mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-24 14:26:09 +03:00
725 lines
20 KiB
C++
725 lines
20 KiB
C++
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef BASE_MEMORY_REF_COUNTED_H_
|
|
#define BASE_MEMORY_REF_COUNTED_H_
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <iosfwd>
|
|
#include <type_traits>
|
|
|
|
#include "base/atomic_ref_count.h"
|
|
#include "base/base_export.h"
|
|
#include "base/compiler_specific.h"
|
|
#include "base/logging.h"
|
|
#include "base/macros.h"
|
|
#include "base/sequence_checker.h"
|
|
#include "base/threading/thread_collision_warner.h"
|
|
#include "build/build_config.h"
|
|
|
|
template <class T>
|
|
class scoped_refptr;
|
|
|
|
namespace base {
|
|
|
|
template <typename T>
|
|
scoped_refptr<T> AdoptRef(T* t);
|
|
|
|
namespace subtle {
|
|
|
|
enum AdoptRefTag { kAdoptRefTag };
|
|
enum StartRefCountFromZeroTag { kStartRefCountFromZeroTag };
|
|
enum StartRefCountFromOneTag { kStartRefCountFromOneTag };
|
|
|
|
class BASE_EXPORT RefCountedBase {
|
|
public:
|
|
bool HasOneRef() const { return ref_count_ == 1; }
|
|
|
|
protected:
|
|
explicit RefCountedBase(StartRefCountFromZeroTag) {
|
|
#if DCHECK_IS_ON()
|
|
sequence_checker_.DetachFromSequence();
|
|
#endif
|
|
}
|
|
|
|
explicit RefCountedBase(StartRefCountFromOneTag) : ref_count_(1) {
|
|
#if DCHECK_IS_ON()
|
|
needs_adopt_ref_ = true;
|
|
sequence_checker_.DetachFromSequence();
|
|
#endif
|
|
}
|
|
|
|
~RefCountedBase() {
|
|
#if DCHECK_IS_ON()
|
|
DCHECK(in_dtor_) << "RefCounted object deleted without calling Release()";
|
|
#endif
|
|
}
|
|
|
|
void AddRef() const {
|
|
// TODO(maruel): Add back once it doesn't assert 500 times/sec.
|
|
// Current thread books the critical section "AddRelease"
|
|
// without release it.
|
|
// DFAKE_SCOPED_LOCK_THREAD_LOCKED(add_release_);
|
|
#if DCHECK_IS_ON()
|
|
DCHECK(!in_dtor_);
|
|
DCHECK(!needs_adopt_ref_)
|
|
<< "This RefCounted object is created with non-zero reference count."
|
|
<< " The first reference to such a object has to be made by AdoptRef or"
|
|
<< " MakeRefCounted.";
|
|
if (ref_count_ >= 1) {
|
|
DCHECK(CalledOnValidSequence());
|
|
}
|
|
#endif
|
|
|
|
AddRefImpl();
|
|
}
|
|
|
|
// Returns true if the object should self-delete.
|
|
bool Release() const {
|
|
--ref_count_;
|
|
|
|
// TODO(maruel): Add back once it doesn't assert 500 times/sec.
|
|
// Current thread books the critical section "AddRelease"
|
|
// without release it.
|
|
// DFAKE_SCOPED_LOCK_THREAD_LOCKED(add_release_);
|
|
|
|
#if DCHECK_IS_ON()
|
|
DCHECK(!in_dtor_);
|
|
if (ref_count_ == 0)
|
|
in_dtor_ = true;
|
|
|
|
if (ref_count_ >= 1)
|
|
DCHECK(CalledOnValidSequence());
|
|
if (ref_count_ == 1)
|
|
sequence_checker_.DetachFromSequence();
|
|
#endif
|
|
|
|
return ref_count_ == 0;
|
|
}
|
|
|
|
// Returns true if it is safe to read or write the object, from a thread
|
|
// safety standpoint. Should be DCHECK'd from the methods of RefCounted
|
|
// classes if there is a danger of objects being shared across threads.
|
|
//
|
|
// This produces fewer false positives than adding a separate SequenceChecker
|
|
// into the subclass, because it automatically detaches from the sequence when
|
|
// the reference count is 1 (and never fails if there is only one reference).
|
|
//
|
|
// This means unlike a separate SequenceChecker, it will permit a singly
|
|
// referenced object to be passed between threads (not holding a reference on
|
|
// the sending thread), but will trap if the sending thread holds onto a
|
|
// reference, or if the object is accessed from multiple threads
|
|
// simultaneously.
