mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-24 14:26:09 +03:00
1012 lines
36 KiB
C++
1012 lines
36 KiB
C++
// Copyright 2017 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef BASE_CONTAINERS_FLAT_TREE_H_
|
|
#define BASE_CONTAINERS_FLAT_TREE_H_
|
|
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
#include <type_traits>
|
|
#include <vector>
|
|
|
|
#include "base/template_util.h"
|
|
|
|
namespace base {
|
|
|
|
enum FlatContainerDupes {
|
|
KEEP_FIRST_OF_DUPES,
|
|
KEEP_LAST_OF_DUPES,
|
|
};
|
|
|
|
namespace internal {
|
|
|
|
// This is a convenience method returning true if Iterator is at least a
|
|
// ForwardIterator and thus supports multiple passes over a range.
|
|
template <class Iterator>
|
|
constexpr bool is_multipass() {
|
|
return std::is_base_of<
|
|
std::forward_iterator_tag,
|
|
typename std::iterator_traits<Iterator>::iterator_category>::value;
|
|
}
|
|
|
|
// This algorithm is like unique() from the standard library except it
|
|
// selects only the last of consecutive values instead of the first.
|
|
template <class Iterator, class BinaryPredicate>
|
|
Iterator LastUnique(Iterator first, Iterator last, BinaryPredicate compare) {
|
|
Iterator replacable = std::adjacent_find(first, last, compare);
|
|
|
|
// No duplicate elements found.
|
|
if (replacable == last)
|
|
return last;
|
|
|
|
first = std::next(replacable);
|
|
|
|
// Last element is a duplicate but all others are unique.
|
|
if (first == last)
|
|
return replacable;
|
|
|
|
// This loop is based on std::adjacent_find but std::adjacent_find doesn't
|
|
// quite cut it.
|
|
for (Iterator next = std::next(first); next != last; ++next, ++first) {
|
|
if (!compare(*first, *next))
|
|
*replacable++ = std::move(*first);
|
|
}
|
|
|
|
// Last element should be copied unconditionally.
|
|
*replacable++ = std::move(*first);
|
|
return replacable;
|
|
}
|
|
|
|
// Uses SFINAE to detect whether type has is_transparent member.
|
|
template <typename T, typename = void>
|
|
struct IsTransparentCompare : std::false_type {};
|
|
template <typename T>
|
|
struct IsTransparentCompare<T, void_t<typename T::is_transparent>>
|
|
: std::true_type {};
|
|
|
|
// Implementation -------------------------------------------------------------
|
|
|
|
// Implementation of a sorted vector for backing flat_set and flat_map. Do not
|
|
// use directly.
|
|
//
|
|
// The use of "value" in this is like std::map uses, meaning it's the thing
|
|
// contained (in the case of map it's a <Kay, Mapped> pair). The Key is how
|
|
// things are looked up. In the case of a set, Key == Value. In the case of
|
|
// a map, the Key is a component of a Value.
|
|
//
|
|
// The helper class GetKeyFromValue provides the means to extract a key from a
|
|
// value for comparison purposes. It should implement:
|
|
// const Key& operator()(const Value&).
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
class flat_tree {
|
|
private:
|
|
using underlying_type = std::vector<Value>;
|
|
|
|
public:
|
|
// --------------------------------------------------------------------------
|
|
// Types.
|
|
//
|
|
using key_type = Key;
|
|
using key_compare = KeyCompare;
|
|
using value_type = Value;
|
|
|
|
// Wraps the templated key comparison to compare values.
|
|
class value_compare : public key_compare {
|
|
public:
|
|
value_compare() = default;
|
|
|
|
template <class Cmp>
|
|
explicit value_compare(Cmp&& compare_arg)
|
|
: KeyCompare(std::forward<Cmp>(compare_arg)) {}
|
|
|
|
bool operator()(const value_type& left, const value_type& right) const {
|
|
GetKeyFromValue extractor;
|
|
return key_compare::operator()(extractor(left), extractor(right));
|
|
}
|
|
};
|
|
|
|
using pointer = typename underlying_type::pointer;
|
|
using const_pointer = typename underlying_type::const_pointer;
|
|
using reference = typename underlying_type::reference;
|
|
using const_reference = typename underlying_type::const_reference;
|
|
using size_type = typename underlying_type::size_type;
|
|
using difference_type = typename underlying_type::difference_type;
|
|
using iterator = typename underlying_type::iterator;
|
|
using const_iterator = typename underlying_type::const_iterator;
|
|
using reverse_iterator = typename underlying_type::reverse_iterator;
|
|
using const_reverse_iterator =
|
|
typename underlying_type::const_reverse_iterator;
|
|
|
|
// --------------------------------------------------------------------------
|
|
// Lifetime.
