mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-24 14:26:09 +03:00
892 lines
30 KiB
C++
892 lines
30 KiB
C++
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "base/debug/stack_trace.h"
|
|
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <signal.h>
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/param.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
|
|
#include <algorithm>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <ostream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#if !defined(USE_SYMBOLIZE)
|
|
#include <cxxabi.h>
|
|
#endif
|
|
#if !defined(__UCLIBC__) && !defined(_AIX)
|
|
#include <execinfo.h>
|
|
#endif
|
|
|
|
#if defined(OS_MACOSX)
|
|
#include <AvailabilityMacros.h>
|
|
#endif
|
|
|
|
#if defined(OS_LINUX)
|
|
#include "base/debug/proc_maps_linux.h"
|
|
#endif
|
|
|
|
#include "base/cfi_flags.h"
|
|
#include "base/debug/debugger.h"
|
|
#include "base/files/scoped_file.h"
|
|
#include "base/logging.h"
|
|
#include "base/macros.h"
|
|
#include "base/memory/free_deleter.h"
|
|
#include "base/memory/singleton.h"
|
|
#include "base/numerics/safe_conversions.h"
|
|
#include "base/posix/eintr_wrapper.h"
|
|
#include "base/strings/string_number_conversions.h"
|
|
#include "build/build_config.h"
|
|
|
|
#if defined(USE_SYMBOLIZE)
|
|
#include "base/third_party/symbolize/symbolize.h"
|
|
#endif
|
|
|
|
namespace base {
|
|
namespace debug {
|
|
|
|
namespace {
|
|
|
|
volatile sig_atomic_t in_signal_handler = 0;
|
|
|
|
bool (*try_handle_signal)(int, void*, void*) = nullptr;
|
|
|
|
#if !defined(USE_SYMBOLIZE)
|
|
// The prefix used for mangled symbols, per the Itanium C++ ABI:
|
|
// http://www.codesourcery.com/cxx-abi/abi.html#mangling
|
|
const char kMangledSymbolPrefix[] = "_Z";
|
|
|
|
// Characters that can be used for symbols, generated by Ruby:
|
|
// (('a'..'z').to_a+('A'..'Z').to_a+('0'..'9').to_a + ['_']).join
|
|
const char kSymbolCharacters[] =
|
|
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_";
|
|
#endif // !defined(USE_SYMBOLIZE)
|
|
|
|
#if !defined(USE_SYMBOLIZE)
|
|
// Demangles C++ symbols in the given text. Example:
|
|
//
|
|
// "out/Debug/base_unittests(_ZN10StackTraceC1Ev+0x20) [0x817778c]"
|
|
// =>
|
|
// "out/Debug/base_unittests(StackTrace::StackTrace()+0x20) [0x817778c]"
|
|
void DemangleSymbols(std::string* text) {
|
|
// Note: code in this function is NOT async-signal safe (std::string uses
|
|
// malloc internally).
|
|
|
|
#if !defined(__UCLIBC__) && !defined(_AIX)
|
|
std::string::size_type search_from = 0;
|
|
while (search_from < text->size()) {
|
|
// Look for the start of a mangled symbol, from search_from.
|
|
std::string::size_type mangled_start =
|
|
text->find(kMangledSymbolPrefix, search_from);
|
|
if (mangled_start == std::string::npos) {
|
|
break; // Mangled symbol not found.
|
|
}
|
|
|
|
// Look for the end of the mangled symbol.
|
|
std::string::size_type mangled_end =
|
|
text->find_first_not_of(kSymbolCharacters, mangled_start);
|
|
if (mangled_end == std::string::npos) {
|
|
mangled_end = text->size();
|
|
}
|
|
std::string mangled_symbol =
|
|
text->substr(mangled_start, mangled_end - mangled_start);
|
|
|
|
// Try to demangle the mangled symbol candidate.
|
|
int status = 0;
|
|
std::unique_ptr<char, base::FreeDeleter> demangled_symbol(
|
|
abi::__cxa_demangle(mangled_symbol.c_str(), nullptr, 0, &status));
|
|
if (status == 0) { // Demangling is successful.
|
|
// Remove the mangled symbol.
|
|
text->erase(mangled_start, mangled_end - mangled_start);
|
|
// Insert the demangled symbol.
|
|
text->insert(mangled_start, demangled_symbol.get());
|
|
// Next time, we'll start right after the demangled symbol we inserted.
|
|
search_from = mangled_start + strlen(demangled_symbol.get());
|
|
} else {
|
|
// Failed to demangle. Retry after the "_Z" we just found.
|
|
search_from = mangled_start + 2;
|
|
}
|
|
}
|
|
#endif // !defined(__UCLIBC__) && !defined(_AIX)
|
|
}
|
|
#endif // !defined(USE_SYMBOLIZE)
|
|
|
|
class BacktraceOutputHandler {
|
|
public:
|
|
virtual void HandleOutput(const char* output) = 0;
|
|
|
|
protected:
|
|
virtual ~BacktraceOutputHandler() = default;
|
|
};
|
|
|
|
#if !defined(__UCLIBC__) && !defined(_AIX)
|
|
void OutputPointer(void* pointer, BacktraceOutputHandler* handler) {
|
|
// This should be more than enough to store a 64-bit number in hex:
|
|
// 16 hex digits + 1 for null-terminator.