|
|
bool IsOnValidSequence() const {
|
|
#if DCHECK_IS_ON()
|
|
return ref_count_ <= 1 || CalledOnValidSequence();
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
private:
|
|
template <typename U>
|
|
friend scoped_refptr<U> base::AdoptRef(U*);
|
|
|
|
void Adopted() const {
|
|
#if DCHECK_IS_ON()
|
|
DCHECK(needs_adopt_ref_);
|
|
needs_adopt_ref_ = false;
|
|
#endif
|
|
}
|
|
|
|
#if defined(ARCH_CPU_64_BIT)
|
|
void AddRefImpl() const;
|
|
#else
|
|
void AddRefImpl() const { ++ref_count_; }
|
|
#endif
|
|
|
|
#if DCHECK_IS_ON()
|
|
bool CalledOnValidSequence() const;
|
|
#endif
|
|
|
|
mutable uint32_t ref_count_ = 0;
|
|
|
|
#if DCHECK_IS_ON()
|
|
mutable bool needs_adopt_ref_ = false;
|
|
mutable bool in_dtor_ = false;
|
|
mutable SequenceChecker sequence_checker_;
|
|
#endif
|
|
|
|
DFAKE_MUTEX(add_release_);
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(RefCountedBase);
|
|
};
|
|
|
|
class BASE_EXPORT RefCountedThreadSafeBase {
|
|
public:
|
|
bool HasOneRef() const;
|
|
|
|
protected:
|
|
explicit RefCountedThreadSafeBase(StartRefCountFromZeroTag) {}
|
|
explicit RefCountedThreadSafeBase(StartRefCountFromOneTag) : ref_count_(1) {
|
|
#if DCHECK_IS_ON()
|
|
needs_adopt_ref_ = true;
|
|
#endif
|
|
}
|
|
|
|
#if DCHECK_IS_ON()
|
|
~RefCountedThreadSafeBase();
|
|
#else
|
|
~RefCountedThreadSafeBase() = default;
|
|
#endif
|
|
|
|
// Release and AddRef are suitable for inlining on X86 because they generate
|
|
// very small code sequences. On other platforms (ARM), it causes a size
|
|
// regression and is probably not worth it.
|
|
#if defined(ARCH_CPU_X86_FAMILY)
|
|
// Returns true if the object should self-delete.
|
|
bool Release() const { return ReleaseImpl(); }
|
|
void AddRef() const { AddRefImpl(); }
|
|
#else
|
|
// Returns true if the object should self-delete.
|
|
bool Release() const;
|
|
void AddRef() const;
|
|
#endif
|
|
|
|
private:
|
|
template <typename U>
|
|
friend scoped_refptr<U> base::AdoptRef(U*);
|
|
|
|
void Adopted() const {
|
|
#if DCHECK_IS_ON()
|
|
DCHECK(needs_adopt_ref_);
|
|
needs_adopt_ref_ = false;
|
|
#endif
|
|
}
|
|
|
|
ALWAYS_INLINE void AddRefImpl() const {
|
|
#if DCHECK_IS_ON()
|
|
DCHECK(!in_dtor_);
|
|
DCHECK(!needs_adopt_ref_)
|
|
<< "This RefCounted object is created with non-zero reference count."
|
|
<< " The first reference to such a object has to be made by AdoptRef or"
|
|
<< " MakeRefCounted.";
|
|
#endif
|
|
ref_count_.Increment();
|
|
}
|
|
|
|
ALWAYS_INLINE bool ReleaseImpl() const {
|
|
#if DCHECK_IS_ON()
|
|
DCHECK(!in_dtor_);
|
|
DCHECK(!ref_count_.IsZero());
|
|
#endif
|
|
if (!ref_count_.Decrement()) {
|
|
#if DCHECK_IS_ON()
|
|
in_dtor_ = true;
|
|
#endif
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
mutable AtomicRefCount ref_count_{0};
|
|
#if DCHECK_IS_ON()
|
|
mutable bool needs_adopt_ref_ = false;
|
|
mutable bool in_dtor_ = false;
|
|
#endif
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(RefCountedThreadSafeBase);
|
|
};
|
|
|
|
} // namespace subtle
|
|
|
|
// ScopedAllowCrossThreadRefCountAccess disables the check documented on
|
|
// RefCounted below for rare pre-existing use cases where thread-safety was
|
|
// guaranteed through other means (e.g. explicit sequencing of calls across
|
|
// execution sequences when bouncing between threads in order). New callers
|
|
// should refrain from using this (callsites handling thread-safety through
|
|
// locks should use RefCountedThreadSafe per the overhead of its atomics being
|
|
// negligible compared to locks anyways and callsites doing explicit sequencing
|
|
// should properly std::move() the ref to avoid hitting this check).