|
|
//
|
|
// Constructors that take range guarantee O(N * log^2(N)) + O(N) complexity
|
|
// and take O(N * log(N)) + O(N) if extra memory is available (N is a range
|
|
// length).
|
|
//
|
|
// Assume that move constructors invalidate iterators and references.
|
|
//
|
|
// The constructors that take ranges, lists, and vectors do not require that
|
|
// the input be sorted.
|
|
|
|
flat_tree();
|
|
explicit flat_tree(const key_compare& comp);
|
|
|
|
template <class InputIterator>
|
|
flat_tree(InputIterator first,
|
|
InputIterator last,
|
|
FlatContainerDupes dupe_handling = KEEP_FIRST_OF_DUPES,
|
|
const key_compare& comp = key_compare());
|
|
|
|
flat_tree(const flat_tree&);
|
|
flat_tree(flat_tree&&);
|
|
|
|
flat_tree(std::vector<value_type> items,
|
|
FlatContainerDupes dupe_handling = KEEP_FIRST_OF_DUPES,
|
|
const key_compare& comp = key_compare());
|
|
|
|
flat_tree(std::initializer_list<value_type> ilist,
|
|
FlatContainerDupes dupe_handling = KEEP_FIRST_OF_DUPES,
|
|
const key_compare& comp = key_compare());
|
|
|
|
~flat_tree();
|
|
|
|
// --------------------------------------------------------------------------
|
|
// Assignments.
|
|
//
|
|
// Assume that move assignment invalidates iterators and references.
|
|
|
|
flat_tree& operator=(const flat_tree&);
|
|
flat_tree& operator=(flat_tree&&);
|
|
// Takes the first if there are duplicates in the initializer list.
|
|
flat_tree& operator=(std::initializer_list<value_type> ilist);
|
|
|
|
// --------------------------------------------------------------------------
|
|
// Memory management.
|
|
//
|
|
// Beware that shrink_to_fit() simply forwards the request to the
|
|
// underlying_type and its implementation is free to optimize otherwise and
|
|
// leave capacity() to be greater that its size.
|
|
//
|
|
// reserve() and shrink_to_fit() invalidate iterators and references.
|
|
|
|
void reserve(size_type new_capacity);
|
|
size_type capacity() const;
|
|
void shrink_to_fit();
|
|
|
|
// --------------------------------------------------------------------------
|
|
// Size management.
|
|
//
|
|
// clear() leaves the capacity() of the flat_tree unchanged.
|
|
|
|
void clear();
|
|
|
|
size_type size() const;
|
|
size_type max_size() const;
|
|
bool empty() const;
|
|
|
|
// --------------------------------------------------------------------------
|
|
// Iterators.
|
|
|
|
iterator begin();
|
|
const_iterator begin() const;
|
|
const_iterator cbegin() const;
|
|
|
|
iterator end();
|
|
const_iterator end() const;
|
|
const_iterator cend() const;
|
|
|
|
reverse_iterator rbegin();
|
|
const_reverse_iterator rbegin() const;
|
|
const_reverse_iterator crbegin() const;
|
|
|
|
reverse_iterator rend();
|
|
const_reverse_iterator rend() const;
|
|
const_reverse_iterator crend() const;
|
|
|
|
// --------------------------------------------------------------------------
|
|
// Insert operations.
|
|
//
|
|
// Assume that every operation invalidates iterators and references.
|
|
// Insertion of one element can take O(size). Capacity of flat_tree grows in
|
|
// an implementation-defined manner.
|
|
//
|
|
// NOTE: Prefer to build a new flat_tree from a std::vector (or similar)
|
|
// instead of calling insert() repeatedly.