|
|
char buf[17] = { '\0' };
|
|
handler->HandleOutput("0x");
|
|
internal::itoa_r(reinterpret_cast<intptr_t>(pointer),
|
|
buf, sizeof(buf), 16, 12);
|
|
handler->HandleOutput(buf);
|
|
}
|
|
|
|
#if defined(USE_SYMBOLIZE)
|
|
void OutputFrameId(intptr_t frame_id, BacktraceOutputHandler* handler) {
|
|
// Max unsigned 64-bit number in decimal has 20 digits (18446744073709551615).
|
|
// Hence, 30 digits should be more than enough to represent it in decimal
|
|
// (including the null-terminator).
|
|
char buf[30] = { '\0' };
|
|
handler->HandleOutput("#");
|
|
internal::itoa_r(frame_id, buf, sizeof(buf), 10, 1);
|
|
handler->HandleOutput(buf);
|
|
}
|
|
#endif // defined(USE_SYMBOLIZE)
|
|
|
|
void ProcessBacktrace(void *const *trace,
|
|
size_t size,
|
|
BacktraceOutputHandler* handler) {
|
|
// NOTE: This code MUST be async-signal safe (it's used by in-process
|
|
// stack dumping signal handler). NO malloc or stdio is allowed here.
|
|
|
|
#if defined(USE_SYMBOLIZE)
|
|
for (size_t i = 0; i < size; ++i) {
|
|
OutputFrameId(i, handler);
|
|
handler->HandleOutput(" ");
|
|
OutputPointer(trace[i], handler);
|
|
handler->HandleOutput(" ");
|
|
|
|
char buf[1024] = { '\0' };
|
|
|
|
// Subtract by one as return address of function may be in the next
|
|
// function when a function is annotated as noreturn.
|
|
void* address = static_cast<char*>(trace[i]) - 1;
|
|
if (google::Symbolize(address, buf, sizeof(buf)))
|
|
handler->HandleOutput(buf);
|
|
else
|
|
handler->HandleOutput("<unknown>");
|
|
|
|
handler->HandleOutput("\n");
|
|
}
|
|
#else
|
|
bool printed = false;
|
|
|
|
// Below part is async-signal unsafe (uses malloc), so execute it only
|
|
// when we are not executing the signal handler.
|
|
if (in_signal_handler == 0) {
|
|
std::unique_ptr<char*, FreeDeleter> trace_symbols(
|
|
backtrace_symbols(trace, size));
|
|
if (trace_symbols.get()) {
|
|
for (size_t i = 0; i < size; ++i) {
|
|
std::string trace_symbol = trace_symbols.get()[i];
|
|
DemangleSymbols(&trace_symbol);
|
|
handler->HandleOutput(trace_symbol.c_str());
|
|
handler->HandleOutput("\n");
|
|
}
|
|
|
|
printed = true;
|
|
}
|
|
}
|
|
|
|
if (!printed) {
|
|
for (size_t i = 0; i < size; ++i) {
|
|
handler->HandleOutput(" [");
|
|
OutputPointer(trace[i], handler);
|
|
handler->HandleOutput("]\n");
|
|
}
|
|
}
|
|
#endif // defined(USE_SYMBOLIZE)
|
|
}
|
|
#endif // !defined(__UCLIBC__) && !defined(_AIX)
|
|
|
|
void PrintToStderr(const char* output) {
|
|
// NOTE: This code MUST be async-signal safe (it's used by in-process
|
|
// stack dumping signal handler). NO malloc or stdio is allowed here.
|
|
ignore_result(HANDLE_EINTR(write(STDERR_FILENO, output, strlen(output))));
|
|
}
|
|
|
|
void StackDumpSignalHandler(int signal, siginfo_t* info, void* void_context) {
|
|
// NOTE: This code MUST be async-signal safe.
|
|
// NO malloc or stdio is allowed here.
|
|
|
|
// Give a registered callback a chance to recover from this signal
|
|
//
|
|
// V8 uses guard regions to guarantee memory safety in WebAssembly. This means
|
|
// some signals might be expected if they originate from Wasm code while
|
|
// accessing the guard region. We give V8 the chance to handle and recover
|
|
// from these signals first.
|
|
if (try_handle_signal != nullptr &&
|
|
try_handle_signal(signal, info, void_context)) {
|
|
// The first chance handler took care of this. The SA_RESETHAND flag
|
|
// replaced this signal handler upon entry, but we want to stay
|
|
// installed. Thus, we reinstall ourselves before returning.
|
|
struct sigaction action;
|
|
memset(&action, 0, sizeof(action));
|
|
action.sa_flags = SA_RESETHAND | SA_SIGINFO;
|
|
action.sa_sigaction = &StackDumpSignalHandler;
|
|
sigemptyset(&action.sa_mask);
|
|
|
|
sigaction(signal, &action, nullptr);
|
|
return;
|
|
}
|
|
|
|
// Record the fact that we are in the signal handler now, so that the rest
|
|
// of StackTrace can behave in an async-signal-safe manner.
