naiveproxy/base/message_loop/message_loop.cc
2018-01-28 13:32:06 -05:00

602 lines
19 KiB
C++

// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/message_loop/message_loop.h"
#include <algorithm>
#include <utility>
#include "base/bind.h"
#include "base/compiler_specific.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/message_loop/message_pump_default.h"
#include "base/run_loop.h"
#include "base/third_party/dynamic_annotations/dynamic_annotations.h"
#include "base/threading/thread_id_name_manager.h"
#include "base/threading/thread_local.h"
#include "base/threading/thread_task_runner_handle.h"
#include "base/trace_event/trace_event.h"
#if defined(OS_MACOSX)
#include "base/message_loop/message_pump_mac.h"
#endif
#if defined(OS_POSIX) && !defined(OS_IOS) && !defined(OS_FUCHSIA)
#include "base/message_loop/message_pump_libevent.h"
#endif
#if defined(OS_FUCHSIA)
#include "base/message_loop/message_pump_fuchsia.h"
#endif
#if defined(OS_ANDROID)
#include "base/message_loop/message_pump_android.h"
#endif
#if defined(USE_GLIB)
#include "base/message_loop/message_pump_glib.h"
#endif
namespace base {
namespace {
// A lazily created thread local storage for quick access to a thread's message
// loop, if one exists.
base::ThreadLocalPointer<MessageLoop>* GetTLSMessageLoop() {
static auto* lazy_tls_ptr = new base::ThreadLocalPointer<MessageLoop>();
return lazy_tls_ptr;
}
MessageLoop::MessagePumpFactory* message_pump_for_ui_factory_ = nullptr;
#if defined(OS_IOS)
using MessagePumpForIO = MessagePumpIOSForIO;
#elif defined(OS_NACL_SFI)
using MessagePumpForIO = MessagePumpDefault;
#elif defined(OS_FUCHSIA)
using MessagePumpForIO = MessagePumpFuchsia;
#elif defined(OS_POSIX)
using MessagePumpForIO = MessagePumpLibevent;
#endif
#if !defined(OS_NACL_SFI)
MessagePumpForIO* ToPumpIO(MessagePump* pump) {
return static_cast<MessagePumpForIO*>(pump);
}
#endif // !defined(OS_NACL_SFI)
std::unique_ptr<MessagePump> ReturnPump(std::unique_ptr<MessagePump> pump) {
return pump;
}
} // namespace
//------------------------------------------------------------------------------
MessageLoop::TaskObserver::TaskObserver() = default;
MessageLoop::TaskObserver::~TaskObserver() = default;
MessageLoop::DestructionObserver::~DestructionObserver() = default;
//------------------------------------------------------------------------------
MessageLoop::MessageLoop(Type type)
: MessageLoop(type, MessagePumpFactoryCallback()) {
BindToCurrentThread();
}
MessageLoop::MessageLoop(std::unique_ptr<MessagePump> pump)
: MessageLoop(TYPE_CUSTOM, BindOnce(&ReturnPump, Passed(&pump))) {
BindToCurrentThread();
}
MessageLoop::~MessageLoop() {
// If |pump_| is non-null, this message loop has been bound and should be the
// current one on this thread. Otherwise, this loop is being destructed before
// it was bound to a thread, so a different message loop (or no loop at all)
// may be current.
DCHECK((pump_ && current() == this) || (!pump_ && current() != this));
// iOS just attaches to the loop, it doesn't Run it.
// TODO(stuartmorgan): Consider wiring up a Detach().
#if !defined(OS_IOS)
// There should be no active RunLoops on this thread, unless this MessageLoop
// isn't bound to the current thread (see other condition at the top of this
// method).