|
|
|
|
std::pair<iterator, bool> insert(const value_type& val);
|
|
std::pair<iterator, bool> insert(value_type&& val);
|
|
|
|
iterator insert(const_iterator position_hint, const value_type& x);
|
|
iterator insert(const_iterator position_hint, value_type&& x);
|
|
|
|
// This method inserts the values from the range [first, last) into the
|
|
// current tree. In case of KEEP_LAST_OF_DUPES newly added elements can
|
|
// overwrite existing values.
|
|
template <class InputIterator>
|
|
void insert(InputIterator first,
|
|
InputIterator last,
|
|
FlatContainerDupes dupes = KEEP_FIRST_OF_DUPES);
|
|
|
|
template <class... Args>
|
|
std::pair<iterator, bool> emplace(Args&&... args);
|
|
|
|
template <class... Args>
|
|
iterator emplace_hint(const_iterator position_hint, Args&&... args);
|
|
|
|
// --------------------------------------------------------------------------
|
|
// Erase operations.
|
|
//
|
|
// Assume that every operation invalidates iterators and references.
|
|
//
|
|
// erase(position), erase(first, last) can take O(size).
|
|
// erase(key) may take O(size) + O(log(size)).
|
|
//
|
|
// Prefer base::EraseIf() or some other variation on erase(remove(), end())
|
|
// idiom when deleting multiple non-consecutive elements.
|
|
|
|
iterator erase(iterator position);
|
|
iterator erase(const_iterator position);
|
|
iterator erase(const_iterator first, const_iterator last);
|
|
template <typename K>
|
|
size_type erase(const K& key);
|
|
|
|
// --------------------------------------------------------------------------
|
|
// Comparators.
|
|
|
|
key_compare key_comp() const;
|
|
value_compare value_comp() const;
|
|
|
|
// --------------------------------------------------------------------------
|
|
// Search operations.
|
|
//
|
|
// Search operations have O(log(size)) complexity.
|
|
|
|
template <typename K>
|
|
size_type count(const K& key) const;
|
|
|
|
template <typename K>
|
|
iterator find(const K& key);
|
|
|
|
template <typename K>
|
|
const_iterator find(const K& key) const;
|
|
|
|
template <typename K>
|
|
std::pair<iterator, iterator> equal_range(const K& key);
|
|
|
|
template <typename K>
|
|
std::pair<const_iterator, const_iterator> equal_range(const K& key) const;
|
|
|
|
template <typename K>
|
|
iterator lower_bound(const K& key);
|
|
|
|
template <typename K>
|
|
const_iterator lower_bound(const K& key) const;
|
|
|
|
template <typename K>
|
|
iterator upper_bound(const K& key);
|
|
|
|
template <typename K>
|
|
const_iterator upper_bound(const K& key) const;
|
|
|
|
// --------------------------------------------------------------------------
|
|
// General operations.
|
|
//
|
|
// Assume that swap invalidates iterators and references.
|
|
//
|
|
// Implementation note: currently we use operator==() and operator<() on
|
|
// std::vector, because they have the same contract we need, so we use them
|
|
// directly for brevity and in case it is more optimal than calling equal()
|
|
// and lexicograhpical_compare(). If the underlying container type is changed,
|
|
// this code may need to be modified.
|
|
|
|
void swap(flat_tree& other);
|
|
|
|
friend bool operator==(const flat_tree& lhs, const flat_tree& rhs) {
|
|
return lhs.impl_.body_ == rhs.impl_.body_;
|
|
}
|
|
|
|
friend bool operator!=(const flat_tree& lhs, const flat_tree& rhs) {
|
|
return !(lhs == rhs);
|
|
}
|
|
|
|
friend bool operator<(const flat_tree& lhs, const flat_tree& rhs) {
|
|
return lhs.impl_.body_ < rhs.impl_.body_;
|
|
}
|
|
|
|
friend bool operator>(const flat_tree& lhs, const flat_tree& rhs) {
|
|
return rhs < lhs;
|
|
}
|
|
|
|
friend bool operator>=(const flat_tree& lhs, const flat_tree& rhs) {
|
|
return !(lhs < rhs);
|
|
}
|
|
|
|
friend bool operator<=(const flat_tree& lhs, const flat_tree& rhs) {
|
|
return !(lhs > rhs);
|
|
}
|
|
|
|
friend void swap(flat_tree& lhs, flat_tree& rhs) { lhs.swap(rhs); }
|
|
|
|
protected:
|
|
// Emplaces a new item into the tree that is known not to be in it. This
|
|
// is for implementing map operator[].