|
|
in_signal_handler = 1;
|
|
|
|
if (BeingDebugged())
|
|
BreakDebugger();
|
|
|
|
PrintToStderr("Received signal ");
|
|
char buf[1024] = { 0 };
|
|
internal::itoa_r(signal, buf, sizeof(buf), 10, 0);
|
|
PrintToStderr(buf);
|
|
if (signal == SIGBUS) {
|
|
if (info->si_code == BUS_ADRALN)
|
|
PrintToStderr(" BUS_ADRALN ");
|
|
else if (info->si_code == BUS_ADRERR)
|
|
PrintToStderr(" BUS_ADRERR ");
|
|
else if (info->si_code == BUS_OBJERR)
|
|
PrintToStderr(" BUS_OBJERR ");
|
|
else
|
|
PrintToStderr(" <unknown> ");
|
|
} else if (signal == SIGFPE) {
|
|
if (info->si_code == FPE_FLTDIV)
|
|
PrintToStderr(" FPE_FLTDIV ");
|
|
else if (info->si_code == FPE_FLTINV)
|
|
PrintToStderr(" FPE_FLTINV ");
|
|
else if (info->si_code == FPE_FLTOVF)
|
|
PrintToStderr(" FPE_FLTOVF ");
|
|
else if (info->si_code == FPE_FLTRES)
|
|
PrintToStderr(" FPE_FLTRES ");
|
|
else if (info->si_code == FPE_FLTSUB)
|
|
PrintToStderr(" FPE_FLTSUB ");
|
|
else if (info->si_code == FPE_FLTUND)
|
|
PrintToStderr(" FPE_FLTUND ");
|
|
else if (info->si_code == FPE_INTDIV)
|
|
PrintToStderr(" FPE_INTDIV ");
|
|
else if (info->si_code == FPE_INTOVF)
|
|
PrintToStderr(" FPE_INTOVF ");
|
|
else
|
|
PrintToStderr(" <unknown> ");
|
|
} else if (signal == SIGILL) {
|
|
if (info->si_code == ILL_BADSTK)
|
|
PrintToStderr(" ILL_BADSTK ");
|
|
else if (info->si_code == ILL_COPROC)
|
|
PrintToStderr(" ILL_COPROC ");
|
|
else if (info->si_code == ILL_ILLOPN)
|
|
PrintToStderr(" ILL_ILLOPN ");
|
|
else if (info->si_code == ILL_ILLADR)
|
|
PrintToStderr(" ILL_ILLADR ");
|
|
else if (info->si_code == ILL_ILLTRP)
|
|
PrintToStderr(" ILL_ILLTRP ");
|
|
else if (info->si_code == ILL_PRVOPC)
|
|
PrintToStderr(" ILL_PRVOPC ");
|
|
else if (info->si_code == ILL_PRVREG)
|
|
PrintToStderr(" ILL_PRVREG ");
|
|
else
|
|
PrintToStderr(" <unknown> ");
|
|
} else if (signal == SIGSEGV) {
|
|
if (info->si_code == SEGV_MAPERR)
|
|
PrintToStderr(" SEGV_MAPERR ");
|
|
else if (info->si_code == SEGV_ACCERR)
|
|
PrintToStderr(" SEGV_ACCERR ");
|
|
else
|
|
PrintToStderr(" <unknown> ");
|
|
}
|
|
if (signal == SIGBUS || signal == SIGFPE ||
|
|
signal == SIGILL || signal == SIGSEGV) {
|
|
internal::itoa_r(reinterpret_cast<intptr_t>(info->si_addr),
|
|
buf, sizeof(buf), 16, 12);
|
|
PrintToStderr(buf);
|
|
}
|
|
PrintToStderr("\n");
|
|
|
|
#if BUILDFLAG(CFI_ENFORCEMENT_TRAP)
|
|
if (signal == SIGILL && info->si_code == ILL_ILLOPN) {
|
|
PrintToStderr(
|
|
"CFI: Most likely a control flow integrity violation; for more "
|
|
"information see:\n");
|
|
PrintToStderr(
|
|
"https://www.chromium.org/developers/testing/control-flow-integrity\n");
|
|
}
|
|
#endif // BUILDFLAG(CFI_ENFORCEMENT_TRAP)
|
|
|
|
debug::StackTrace().Print();
|
|
|
|
#if defined(OS_LINUX)
|
|
#if ARCH_CPU_X86_FAMILY
|
|
ucontext_t* context = reinterpret_cast<ucontext_t*>(void_context);
|
|
const struct {
|
|
const char* label;
|
|
greg_t value;
|
|
} registers[] = {
|
|
#if ARCH_CPU_32_BITS
|
|
{ " gs: ", context->uc_mcontext.gregs[REG_GS] },
|
|
{ " fs: ", context->uc_mcontext.gregs[REG_FS] },
|
|
{ " es: ", context->uc_mcontext.gregs[REG_ES] },
|
|
{ " ds: ", context->uc_mcontext.gregs[REG_DS] },
|
|
{ " edi: ", context->uc_mcontext.gregs[REG_EDI] },
|
|
{ " esi: ", context->uc_mcontext.gregs[REG_ESI] },
|
|
{ " ebp: ", context->uc_mcontext.gregs[REG_EBP] },
|
|