|
|
// TODO(tzik): Cleanup existing use cases and remove
|
|
// ScopedAllowCrossThreadRefCountAccess.
|
|
class BASE_EXPORT ScopedAllowCrossThreadRefCountAccess final {
|
|
public:
|
|
#if DCHECK_IS_ON()
|
|
ScopedAllowCrossThreadRefCountAccess();
|
|
~ScopedAllowCrossThreadRefCountAccess();
|
|
#else
|
|
ScopedAllowCrossThreadRefCountAccess() {}
|
|
~ScopedAllowCrossThreadRefCountAccess() {}
|
|
#endif
|
|
};
|
|
|
|
//
|
|
// A base class for reference counted classes. Otherwise, known as a cheap
|
|
// knock-off of WebKit's RefCounted<T> class. To use this, just extend your
|
|
// class from it like so:
|
|
//
|
|
// class MyFoo : public base::RefCounted<MyFoo> {
|
|
// ...
|
|
// private:
|
|
// friend class base::RefCounted<MyFoo>;
|
|
// ~MyFoo();
|
|
// };
|
|
//
|
|
// You should always make your destructor non-public, to avoid any code deleting
|
|
// the object accidently while there are references to it.
|
|
//
|
|
//
|
|
// The ref count manipulation to RefCounted is NOT thread safe and has DCHECKs
|
|
// to trap unsafe cross thread usage. A subclass instance of RefCounted can be
|
|
// passed to another execution sequence only when its ref count is 1. If the ref
|
|
// count is more than 1, the RefCounted class verifies the ref updates are made
|
|
// on the same execution sequence as the previous ones. The subclass can also
|
|
// manually call IsOnValidSequence to trap other non-thread-safe accesses; see
|
|
// the documentation for that method.
|
|
//
|
|
//
|
|
// The reference count starts from zero by default, and we intended to migrate
|
|
// to start-from-one ref count. Put REQUIRE_ADOPTION_FOR_REFCOUNTED_TYPE() to
|
|
// the ref counted class to opt-in.
|
|
//
|
|
// If an object has start-from-one ref count, the first scoped_refptr need to be
|
|
// created by base::AdoptRef() or base::MakeRefCounted(). We can use
|
|
// base::MakeRefCounted() to create create both type of ref counted object.
|
|
//
|
|
// The motivations to use start-from-one ref count are:
|
|
// - Start-from-one ref count doesn't need the ref count increment for the
|
|
// first reference.
|
|
// - It can detect an invalid object acquisition for a being-deleted object
|
|
// that has zero ref count. That tends to happen on custom deleter that
|
|
// delays the deletion.
|
|
// TODO(tzik): Implement invalid acquisition detection.
|
|
// - Behavior parity to Blink's WTF::RefCounted, whose count starts from one.
|
|
// And start-from-one ref count is a step to merge WTF::RefCounted into
|
|
// base::RefCounted.
|
|
//
|
|
#define REQUIRE_ADOPTION_FOR_REFCOUNTED_TYPE() \
|
|
static constexpr ::base::subtle::StartRefCountFromOneTag \
|
|
kRefCountPreference = ::base::subtle::kStartRefCountFromOneTag
|
|
|
|
template <class T, typename Traits>
|
|
class RefCounted;
|
|
|
|
template <typename T>
|
|
struct DefaultRefCountedTraits {
|
|
static void Destruct(const T* x) {
|
|
RefCounted<T, DefaultRefCountedTraits>::DeleteInternal(x);
|
|
}
|
|
};
|
|
|
|
template <class T, typename Traits = DefaultRefCountedTraits<T>>
|
|
class RefCounted : public subtle::RefCountedBase {
|
|
public:
|
|
static constexpr subtle::StartRefCountFromZeroTag kRefCountPreference =
|
|
subtle::kStartRefCountFromZeroTag;
|
|
|
|
RefCounted() : subtle::RefCountedBase(T::kRefCountPreference) {}
|
|
|
|
void AddRef() const {
|
|
subtle::RefCountedBase::AddRef();
|
|
}
|
|
|
|
void Release() const {
|
|
if (subtle::RefCountedBase::Release()) {
|
|
// Prune the code paths which the static analyzer may take to simulate
|
|
// object destruction. Use-after-free errors aren't possible given the
|
|
// lifetime guarantees of the refcounting system.