|
|
template <class... Args>
|
|
iterator unsafe_emplace(const_iterator position, Args&&... args);
|
|
|
|
// Attempts to emplace a new element with key |key|. Only if |key| is not yet
|
|
// present, construct value_type from |args| and insert it. Returns an
|
|
// iterator to the element with key |key| and a bool indicating whether an
|
|
// insertion happened.
|
|
template <class K, class... Args>
|
|
std::pair<iterator, bool> emplace_key_args(const K& key, Args&&... args);
|
|
|
|
// Similar to |emplace_key_args|, but checks |hint| first as a possible
|
|
// insertion position.
|
|
template <class K, class... Args>
|
|
std::pair<iterator, bool> emplace_hint_key_args(const_iterator hint,
|
|
const K& key,
|
|
Args&&... args);
|
|
|
|
private:
|
|
// Helper class for e.g. lower_bound that can compare a value on the left
|
|
// to a key on the right.
|
|
struct KeyValueCompare {
|
|
// The key comparison object must outlive this class.
|
|
explicit KeyValueCompare(const key_compare& key_comp)
|
|
: key_comp_(key_comp) {}
|
|
|
|
template <typename T, typename U>
|
|
bool operator()(const T& lhs, const U& rhs) const {
|
|
return key_comp_(extract_if_value_type(lhs), extract_if_value_type(rhs));
|
|
}
|
|
|
|
private:
|
|
const key_type& extract_if_value_type(const value_type& v) const {
|
|
GetKeyFromValue extractor;
|
|
return extractor(v);
|
|
}
|
|
|
|
template <typename K>
|
|
const K& extract_if_value_type(const K& k) const {
|
|
return k;
|
|
}
|
|
|
|
const key_compare& key_comp_;
|
|
};
|
|
|
|
const flat_tree& as_const() { return *this; }
|
|
|
|
iterator const_cast_it(const_iterator c_it) {
|
|
auto distance = std::distance(cbegin(), c_it);
|
|
return std::next(begin(), distance);
|
|
}
|
|
|
|
// This method is inspired by both std::map::insert(P&&) and
|
|
// std::map::insert_or_assign(const K&, V&&). It inserts val if an equivalent
|
|
// element is not present yet, otherwise it overwrites. It returns an iterator
|
|
// to the modified element and a flag indicating whether insertion or
|
|
// assignment happened.
|
|
template <class V>
|
|
std::pair<iterator, bool> insert_or_assign(V&& val) {
|
|
auto position = lower_bound(GetKeyFromValue()(val));
|
|
|
|
if (position == end() || value_comp()(val, *position))
|
|
return {impl_.body_.emplace(position, std::forward<V>(val)), true};
|
|
|
|
*position = std::forward<V>(val);
|
|
return {position, false};
|
|
}
|
|
|
|
// This method is similar to insert_or_assign, with the following differences:
|
|
// - Instead of searching [begin(), end()) it only searches [first, last).
|
|
// - In case no equivalent element is found, val is appended to the end of the
|
|
// underlying body and an iterator to the next bigger element in [first,
|
|
// last) is returned.
|
|
template <class V>
|
|
std::pair<iterator, bool> append_or_assign(iterator first,
|
|
iterator last,
|
|
V&& val) {
|
|
auto position = std::lower_bound(first, last, val, value_comp());
|
|
|
|
if (position == last || value_comp()(val, *position)) {
|
|
// emplace_back might invalidate position, which is why distance needs to
|
|
// be cached.
|
|
const difference_type distance = std::distance(begin(), position);
|
|
impl_.body_.emplace_back(std::forward<V>(val));
|
|
return {std::next(begin(), distance), true};
|
|
}
|
|
|
|
*position = std::forward<V>(val);
|
|
return {position, false};
|
|
}
|
|
|
|
// This method is similar to insert, with the following differences:
|
|
// - Instead of searching [begin(), end()) it only searches [first, last).