{ " esp: ", context->uc_mcontext.gregs[REG_ESP] },
|
|
{ " ebx: ", context->uc_mcontext.gregs[REG_EBX] },
|
|
{ " edx: ", context->uc_mcontext.gregs[REG_EDX] },
|
|
{ " ecx: ", context->uc_mcontext.gregs[REG_ECX] },
|
|
{ " eax: ", context->uc_mcontext.gregs[REG_EAX] },
|
|
{ " trp: ", context->uc_mcontext.gregs[REG_TRAPNO] },
|
|
{ " err: ", context->uc_mcontext.gregs[REG_ERR] },
|
|
{ " ip: ", context->uc_mcontext.gregs[REG_EIP] },
|
|
{ " cs: ", context->uc_mcontext.gregs[REG_CS] },
|
|
{ " efl: ", context->uc_mcontext.gregs[REG_EFL] },
|
|
{ " usp: ", context->uc_mcontext.gregs[REG_UESP] },
|
|
{ " ss: ", context->uc_mcontext.gregs[REG_SS] },
|
|
#elif ARCH_CPU_64_BITS
|
|
{ " r8: ", context->uc_mcontext.gregs[REG_R8] },
|
|
{ " r9: ", context->uc_mcontext.gregs[REG_R9] },
|
|
{ " r10: ", context->uc_mcontext.gregs[REG_R10] },
|
|
{ " r11: ", context->uc_mcontext.gregs[REG_R11] },
|
|
{ " r12: ", context->uc_mcontext.gregs[REG_R12] },
|
|
{ " r13: ", context->uc_mcontext.gregs[REG_R13] },
|
|
{ " r14: ", context->uc_mcontext.gregs[REG_R14] },
|
|
{ " r15: ", context->uc_mcontext.gregs[REG_R15] },
|
|
{ " di: ", context->uc_mcontext.gregs[REG_RDI] },
|
|
{ " si: ", context->uc_mcontext.gregs[REG_RSI] },
|
|
{ " bp: ", context->uc_mcontext.gregs[REG_RBP] },
|
|
{ " bx: ", context->uc_mcontext.gregs[REG_RBX] },
|
|
{ " dx: ", context->uc_mcontext.gregs[REG_RDX] },
|
|
{ " ax: ", context->uc_mcontext.gregs[REG_RAX] },
|
|
{ " cx: ", context->uc_mcontext.gregs[REG_RCX] },
|
|
{ " sp: ", context->uc_mcontext.gregs[REG_RSP] },
|
|
{ " ip: ", context->uc_mcontext.gregs[REG_RIP] },
|
|
{ " efl: ", context->uc_mcontext.gregs[REG_EFL] },
|
|
{ " cgf: ", context->uc_mcontext.gregs[REG_CSGSFS] },
|
|
{ " erf: ", context->uc_mcontext.gregs[REG_ERR] },
|
|
{ " trp: ", context->uc_mcontext.gregs[REG_TRAPNO] },
|
|
{ " msk: ", context->uc_mcontext.gregs[REG_OLDMASK] },
|
|
{ " cr2: ", context->uc_mcontext.gregs[REG_CR2] },
|
|
#endif // ARCH_CPU_32_BITS
|
|
};
|
|
|
|
#if ARCH_CPU_32_BITS
|
|
const int kRegisterPadding = 8;
|
|
#elif ARCH_CPU_64_BITS
|
|
const int kRegisterPadding = 16;
|
|
#endif
|
|
|
|
for (size_t i = 0; i < arraysize(registers); i++) {
|
|
PrintToStderr(registers[i].label);
|
|
internal::itoa_r(registers[i].value, buf, sizeof(buf),
|
|
16, kRegisterPadding);
|
|
PrintToStderr(buf);
|
|
|
|
if ((i + 1) % 4 == 0)
|
|
PrintToStderr("\n");
|
|
}
|
|
PrintToStderr("\n");
|
|
#endif // ARCH_CPU_X86_FAMILY
|
|
#endif // defined(OS_LINUX)
|
|
|
|
PrintToStderr("[end of stack trace]\n");
|
|
|
|
#if defined(OS_MACOSX) && !defined(OS_IOS)
|
|
if (::signal(signal, SIG_DFL) == SIG_ERR)
|
|
_exit(1);
|
|
#else
|
|
// Non-Mac OSes should probably reraise the signal as well, but the Linux
|
|
// sandbox tests break on CrOS devices.
|
|
// https://code.google.com/p/chromium/issues/detail?id=551681
|
|
PrintToStderr("Calling _exit(1). Core file will not be generated.\n");
|
|
_exit(1);
|
|
#endif // defined(OS_MACOSX) && !defined(OS_IOS)
|
|
}
|
|
|
|
class PrintBacktraceOutputHandler : public BacktraceOutputHandler {
|
|
public:
|
|
PrintBacktraceOutputHandler() = default;
|
|
|
|
void HandleOutput(const char* output) override {
|
|
// NOTE: This code MUST be async-signal safe (it's used by in-process
|
|
// stack dumping signal handler). NO malloc or stdio is allowed here.