DCHECK((!pump_ && current() != this) || !RunLoop::IsRunningOnCurrentThread());
#endif
#if defined(OS_WIN)
if (in_high_res_mode_)
Time::ActivateHighResolutionTimer(false);
#endif
// Clean up any unprocessed tasks, but take care: deleting a task could
// result in the addition of more tasks (e.g., via DeleteSoon). We set a
// limit on the number of times we will allow a deleted task to generate more
// tasks. Normally, we should only pass through this loop once or twice. If
// we end up hitting the loop limit, then it is probably due to one task that
// is being stubborn. Inspect the queues to see who is left.
bool tasks_remain;
for (int i = 0; i < 100; ++i) {
DeletePendingTasks();
// If we end up with empty queues, then break out of the loop.
tasks_remain = incoming_task_queue_->triage_tasks().HasTasks();
if (!tasks_remain)
break;
}
DCHECK(!tasks_remain);
// Let interested parties have one last shot at accessing this.
for (auto& observer : destruction_observers_)
observer.WillDestroyCurrentMessageLoop();
thread_task_runner_handle_.reset();
// Tell the incoming queue that we are dying.
incoming_task_queue_->WillDestroyCurrentMessageLoop();
incoming_task_queue_ = nullptr;
unbound_task_runner_ = nullptr;
task_runner_ = nullptr;
// OK, now make it so that no one can find us.
if (current() == this)
GetTLSMessageLoop()->Set(nullptr);
}
// static
MessageLoop* MessageLoop::current() {
// TODO(darin): sadly, we cannot enable this yet since people call us even
// when they have no intention of using us.
// DCHECK(loop) << "Ouch, did you forget to initialize me?";
return GetTLSMessageLoop()->Get();
}
// static
bool MessageLoop::InitMessagePumpForUIFactory(MessagePumpFactory* factory) {
if (message_pump_for_ui_factory_)
return false;
message_pump_for_ui_factory_ = factory;
return true;
}
// static
std::unique_ptr<MessagePump> MessageLoop::CreateMessagePumpForType(Type type) {
// TODO(rvargas): Get rid of the OS guards.
#if defined(USE_GLIB) && !defined(OS_NACL)
using MessagePumpForUI = MessagePumpGlib;
#elif (defined(OS_LINUX) && !defined(OS_NACL)) || defined(OS_BSD)
using MessagePumpForUI = MessagePumpLibevent;
#elif defined(OS_FUCHSIA)
using MessagePumpForUI = MessagePumpFuchsia;
#endif
#if defined(OS_IOS) || defined(OS_MACOSX)
#define MESSAGE_PUMP_UI std::unique_ptr<MessagePump>(MessagePumpMac::Create())
#elif defined(OS_NACL) || defined(OS_AIX)
// Currently NaCl and AIX don't have a UI MessageLoop.
// TODO(abarth): Figure out if we need this.
#define MESSAGE_PUMP_UI std::unique_ptr<MessagePump>()
#else
#define MESSAGE_PUMP_UI std::unique_ptr<MessagePump>(new MessagePumpForUI())
#endif
#if defined(OS_MACOSX)
// Use an OS native runloop on Mac to support timer coalescing.
#define MESSAGE_PUMP_DEFAULT \
std::unique_ptr<MessagePump>(new MessagePumpCFRunLoop())
#else
#define MESSAGE_PUMP_DEFAULT \
std::unique_ptr<MessagePump>(new MessagePumpDefault())
#endif
if (type == MessageLoop::TYPE_UI) {
if (message_pump_for_ui_factory_)
return message_pump_for_ui_factory_();
return MESSAGE_PUMP_UI;
}
if (type == MessageLoop::TYPE_IO)
return std::unique_ptr<MessagePump>(new MessagePumpForIO());
#if defined(OS_ANDROID)
if (type == MessageLoop::TYPE_JAVA)
return std::unique_ptr<MessagePump>(new MessagePumpForUI());
#endif
DCHECK_EQ(MessageLoop::TYPE_DEFAULT, type);
return MESSAGE_PUMP_DEFAULT;
}
void MessageLoop::AddDestructionObserver(
DestructionObserver* destruction_observer) {
DCHECK_EQ(this, current());
destruction_observers_.AddObserver(destruction_observer);
}
void MessageLoop::RemoveDestructionObserver(
DestructionObserver* destruction_observer) {
DCHECK_EQ(this, current());
destruction_observers_.RemoveObserver(destruction_observer);
}
bool MessageLoop::IsType(Type type) const {
return type_ == type;
}
// static
Closure MessageLoop::QuitWhenIdleClosure() {
return Bind(&RunLoop::QuitCurrentWhenIdleDeprecated);
}
void MessageLoop::SetNestableTasksAllowed(bool allowed) {
if (allowed) {
CHECK(RunLoop::IsNestingAllowedOnCurrentThread());
// Kick the native pump just in case we enter a OS-driven nested message
// loop that does not go through RunLoop::Run().