|
|
// - In case no equivalent element is found, val is appended to the end of the
|
|
// underlying body and an iterator to the next bigger element in [first,
|
|
// last) is returned.
|
|
template <class V>
|
|
std::pair<iterator, bool> append_unique(iterator first,
|
|
iterator last,
|
|
V&& val) {
|
|
auto position = std::lower_bound(first, last, val, value_comp());
|
|
|
|
if (position == last || value_comp()(val, *position)) {
|
|
// emplace_back might invalidate position, which is why distance needs to
|
|
// be cached.
|
|
const difference_type distance = std::distance(begin(), position);
|
|
impl_.body_.emplace_back(std::forward<V>(val));
|
|
return {std::next(begin(), distance), true};
|
|
}
|
|
|
|
return {position, false};
|
|
}
|
|
|
|
void sort_and_unique(iterator first,
|
|
iterator last,
|
|
FlatContainerDupes dupes) {
|
|
// Preserve stability for the unique code below.
|
|
std::stable_sort(first, last, impl_.get_value_comp());
|
|
|
|
auto comparator = [this](const value_type& lhs, const value_type& rhs) {
|
|
// lhs is already <= rhs due to sort, therefore
|
|
// !(lhs < rhs) <=> lhs == rhs.
|
|
return !impl_.get_value_comp()(lhs, rhs);
|
|
};
|
|
|
|
iterator erase_after;
|
|
switch (dupes) {
|
|
case KEEP_FIRST_OF_DUPES:
|
|
erase_after = std::unique(first, last, comparator);
|
|
break;
|
|
case KEEP_LAST_OF_DUPES:
|
|
erase_after = LastUnique(first, last, comparator);
|
|
break;
|
|
}
|
|
erase(erase_after, last);
|
|
}
|
|
|
|
// To support comparators that may not be possible to default-construct, we
|
|
// have to store an instance of Compare. Using this to store all internal
|
|
// state of flat_tree and using private inheritance to store compare lets us
|
|
// take advantage of an empty base class optimization to avoid extra space in
|
|
// the common case when Compare has no state.
|
|
struct Impl : private value_compare {
|
|
Impl() = default;
|
|
|
|
template <class Cmp, class... Body>
|
|
explicit Impl(Cmp&& compare_arg, Body&&... underlying_type_args)
|
|
: value_compare(std::forward<Cmp>(compare_arg)),
|
|
body_(std::forward<Body>(underlying_type_args)...) {}
|
|
|
|
const value_compare& get_value_comp() const { return *this; }
|
|
const key_compare& get_key_comp() const { return *this; }
|
|
|
|
underlying_type body_;
|
|
} impl_;
|
|
|
|
// If the compare is not transparent we want to construct key_type once.
|
|
template <typename K>
|
|
using KeyTypeOrK = typename std::
|
|
conditional<IsTransparentCompare<key_compare>::value, K, key_type>::type;
|
|
};
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Lifetime.
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::flat_tree() = default;
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::flat_tree(
|
|
const KeyCompare& comp)
|
|
: impl_(comp) {}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
template <class InputIterator>
|
|
flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::flat_tree(
|
|
InputIterator first,
|
|
InputIterator last,
|
|
FlatContainerDupes dupe_handling,
|
|
const KeyCompare& comp)
|
|
: impl_(comp, first, last) {
|
|
sort_and_unique(begin(), end(), dupe_handling);
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::flat_tree(
|
|
const flat_tree&) = default;
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::flat_tree(flat_tree&&) =
|
|
default;
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::flat_tree(
|
|
std::vector<value_type> items,
|
|
FlatContainerDupes dupe_handling,
|
|
const KeyCompare& comp)
|
|
: impl_(comp, std::move(items)) {
|
|
sort_and_unique(begin(), end(), dupe_handling);
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::flat_tree(
|
|
std::initializer_list<value_type> ilist,
|
|
FlatContainerDupes dupe_handling,
|
|
const KeyCompare& comp)
|
|
: flat_tree(std::begin(ilist), std::end(ilist), dupe_handling, comp) {}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::~flat_tree() = default;
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Assignments.