|
|
PrintToStderr(output);
|
|
}
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(PrintBacktraceOutputHandler);
|
|
};
|
|
|
|
class StreamBacktraceOutputHandler : public BacktraceOutputHandler {
|
|
public:
|
|
explicit StreamBacktraceOutputHandler(std::ostream* os) : os_(os) {
|
|
}
|
|
|
|
void HandleOutput(const char* output) override { (*os_) << output; }
|
|
|
|
private:
|
|
std::ostream* os_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(StreamBacktraceOutputHandler);
|
|
};
|
|
|
|
void WarmUpBacktrace() {
|
|
// Warm up stack trace infrastructure. It turns out that on the first
|
|
// call glibc initializes some internal data structures using pthread_once,
|
|
// and even backtrace() can call malloc(), leading to hangs.
|
|
//
|
|
// Example stack trace snippet (with tcmalloc):
|
|
//
|
|
// #8 0x0000000000a173b5 in tc_malloc
|
|
// at ./third_party/tcmalloc/chromium/src/debugallocation.cc:1161
|
|
// #9 0x00007ffff7de7900 in _dl_map_object_deps at dl-deps.c:517
|
|
// #10 0x00007ffff7ded8a9 in dl_open_worker at dl-open.c:262
|
|
// #11 0x00007ffff7de9176 in _dl_catch_error at dl-error.c:178
|
|
// #12 0x00007ffff7ded31a in _dl_open (file=0x7ffff625e298 "libgcc_s.so.1")
|
|
// at dl-open.c:639
|
|
// #13 0x00007ffff6215602 in do_dlopen at dl-libc.c:89
|
|
// #14 0x00007ffff7de9176 in _dl_catch_error at dl-error.c:178
|
|
// #15 0x00007ffff62156c4 in dlerror_run at dl-libc.c:48
|
|
// #16 __GI___libc_dlopen_mode at dl-libc.c:165
|
|
// #17 0x00007ffff61ef8f5 in init
|
|
// at ../sysdeps/x86_64/../ia64/backtrace.c:53
|
|
// #18 0x00007ffff6aad400 in pthread_once
|
|
// at ../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_once.S:104
|
|
// #19 0x00007ffff61efa14 in __GI___backtrace
|
|
// at ../sysdeps/x86_64/../ia64/backtrace.c:104
|
|
// #20 0x0000000000752a54 in base::debug::StackTrace::StackTrace
|
|
// at base/debug/stack_trace_posix.cc:175
|
|
// #21 0x00000000007a4ae5 in
|
|
// base::(anonymous namespace)::StackDumpSignalHandler
|
|
// at base/process_util_posix.cc:172
|
|
// #22 <signal handler called>
|
|
StackTrace stack_trace;
|
|
}
|
|
|
|
#if defined(USE_SYMBOLIZE)
|
|
|
|
// class SandboxSymbolizeHelper.
|
|
//
|
|
// The purpose of this class is to prepare and install a "file open" callback
|
|
// needed by the stack trace symbolization code
|
|
// (base/third_party/symbolize/symbolize.h) so that it can function properly
|
|
// in a sandboxed process. The caveat is that this class must be instantiated
|
|
// before the sandboxing is enabled so that it can get the chance to open all
|
|
// the object files that are loaded in the virtual address space of the current
|
|
// process.
|
|
class SandboxSymbolizeHelper {
|
|
public:
|
|
// Returns the singleton instance.
|
|
static SandboxSymbolizeHelper* GetInstance() {
|
|
return Singleton<SandboxSymbolizeHelper,
|
|
LeakySingletonTraits<SandboxSymbolizeHelper>>::get();
|
|
}
|
|
|
|
private:
|
|
friend struct DefaultSingletonTraits<SandboxSymbolizeHelper>;
|
|
|
|
SandboxSymbolizeHelper()
|
|
: is_initialized_(false) {
|
|
Init();
|
|
}
|
|
|
|
~SandboxSymbolizeHelper() {
|
|
UnregisterCallback();
|
|
CloseObjectFiles();
|
|
}
|
|
|
|
// Returns a O_RDONLY file descriptor for |file_path| if it was opened
|
|
// successfully during the initialization. The file is repositioned at
|
|
// offset 0.
|
|
// IMPORTANT: This function must be async-signal-safe because it can be
|
|
// called from a signal handler (symbolizing stack frames for a crash).
|
|
int GetFileDescriptor(const char* file_path) {
|
|
int fd = -1;
|
|
|
|
#if !defined(OFFICIAL_BUILD)
|
|
if (file_path) {
|
|
// The assumption here is that iterating over std::map<std::string, int>
|
|
// using a const_iterator does not allocate dynamic memory, hense it is
|
|
// async-signal-safe.
|
|
std::map<std::string, int>::const_iterator it;
|
|
for (it = modules_.begin(); it != modules_.end(); ++it) {
|
|
if (strcmp((it->first).c_str(), file_path) == 0) {
|
|
// POSIX.1-2004 requires an implementation to guarantee that dup()
|
|
// is async-signal-safe.