pump_->ScheduleWork();
}
task_execution_allowed_ = allowed;
}
bool MessageLoop::NestableTasksAllowed() const {
return task_execution_allowed_;
}
// TODO(gab): Migrate TaskObservers to RunLoop as part of separating concerns
// between MessageLoop and RunLoop and making MessageLoop a swappable
// implementation detail. http://crbug.com/703346
void MessageLoop::AddTaskObserver(TaskObserver* task_observer) {
DCHECK_EQ(this, current());
CHECK(allow_task_observers_);
task_observers_.AddObserver(task_observer);
}
void MessageLoop::RemoveTaskObserver(TaskObserver* task_observer) {
DCHECK_EQ(this, current());
CHECK(allow_task_observers_);
task_observers_.RemoveObserver(task_observer);
}
bool MessageLoop::IsIdleForTesting() {
// We only check the incoming queue, since we don't want to lock the work
// queue.
return incoming_task_queue_->IsIdleForTesting();
}
//------------------------------------------------------------------------------
// static
std::unique_ptr<MessageLoop> MessageLoop::CreateUnbound(
Type type,
MessagePumpFactoryCallback pump_factory) {
return WrapUnique(new MessageLoop(type, std::move(pump_factory)));
}
MessageLoop::MessageLoop(Type type, MessagePumpFactoryCallback pump_factory)
: type_(type),
pump_factory_(std::move(pump_factory)),
incoming_task_queue_(new internal::IncomingTaskQueue(this)),
unbound_task_runner_(
new internal::MessageLoopTaskRunner(incoming_task_queue_)),
task_runner_(unbound_task_runner_) {
// If type is TYPE_CUSTOM non-null pump_factory must be given.
DCHECK(type_ != TYPE_CUSTOM || !pump_factory_.is_null());
}
void MessageLoop::BindToCurrentThread() {
DCHECK(!pump_);
if (!pump_factory_.is_null())
pump_ = std::move(pump_factory_).Run();
else
pump_ = CreateMessagePumpForType(type_);
DCHECK(!current()) << "should only have one message loop per thread";
GetTLSMessageLoop()->Set(this);
incoming_task_queue_->StartScheduling();
unbound_task_runner_->BindToCurrentThread();
unbound_task_runner_ = nullptr;
SetThreadTaskRunnerHandle();
thread_id_ = PlatformThread::CurrentId();
scoped_set_sequence_local_storage_map_for_current_thread_ = std::make_unique<
internal::ScopedSetSequenceLocalStorageMapForCurrentThread>(
&sequence_local_storage_map_);
run_loop_client_ = RunLoop::RegisterDelegateForCurrentThread(this);
}
std::string MessageLoop::GetThreadName() const {
DCHECK_NE(kInvalidThreadId, thread_id_)
<< "GetThreadName() must only be called after BindToCurrentThread()'s "
<< "side-effects have been synchronized with this thread.";
return ThreadIdNameManager::GetInstance()->GetName(thread_id_);
}
void MessageLoop::SetTaskRunner(
scoped_refptr<SingleThreadTaskRunner> task_runner) {
DCHECK_EQ(this, current());
DCHECK(task_runner);
DCHECK(task_runner->BelongsToCurrentThread());
DCHECK(!unbound_task_runner_);
task_runner_ = std::move(task_runner);
SetThreadTaskRunnerHandle();
}
void MessageLoop::ClearTaskRunnerForTesting() {
DCHECK_EQ(this, current());
DCHECK(!unbound_task_runner_);
task_runner_ = nullptr;
thread_task_runner_handle_.reset();
}
void MessageLoop::Run(bool application_tasks_allowed) {
DCHECK_EQ(this, current());
if (application_tasks_allowed && !task_execution_allowed_) {
// Allow nested task execution as explicitly requested.