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::operator=(
|
|
const flat_tree&) -> flat_tree& = default;
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::operator=(flat_tree &&)
|
|
-> flat_tree& = default;
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::operator=(
|
|
std::initializer_list<value_type> ilist) -> flat_tree& {
|
|
impl_.body_ = ilist;
|
|
sort_and_unique(begin(), end(), KEEP_FIRST_OF_DUPES);
|
|
return *this;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Memory management.
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
void flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::reserve(
|
|
size_type new_capacity) {
|
|
impl_.body_.reserve(new_capacity);
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::capacity() const
|
|
-> size_type {
|
|
return impl_.body_.capacity();
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
void flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::shrink_to_fit() {
|
|
impl_.body_.shrink_to_fit();
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Size management.
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
void flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::clear() {
|
|
impl_.body_.clear();
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::size() const
|
|
-> size_type {
|
|
return impl_.body_.size();
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::max_size() const
|
|
-> size_type {
|
|
return impl_.body_.max_size();
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
bool flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::empty() const {
|
|
return impl_.body_.empty();
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Iterators.
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::begin() -> iterator {
|
|
return impl_.body_.begin();
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::begin() const
|
|
-> const_iterator {
|
|
return impl_.body_.begin();
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::cbegin() const
|
|
-> const_iterator {
|
|
return impl_.body_.cbegin();
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::end() -> iterator {
|
|
return impl_.body_.end();
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::end() const
|
|
-> const_iterator {
|
|
return impl_.body_.end();
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::cend() const
|
|
-> const_iterator {
|
|
return impl_.body_.cend();
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::rbegin()
|
|
-> reverse_iterator {
|
|
return impl_.body_.rbegin();
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::rbegin() const
|
|
-> const_reverse_iterator {
|
|
return impl_.body_.rbegin();
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::crbegin() const
|
|
-> const_reverse_iterator {
|
|
return impl_.body_.crbegin();
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::rend()
|
|
-> reverse_iterator {
|
|
return impl_.body_.rend();
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::rend() const
|
|
-> const_reverse_iterator {
|
|
return impl_.body_.rend();
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::crend() const
|
|
-> const_reverse_iterator {
|
|
return impl_.body_.crend();
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Insert operations.
|
|
//
|
|
// Currently we use position_hint the same way as eastl or boost:
|
|
// https://github.com/electronicarts/EASTL/blob/master/include/EASTL/vector_set.h#L493
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::insert(
|
|
const value_type& val) -> std::pair<iterator, bool> {
|
|
return emplace_key_args(GetKeyFromValue()(val), val);
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::insert(
|
|
value_type&& val) -> std::pair<iterator, bool> {
|
|
return emplace_key_args(GetKeyFromValue()(val), std::move(val));
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::insert(
|
|
const_iterator position_hint,
|
|
const value_type& val) -> iterator {
|
|
return emplace_hint_key_args(position_hint, GetKeyFromValue()(val), val)
|
|
.first;
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::insert(
|
|
const_iterator position_hint,
|
|
value_type&& val) -> iterator {
|
|
return emplace_hint_key_args(position_hint, GetKeyFromValue()(val),
|
|
std::move(val))
|
|
.first;
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
template <class InputIterator>
|
|
void flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::insert(
|
|
InputIterator first,
|
|
InputIterator last,
|
|
FlatContainerDupes dupes) {
|
|
if (first == last)
|
|
return;
|
|
|
|
// Cache results whether existing elements should be overwritten and whether
|
|
// inserting new elements happens immediately or will be done in a batch.
|
|
const bool overwrite_existing = dupes == KEEP_LAST_OF_DUPES;
|
|
const bool insert_inplace =
|
|
is_multipass<InputIterator>() && std::next(first) == last;
|
|
|
|
if (insert_inplace) {
|
|
if (overwrite_existing) {
|
|
for (; first != last; ++first)
|
|
insert_or_assign(*first);
|
|
} else
|
|
std::copy(first, last, std::inserter(*this, end()));
|
|
return;
|
|
}
|
|
|
|
// Provide a convenience lambda to obtain an iterator pointing past the last
|
|
// old element. This needs to be dymanic due to possible re-allocations.
