path,
visual_studio_runtime_dirs,
"x64",
goma_disabled,
],
"scope")
template("win_x64_toolchains") {
msvc_toolchain(target_name) {
environment = "environment.x64"
cl = "${goma_prefix}\"${x64_toolchain_data.vc_bin_dir}/cl.exe\""
toolchain_args = {
if (defined(invoker.toolchain_args)) {
forward_variables_from(invoker.toolchain_args, "*")
}
is_clang = false
current_cpu = "x64"
}
}
msvc_toolchain("win_clang_" + target_name) {
environment = "environment.x64"
prefix = rebase_path("$clang_base_path/bin", root_build_dir)
cl = "${goma_prefix}$prefix/${clang_cl}"
sys_include_flags = "${x64_toolchain_data.include_flags_imsvc}"
toolchain_args = {
if (defined(invoker.toolchain_args)) {
forward_variables_from(invoker.toolchain_args, "*")
}
is_clang = true
current_cpu = "x64"
}
}
}
win_x64_toolchains("x64") {
toolchain_args = {
# Use the defaults.
}
}
# The nacl_win64 toolchain is nearly identical to the plain x64 toolchain.
# It's used solely for building nacl64.exe (//components/nacl/broker:nacl64).
# The only reason it's a separate toolchain is so that it can force
# is_component_build to false in the toolchain_args() block, because
# building nacl64.exe in component style does not work.
win_x64_toolchains("nacl_win64") {
toolchain_args = {
is_component_build = false
}
}
# WinRT toolchains. Only define these when targeting them.
#
# NOTE: This is currently broken because it references vc_bin_dir. brettw@
# changed this around a bit, and I don't know what this should be set to
# in terms of what setup_toolchain returns for a certain CPU architecture.
if (target_os == "winrt_81" || target_os == "winrt_81_phone" ||
target_os == "winrt_10") {
msvc_toolchain("winrt_x86") {
environment = "environment.winrt_x86"
cl = "${goma_prefix}\"${vc_bin_dir}/cl.exe\""
toolchain_args = {
is_clang = false
current_cpu = "x86"
}
}
msvc_toolchain("winrt_x64") {
environment = "environment.winrt_x64"
cl = "${goma_prefix}\"${vc_bin_dir}/cl.exe\""
toolchain_args = {
is_clang = false
current_cpu = "x64"
}
}
}