DCHECK(run_loop_client_->IsNested());
task_execution_allowed_ = true;
pump_->Run(this);
task_execution_allowed_ = false;
} else {
pump_->Run(this);
}
}
void MessageLoop::Quit() {
DCHECK_EQ(this, current());
pump_->Quit();
}
void MessageLoop::EnsureWorkScheduled() {
DCHECK_EQ(this, current());
if (incoming_task_queue_->triage_tasks().HasTasks())
pump_->ScheduleWork();
}
void MessageLoop::SetThreadTaskRunnerHandle() {
DCHECK_EQ(this, current());
// Clear the previous thread task runner first, because only one can exist at
// a time.
thread_task_runner_handle_.reset();
thread_task_runner_handle_.reset(new ThreadTaskRunnerHandle(task_runner_));
}
bool MessageLoop::ProcessNextDelayedNonNestableTask() {
if (run_loop_client_->IsNested())
return false;
while (incoming_task_queue_->deferred_tasks().HasTasks()) {
PendingTask pending_task = incoming_task_queue_->deferred_tasks().Pop();
if (!pending_task.task.IsCancelled()) {
RunTask(&pending_task);
return true;
}
}
return false;
}
void MessageLoop::RunTask(PendingTask* pending_task) {
DCHECK(task_execution_allowed_);
current_pending_task_ = pending_task;
// Execute the task and assume the worst: It is probably not reentrant.
task_execution_allowed_ = false;
TRACE_TASK_EXECUTION("MessageLoop::RunTask", *pending_task);
for (auto& observer : task_observers_)
observer.WillProcessTask(*pending_task);
incoming_task_queue_->RunTask(pending_task);
for (auto& observer : task_observers_)
observer.DidProcessTask(*pending_task);
task_execution_allowed_ = true;
current_pending_task_ = nullptr;
}
bool MessageLoop::DeferOrRunPendingTask(PendingTask pending_task) {
if (pending_task.nestable == Nestable::kNestable ||
!run_loop_client_->IsNested()) {
RunTask(&pending_task);
// Show that we ran a task (Note: a new one might arrive as a
// consequence!).
return true;
}
// We couldn't run the task now because we're in a nested run loop
// and the task isn't nestable.
incoming_task_queue_->deferred_tasks().Push(std::move(pending_task));
return false;
}
void MessageLoop::DeletePendingTasks() {
incoming_task_queue_->triage_tasks().Clear();
incoming_task_queue_->deferred_tasks().Clear();
// TODO(robliao): Determine if we can move delayed task destruction before
// deferred tasks to maintain the MessagePump DoWork, DoDelayedWork, and
// DoIdleWork processing order.
incoming_task_queue_->delayed_tasks().Clear();
}
void MessageLoop::ScheduleWork() {
pump_->ScheduleWork();
}
bool MessageLoop::DoWork() {
if (!task_execution_allowed_)
return false;
// Execute oldest task.
while (incoming_task_queue_->triage_tasks().HasTasks()) {
PendingTask pending_task = incoming_task_queue_->triage_tasks().Pop();
if (pending_task.task.IsCancelled())
continue;
if (!pending_task.delayed_run_time.is_null()) {
int sequence_num = pending_task.sequence_num;
TimeTicks delayed_run_time = pending_task.delayed_run_time;
incoming_task_queue_->delayed_tasks().Push(std::move(pending_task));
// If we changed the topmost task, then it is time to reschedule.
if (incoming_task_queue_->delayed_tasks().Peek().sequence_num ==
sequence_num) {
pump_->ScheduleDelayedWork(delayed_run_time);
}
} else if (DeferOrRunPendingTask(std::move(pending_task))) {
return true;
}
}
// Nothing happened.
return false;
}
bool MessageLoop::DoDelayedWork(TimeTicks* next_delayed_work_time) {
if (!task_execution_allowed_ ||
!incoming_task_queue_->delayed_tasks().HasTasks()) {
recent_time_ = *next_delayed_work_time = TimeTicks();
return false;
}
// When we "fall behind", there will be a lot of tasks in the delayed work
// queue that are ready to run. To increase efficiency when we fall behind,
// we will only call Time::Now() intermittently, and then process all tasks
// that are ready to run before calling it again. As a result, the more we
// fall behind (and have a lot of ready-to-run delayed tasks), the more
// efficient we'll be at handling the tasks.