|
|
const size_type original_size = size();
|
|
auto middle = [this, original_size]() {
|
|
return std::next(begin(), original_size);
|
|
};
|
|
|
|
// For batch updates initialize the first insertion point.
|
|
difference_type pos_first_new = original_size;
|
|
|
|
// Loop over the input range while appending new values and overwriting
|
|
// existing ones, if applicable. Keep track of the first insertion point.
|
|
if (overwrite_existing) {
|
|
for (; first != last; ++first) {
|
|
std::pair<iterator, bool> result =
|
|
append_or_assign(begin(), middle(), *first);
|
|
if (result.second) {
|
|
pos_first_new =
|
|
std::min(pos_first_new, std::distance(begin(), result.first));
|
|
}
|
|
}
|
|
} else {
|
|
for (; first != last; ++first) {
|
|
std::pair<iterator, bool> result =
|
|
append_unique(begin(), middle(), *first);
|
|
if (result.second) {
|
|
pos_first_new =
|
|
std::min(pos_first_new, std::distance(begin(), result.first));
|
|
}
|
|
}
|
|
}
|
|
|
|
// The new elements might be unordered and contain duplicates, so post-process
|
|
// the just inserted elements and merge them with the rest, inserting them at
|
|
// the previously found spot.
|
|
sort_and_unique(middle(), end(), dupes);
|
|
std::inplace_merge(std::next(begin(), pos_first_new), middle(), end(),
|
|
value_comp());
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
template <class... Args>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::emplace(Args&&... args)
|
|
-> std::pair<iterator, bool> {
|
|
return insert(value_type(std::forward<Args>(args)...));
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
template <class... Args>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::emplace_hint(
|
|
const_iterator position_hint,
|
|
Args&&... args) -> iterator {
|
|
return insert(position_hint, value_type(std::forward<Args>(args)...));
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Erase operations.
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::erase(
|
|
iterator position) -> iterator {
|
|
return impl_.body_.erase(position);
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::erase(
|
|
const_iterator position) -> iterator {
|
|
// We have to cast away const because of crbug.com/677044.
|
|
return erase(const_cast_it(position));
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
template <typename K>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::erase(const K& val)
|
|
-> size_type {
|
|
auto eq_range = equal_range(val);
|
|
auto res = std::distance(eq_range.first, eq_range.second);
|
|
// We have to cast away const because of crbug.com/677044.
|
|
erase(const_cast_it(eq_range.first), const_cast_it(eq_range.second));
|
|
return res;
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::erase(
|
|
const_iterator first,
|
|
const_iterator last) -> iterator {
|
|
// We have to cast away const because of crbug.com/677044.
|
|
return impl_.body_.erase(const_cast_it(first), const_cast_it(last));
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Comparators.
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::key_comp() const
|
|
-> key_compare {
|
|
return impl_.get_key_comp();
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::value_comp() const
|
|
-> value_compare {
|
|
return impl_.get_value_comp();
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Search operations.