|
|
fd = HANDLE_EINTR(dup(it->second));
|
|
break;
|
|
}
|
|
}
|
|
// POSIX.1-2004 requires an implementation to guarantee that lseek()
|
|
// is async-signal-safe.
|
|
if (fd >= 0 && lseek(fd, 0, SEEK_SET) < 0) {
|
|
// Failed to seek.
|
|
fd = -1;
|
|
}
|
|
}
|
|
#endif // !defined(OFFICIAL_BUILD)
|
|
|
|
return fd;
|
|
}
|
|
|
|
// Searches for the object file (from /proc/self/maps) that contains
|
|
// the specified pc. If found, sets |start_address| to the start address
|
|
// of where this object file is mapped in memory, sets the module base
|
|
// address into |base_address|, copies the object file name into
|
|
// |out_file_name|, and attempts to open the object file. If the object
|
|
// file is opened successfully, returns the file descriptor. Otherwise,
|
|
// returns -1. |out_file_name_size| is the size of the file name buffer
|
|
// (including the null terminator).
|
|
// IMPORTANT: This function must be async-signal-safe because it can be
|
|
// called from a signal handler (symbolizing stack frames for a crash).
|
|
static int OpenObjectFileContainingPc(uint64_t pc, uint64_t& start_address,
|
|
uint64_t& base_address, char* file_path,
|
|
int file_path_size) {
|
|
// This method can only be called after the singleton is instantiated.
|
|
// This is ensured by the following facts:
|
|
// * This is the only static method in this class, it is private, and
|
|
// the class has no friends (except for the DefaultSingletonTraits).
|
|
// The compiler guarantees that it can only be called after the
|
|
// singleton is instantiated.
|
|
// * This method is used as a callback for the stack tracing code and
|
|
// the callback registration is done in the constructor, so logically
|
|
// it cannot be called before the singleton is created.
|
|
SandboxSymbolizeHelper* instance = GetInstance();
|
|
|
|
// The assumption here is that iterating over
|
|
// std::vector<MappedMemoryRegion> using a const_iterator does not allocate
|
|
// dynamic memory, hence it is async-signal-safe.
|
|
for (const MappedMemoryRegion& region : instance->regions_) {
|
|
if (region.start <= pc && pc < region.end) {
|
|
start_address = region.start;
|
|
base_address = region.base;
|
|
if (file_path && file_path_size > 0) {
|
|
strncpy(file_path, region.path.c_str(), file_path_size);
|
|
// Ensure null termination.
|
|
file_path[file_path_size - 1] = '\0';
|
|
}
|
|
return instance->GetFileDescriptor(region.path.c_str());
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
// Set the base address for each memory region by reading ELF headers in
|
|
// process memory.
|
|
void SetBaseAddressesForMemoryRegions() {
|
|
base::ScopedFD mem_fd(
|
|
HANDLE_EINTR(open("/proc/self/mem", O_RDONLY | O_CLOEXEC)));
|
|
if (!mem_fd.is_valid())
|
|
return;
|
|
|
|
auto safe_memcpy = [&mem_fd](void* dst, uintptr_t src, size_t size) {
|
|
return HANDLE_EINTR(pread(mem_fd.get(), dst, size, src)) == ssize_t(size);
|
|
};
|
|
|
|
uintptr_t cur_base = 0;
|
|
for (auto& r : regions_) {
|
|
ElfW(Ehdr) ehdr;
|
|
static_assert(SELFMAG <= sizeof(ElfW(Ehdr)), "SELFMAG too large");
|
|
if ((r.permissions & MappedMemoryRegion::READ) &&
|
|
safe_memcpy(&ehdr, r.start, sizeof(ElfW(Ehdr))) &&
|
|
memcmp(ehdr.e_ident, ELFMAG, SELFMAG) == 0) {
|
|
switch (ehdr.e_type) {
|
|
case ET_EXEC:
|
|
cur_base = 0;
|
|
break;
|
|
case ET_DYN:
|
|
// Find the segment containing file offset 0. This will correspond
|
|
// to the ELF header that we just read. Normally this will have
|
|
// virtual address 0, but this is not guaranteed. We must subtract
|
|
// the virtual address from the address where the ELF header was
|
|
// mapped to get the base address.
|
|
//
|
|
// If we fail to find a segment for file offset 0, use the address
|
|
// of the ELF header as the base address.
|
|
cur_base = r.start;
|
|
for (unsigned i = 0; i != ehdr.e_phnum; ++i) {
|
|
ElfW(Phdr) phdr;
|
|
if (safe_memcpy(&phdr, r.start + ehdr.e_phoff + i * sizeof(phdr),
|
|
sizeof(phdr)) &&
|
|
phdr.p_type == PT_LOAD && phdr.p_offset == 0) {
|
|
cur_base = r.start - phdr.p_vaddr;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
// ET_REL or ET_CORE. These aren't directly executable, so they
|
|
// don't affect the base address.
|
|
break;
|
|
}
|
|
}
|
|
|
|
r.base = cur_base;
|
|
}
|
|
}
|
|
|
|
// Parses /proc/self/maps in order to compile a list of all object file names
|
|
// for the modules that are loaded in the current process.
|
|
// Returns true on success.
|
|
bool CacheMemoryRegions() {
|
|
// Reads /proc/self/maps.