TimeTicks next_run_time =
incoming_task_queue_->delayed_tasks().Peek().delayed_run_time;
if (next_run_time > recent_time_) {
recent_time_ = TimeTicks::Now(); // Get a better view of Now();
if (next_run_time > recent_time_) {
*next_delayed_work_time = next_run_time;
return false;
}
}
PendingTask pending_task = incoming_task_queue_->delayed_tasks().Pop();
if (incoming_task_queue_->delayed_tasks().HasTasks()) {
*next_delayed_work_time =
incoming_task_queue_->delayed_tasks().Peek().delayed_run_time;
}
return DeferOrRunPendingTask(std::move(pending_task));
}
bool MessageLoop::DoIdleWork() {
if (ProcessNextDelayedNonNestableTask())
return true;
if (run_loop_client_->ShouldQuitWhenIdle())
pump_->Quit();
// When we return we will do a kernel wait for more tasks.
#if defined(OS_WIN)
// On Windows we activate the high resolution timer so that the wait
// _if_ triggered by the timer happens with good resolution. If we don't
// do this the default resolution is 15ms which might not be acceptable
// for some tasks.
bool high_res = incoming_task_queue_->HasPendingHighResolutionTasks();
if (high_res != in_high_res_mode_) {
in_high_res_mode_ = high_res;
Time::ActivateHighResolutionTimer(in_high_res_mode_);
}
#endif
return false;
}
#if !defined(OS_NACL)
//------------------------------------------------------------------------------
// MessageLoopForUI
MessageLoopForUI::MessageLoopForUI(std::unique_ptr<MessagePump> pump)
: MessageLoop(TYPE_UI, BindOnce(&ReturnPump, std::move(pump))) {}
#if defined(OS_ANDROID)
void MessageLoopForUI::Start() {
// No Histogram support for UI message loop as it is managed by Java side
static_cast<MessagePumpForUI*>(pump_.get())->Start(this);
}
void MessageLoopForUI::Abort() {
static_cast<MessagePumpForUI*>(pump_.get())->Abort();
}
#endif
#if defined(OS_IOS)
void MessageLoopForUI::Attach() {
static_cast<MessagePumpUIApplication*>(pump_.get())->Attach(this);
}
#endif
#if (defined(USE_OZONE) && !defined(OS_FUCHSIA)) || \
(defined(USE_X11) && !defined(USE_GLIB))
bool MessageLoopForUI::WatchFileDescriptor(
int fd,
bool persistent,
MessagePumpLibevent::Mode mode,
MessagePumpLibevent::FileDescriptorWatcher *controller,
MessagePumpLibevent::Watcher *delegate) {
return static_cast<MessagePumpLibevent*>(pump_.get())->WatchFileDescriptor(
fd,
persistent,
mode,
controller,
delegate);
}
#endif
#endif // !defined(OS_NACL)
//------------------------------------------------------------------------------
// MessageLoopForIO
#if !defined(OS_NACL_SFI)
#if defined(OS_WIN)
void MessageLoopForIO::RegisterIOHandler(HANDLE file, IOHandler* handler) {
ToPumpIO(pump_.get())->RegisterIOHandler(file, handler);
}
bool MessageLoopForIO::RegisterJobObject(HANDLE job, IOHandler* handler) {
return ToPumpIO(pump_.get())->RegisterJobObject(job, handler);
}
bool MessageLoopForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
return ToPumpIO(pump_.get())->WaitForIOCompletion(timeout, filter);
}
#elif defined(OS_POSIX)
bool MessageLoopForIO::WatchFileDescriptor(int fd,
bool persistent,
Mode mode,
FileDescriptorWatcher* controller,
Watcher* delegate) {
return ToPumpIO(pump_.get())->WatchFileDescriptor(
fd,
persistent,
mode,
controller,
delegate);
}
#endif
#endif // !defined(OS_NACL_SFI)
#if defined(OS_FUCHSIA)
// Additional watch API for native platform resources.
bool MessageLoopForIO::WatchZxHandle(zx_handle_t handle,
bool persistent,
zx_signals_t signals,
ZxHandleWatchController* controller,
ZxHandleWatcher* delegate) {
return ToPumpIO(pump_.get())
->WatchZxHandle(handle, persistent, signals, controller, delegate);
}
#endif
} // namespace base