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
template <typename K>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::count(
|
|
const K& key) const -> size_type {
|
|
auto eq_range = equal_range(key);
|
|
return std::distance(eq_range.first, eq_range.second);
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
template <typename K>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::find(const K& key)
|
|
-> iterator {
|
|
return const_cast_it(as_const().find(key));
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
template <typename K>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::find(
|
|
const K& key) const -> const_iterator {
|
|
auto eq_range = equal_range(key);
|
|
return (eq_range.first == eq_range.second) ? end() : eq_range.first;
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
template <typename K>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::equal_range(
|
|
const K& key) -> std::pair<iterator, iterator> {
|
|
auto res = as_const().equal_range(key);
|
|
return {const_cast_it(res.first), const_cast_it(res.second)};
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
template <typename K>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::equal_range(
|
|
const K& key) const -> std::pair<const_iterator, const_iterator> {
|
|
auto lower = lower_bound(key);
|
|
|
|
GetKeyFromValue extractor;
|
|
if (lower == end() || impl_.get_key_comp()(key, extractor(*lower)))
|
|
return {lower, lower};
|
|
|
|
return {lower, std::next(lower)};
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
template <typename K>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::lower_bound(
|
|
const K& key) -> iterator {
|
|
return const_cast_it(as_const().lower_bound(key));
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
template <typename K>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::lower_bound(
|
|
const K& key) const -> const_iterator {
|
|
static_assert(std::is_convertible<const KeyTypeOrK<K>&, const K&>::value,
|
|
"Requested type cannot be bound to the container's key_type "
|
|
"which is required for a non-transparent compare.");
|
|
|
|
const KeyTypeOrK<K>& key_ref = key;
|
|
|
|
KeyValueCompare key_value(impl_.get_key_comp());
|
|
return std::lower_bound(begin(), end(), key_ref, key_value);
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
template <typename K>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::upper_bound(
|
|
const K& key) -> iterator {
|
|
return const_cast_it(as_const().upper_bound(key));
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
template <typename K>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::upper_bound(
|
|
const K& key) const -> const_iterator {
|
|
static_assert(std::is_convertible<const KeyTypeOrK<K>&, const K&>::value,
|
|
"Requested type cannot be bound to the container's key_type "
|
|
"which is required for a non-transparent compare.");
|
|
|
|
const KeyTypeOrK<K>& key_ref = key;
|
|
|
|
KeyValueCompare key_value(impl_.get_key_comp());
|
|
return std::upper_bound(begin(), end(), key_ref, key_value);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// General operations.
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
void flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::swap(
|
|
flat_tree& other) {
|
|
std::swap(impl_, other.impl_);
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
template <class... Args>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::unsafe_emplace(
|
|
const_iterator position,
|
|
Args&&... args) -> iterator {
|
|
return impl_.body_.emplace(position, std::forward<Args>(args)...);
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
template <class K, class... Args>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::emplace_key_args(
|
|
const K& key,
|
|
Args&&... args) -> std::pair<iterator, bool> {
|
|
auto lower = lower_bound(key);
|
|
if (lower == end() || key_comp()(key, GetKeyFromValue()(*lower)))
|
|
return {unsafe_emplace(lower, std::forward<Args>(args)...), true};
|
|
return {lower, false};
|
|
}
|
|
|
|
template <class Key, class Value, class GetKeyFromValue, class KeyCompare>
|
|
template <class K, class... Args>
|
|
auto flat_tree<Key, Value, GetKeyFromValue, KeyCompare>::emplace_hint_key_args(
|
|
const_iterator hint,
|
|
const K& key,
|
|
Args&&... args) -> std::pair<iterator, bool> {
|
|
GetKeyFromValue extractor;
|
|
if ((hint == begin() || key_comp()(extractor(*std::prev(hint)), key))) {
|
|
if (hint == end() || key_comp()(key, extractor(*hint))) {
|
|
// *(hint - 1) < key < *hint => key did not exist and hint is correct.
|
|
return {unsafe_emplace(hint, std::forward<Args>(args)...), true};
|
|
}
|
|
if (!key_comp()(extractor(*hint), key)) {
|
|
// key == *hint => no-op, return correct hint.
|
|
return {const_cast_it(hint), false};
|
|
}
|
|
}
|
|
// hint was not helpful, dispatch to hintless version.
|
|
return emplace_key_args(key, std::forward<Args>(args)...);
|
|
}
|
|
|
|
// For containers like sets, the key is the same as the value. This implements
|
|
// the GetKeyFromValue template parameter to flat_tree for this case.
|
|
template <class Key>
|
|
struct GetKeyFromValueIdentity {
|
|
const Key& operator()(const Key& k) const { return k; }
|
|
};
|
|
|
|
} // namespace internal
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Free functions.
|
|
|
|
// Erases all elements that match predicate. It has O(size) complexity.
|
|
template <class Key,
|
|
class Value,
|
|
class GetKeyFromValue,
|
|
class KeyCompare,
|
|
typename Predicate>
|
|
void EraseIf(base::internal::flat_tree<Key, Value, GetKeyFromValue, KeyCompare>&
|
|
container,
|
|
Predicate pred) {
|
|
container.erase(std::remove_if(container.begin(), container.end(), pred),
|
|
container.end());
|
|
}
|
|
|
|
} // namespace base
|
|
|
|
#endif // BASE_CONTAINERS_FLAT_TREE_H_
|