|
|
std::string contents;
|
|
if (!ReadProcMaps(&contents)) {
|
|
LOG(ERROR) << "Failed to read /proc/self/maps";
|
|
return false;
|
|
}
|
|
|
|
// Parses /proc/self/maps.
|
|
if (!ParseProcMaps(contents, ®ions_)) {
|
|
LOG(ERROR) << "Failed to parse the contents of /proc/self/maps";
|
|
return false;
|
|
}
|
|
|
|
SetBaseAddressesForMemoryRegions();
|
|
|
|
is_initialized_ = true;
|
|
return true;
|
|
}
|
|
|
|
// Opens all object files and caches their file descriptors.
|
|
void OpenSymbolFiles() {
|
|
// Pre-opening and caching the file descriptors of all loaded modules is
|
|
// not safe for production builds. Hence it is only done in non-official
|
|
// builds. For more details, take a look at: http://crbug.com/341966.
|
|
#if !defined(OFFICIAL_BUILD)
|
|
// Open the object files for all read-only executable regions and cache
|
|
// their file descriptors.
|
|
std::vector<MappedMemoryRegion>::const_iterator it;
|
|
for (it = regions_.begin(); it != regions_.end(); ++it) {
|
|
const MappedMemoryRegion& region = *it;
|
|
// Only interesed in read-only executable regions.
|
|
if ((region.permissions & MappedMemoryRegion::READ) ==
|
|
MappedMemoryRegion::READ &&
|
|
(region.permissions & MappedMemoryRegion::WRITE) == 0 &&
|
|
(region.permissions & MappedMemoryRegion::EXECUTE) ==
|
|
MappedMemoryRegion::EXECUTE) {
|
|
if (region.path.empty()) {
|
|
// Skip regions with empty file names.
|
|
continue;
|
|
}
|
|
if (region.path[0] == '[') {
|
|
// Skip pseudo-paths, like [stack], [vdso], [heap], etc ...
|
|
continue;
|
|
}
|
|
// Avoid duplicates.
|
|
if (modules_.find(region.path) == modules_.end()) {
|
|
int fd = open(region.path.c_str(), O_RDONLY | O_CLOEXEC);
|
|
if (fd >= 0) {
|
|
modules_.insert(std::make_pair(region.path, fd));
|
|
} else {
|
|
LOG(WARNING) << "Failed to open file: " << region.path
|
|
<< "\n Error: " << strerror(errno);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // !defined(OFFICIAL_BUILD)
|
|
}
|
|
|
|
// Initializes and installs the symbolization callback.
|
|
void Init() {
|
|
if (CacheMemoryRegions()) {
|
|
OpenSymbolFiles();
|
|
google::InstallSymbolizeOpenObjectFileCallback(
|
|
&OpenObjectFileContainingPc);
|
|
}
|
|
}
|
|
|
|
// Unregister symbolization callback.
|
|
void UnregisterCallback() {
|
|
if (is_initialized_) {
|
|
google::InstallSymbolizeOpenObjectFileCallback(nullptr);
|
|
is_initialized_ = false;
|
|
}
|
|
}
|
|
|
|
// Closes all file descriptors owned by this instance.
|
|
void CloseObjectFiles() {
|
|
#if !defined(OFFICIAL_BUILD)
|
|
std::map<std::string, int>::iterator it;
|
|
for (it = modules_.begin(); it != modules_.end(); ++it) {
|
|
int ret = IGNORE_EINTR(close(it->second));
|
|
DCHECK(!ret);
|
|
it->second = -1;
|
|
}
|
|
modules_.clear();
|
|
#endif // !defined(OFFICIAL_BUILD)
|
|
}
|
|
|
|
// Set to true upon successful initialization.
|
|
bool is_initialized_;
|
|
|
|
#if !defined(OFFICIAL_BUILD)
|
|
// Mapping from file name to file descriptor. Includes file descriptors
|
|
// for all successfully opened object files and the file descriptor for
|
|
// /proc/self/maps. This code is not safe for production builds.
|
|
std::map<std::string, int> modules_;
|
|
#endif // !defined(OFFICIAL_BUILD)
|
|
|
|
// Cache for the process memory regions. Produced by parsing the contents
|
|
// of /proc/self/maps cache.
|
|
std::vector<MappedMemoryRegion> regions_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(SandboxSymbolizeHelper);
|
|
};
|
|
#endif // USE_SYMBOLIZE
|
|
|
|
} // namespace
|
|
|
|
bool EnableInProcessStackDumping() {
|
|
#if defined(USE_SYMBOLIZE)
|
|
SandboxSymbolizeHelper::GetInstance();
|
|
#endif // USE_SYMBOLIZE
|
|
|
|
// When running in an application, our code typically expects SIGPIPE
|
|
// to be ignored. Therefore, when testing that same code, it should run
|
|
// with SIGPIPE ignored as well.
|
|
struct sigaction sigpipe_action;
|
|
memset(&sigpipe_action, 0, sizeof(sigpipe_action));
|
|
sigpipe_action.sa_handler = SIG_IGN;
|
|
sigemptyset(&sigpipe_action.sa_mask);
|
|
bool success = (sigaction(SIGPIPE, &sigpipe_action, nullptr) == 0);
|
|
|
|
// Avoid hangs during backtrace initialization, see above.
|
|
WarmUpBacktrace();
|
|
|
|
struct sigaction action;
|
|
memset(&action, 0, sizeof(action));
|
|
action.sa_flags = SA_RESETHAND | SA_SIGINFO;
|
|
action.sa_sigaction = &StackDumpSignalHandler;
|
|
sigemptyset(&action.sa_mask);
|
|
|
|
success &= (sigaction(SIGILL, &action, nullptr) == 0);
|
|
success &= (sigaction(SIGABRT, &action, nullptr) == 0);
|
|
success &= (sigaction(SIGFPE, &action, nullptr) == 0);
|
|
success &= (sigaction(SIGBUS, &action, nullptr) == 0);
|
|
success &= (sigaction(SIGSEGV, &action, nullptr) == 0);
|
|
// On Linux, SIGSYS is reserved by the kernel for seccomp-bpf sandboxing.
|
|
#if !defined(OS_LINUX)
|
|
success &= (sigaction(SIGSYS, &action, nullptr) == 0);
|
|
#endif // !defined(OS_LINUX)
|
|
|
|
return success;
|
|
}
|
|
|
|
void SetStackDumpFirstChanceCallback(bool (*handler)(int, void*, void*)) {
|
|
DCHECK(try_handle_signal == nullptr || handler == nullptr);
|
|
try_handle_signal = handler;
|
|
}
|
|
|
|
StackTrace::StackTrace(size_t count) {
|
|
// NOTE: This code MUST be async-signal safe (it's used by in-process
|
|
// stack dumping signal handler). NO malloc or stdio is allowed here.
|
|
|
|
#if !defined(__UCLIBC__) && !defined(_AIX)
|
|
count = std::min(arraysize(trace_), count);
|
|
|
|
// Though the backtrace API man page does not list any possible negative
|
|
// return values, we take no chance.
|
|
count_ = base::saturated_cast<size_t>(backtrace(trace_, count));
|
|
#else
|
|
count_ = 0;
|
|
#endif
|
|
}
|
|
|
|
void StackTrace::Print() const {
|
|
// NOTE: This code MUST be async-signal safe (it's used by in-process
|
|
// stack dumping signal handler). NO malloc or stdio is allowed here.
|
|
|
|
#if !defined(__UCLIBC__) && !defined(_AIX)
|
|
PrintBacktraceOutputHandler handler;
|
|
ProcessBacktrace(trace_, count_, &handler);
|
|
#endif
|
|
}
|
|
|
|
#if !defined(__UCLIBC__) && !defined(_AIX)
|
|
void StackTrace::OutputToStream(std::ostream* os) const {
|
|
StreamBacktraceOutputHandler handler(os);
|
|
ProcessBacktrace(trace_, count_, &handler);
|
|
}
|
|
#endif
|
|
|
|
namespace internal {
|
|
|
|
// NOTE: code from sandbox/linux/seccomp-bpf/demo.cc.
|
|
char* itoa_r(intptr_t i, char* buf, size_t sz, int base, size_t padding) {
|
|
// Make sure we can write at least one NUL byte.
|
|
size_t n = 1;
|
|
if (n > sz)
|
|
return nullptr;
|
|
|
|
if (base < 2 || base > 16) {
|
|
buf[0] = '\000';
|
|
return nullptr;
|
|
}
|
|
|
|
char* start = buf;
|
|
|
|
uintptr_t j = i;
|
|
|
|
// Handle negative numbers (only for base 10).
|
|
if (i < 0 && base == 10) {
|
|
// This does "j = -i" while avoiding integer overflow.
|
|
j = static_cast<uintptr_t>(-(i + 1)) + 1;
|
|
|
|
// Make sure we can write the '-' character.
|
|
if (++n > sz) {
|
|
buf[0] = '\000';
|
|
return nullptr;
|
|
}
|
|
*start++ = '-';
|
|
}
|
|
|
|
// Loop until we have converted the entire number. Output at least one
|
|
// character (i.e. '0').
|
|
char* ptr = start;
|
|
do {
|
|
// Make sure there is still enough space left in our output buffer.
|
|
if (++n > sz) {
|
|
buf[0] = '\000';
|
|
return nullptr;
|
|
}
|
|
|
|
// Output the next digit.
|
|
*ptr++ = "0123456789abcdef"[j % base];
|
|
j /= base;
|
|
|
|
if (padding > 0)
|
|
padding--;
|
|
} while (j > 0 || padding > 0);
|
|
|
|
// Terminate the output with a NUL character.
|
|
*ptr = '\000';
|
|
|
|
// Conversion to ASCII actually resulted in the digits being in reverse
|
|
// order. We can't easily generate them in forward order, as we can't tell
|
|
// the number of characters needed until we are done converting.
|
|
// So, now, we reverse the string (except for the possible "-" sign).
|
|
while (--ptr > start) {
|
|
char ch = *ptr;
|
|
*ptr = *start;
|
|
*start++ = ch;
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
} // namespace internal
|
|
|
|
} // namespace debug
|
|
} // namespace base
|