|
|
ANALYZER_SKIP_THIS_PATH();
|
|
|
|
Traits::Destruct(static_cast<const T*>(this));
|
|
}
|
|
}
|
|
|
|
protected:
|
|
~RefCounted() = default;
|
|
|
|
private:
|
|
friend struct DefaultRefCountedTraits<T>;
|
|
template <typename U>
|
|
static void DeleteInternal(const U* x) {
|
|
delete x;
|
|
}
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(RefCounted);
|
|
};
|
|
|
|
// Forward declaration.
|
|
template <class T, typename Traits> class RefCountedThreadSafe;
|
|
|
|
// Default traits for RefCountedThreadSafe<T>. Deletes the object when its ref
|
|
// count reaches 0. Overload to delete it on a different thread etc.
|
|
template<typename T>
|
|
struct DefaultRefCountedThreadSafeTraits {
|
|
static void Destruct(const T* x) {
|
|
// Delete through RefCountedThreadSafe to make child classes only need to be
|
|
// friend with RefCountedThreadSafe instead of this struct, which is an
|
|
// implementation detail.
|
|
RefCountedThreadSafe<T,
|
|
DefaultRefCountedThreadSafeTraits>::DeleteInternal(x);
|
|
}
|
|
};
|
|
|
|
//
|
|
// A thread-safe variant of RefCounted<T>
|
|
//
|
|
// class MyFoo : public base::RefCountedThreadSafe<MyFoo> {
|
|
// ...
|
|
// };
|
|
//
|
|
// If you're using the default trait, then you should add compile time
|
|
// asserts that no one else is deleting your object. i.e.
|
|
// private:
|
|
// friend class base::RefCountedThreadSafe<MyFoo>;
|
|
// ~MyFoo();
|
|
//
|
|
// We can use REQUIRE_ADOPTION_FOR_REFCOUNTED_TYPE() with RefCountedThreadSafe
|
|
// too. See the comment above the RefCounted definition for details.
|
|
template <class T, typename Traits = DefaultRefCountedThreadSafeTraits<T> >
|
|
class RefCountedThreadSafe : public subtle::RefCountedThreadSafeBase {
|
|
public:
|
|
static constexpr subtle::StartRefCountFromZeroTag kRefCountPreference =
|
|
subtle::kStartRefCountFromZeroTag;
|
|
|
|
explicit RefCountedThreadSafe()
|
|
: subtle::RefCountedThreadSafeBase(T::kRefCountPreference) {}
|
|
|
|
void AddRef() const {
|
|
subtle::RefCountedThreadSafeBase::AddRef();
|
|
}
|
|
|
|
void Release() const {
|
|
if (subtle::RefCountedThreadSafeBase::Release()) {
|
|
ANALYZER_SKIP_THIS_PATH();
|
|
Traits::Destruct(static_cast<const T*>(this));
|
|
}
|
|
}
|
|
|
|
protected:
|
|
~RefCountedThreadSafe() = default;
|
|
|
|
private:
|
|
friend struct DefaultRefCountedThreadSafeTraits<T>;
|
|
template <typename U>
|
|
static void DeleteInternal(const U* x) {
|
|
delete x;
|
|
}
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(RefCountedThreadSafe);
|
|
};
|
|
|
|
//
|
|
// A thread-safe wrapper for some piece of data so we can place other
|
|
// things in scoped_refptrs<>.
|
|
//
|
|
template<typename T>
|
|
class RefCountedData
|
|
: public base::RefCountedThreadSafe< base::RefCountedData<T> > {
|
|
public:
|
|
RefCountedData() : data() {}
|
|
RefCountedData(const T& in_value) : data(in_value) {}
|
|
RefCountedData(T&& in_value) : data(std::move(in_value)) {}
|
|
|
|
T data;
|
|
|
|
private:
|
|
friend class base::RefCountedThreadSafe<base::RefCountedData<T> >;
|
|
~RefCountedData() = default;
|
|
};
|
|
|
|
// Creates a scoped_refptr from a raw pointer without incrementing the reference
|
|
// count. Use this only for a newly created object whose reference count starts
|
|
// from 1 instead of 0.
|
|
template <typename T>
|
|
scoped_refptr<T> AdoptRef(T* obj) {
|
|
using Tag = typename std::decay<decltype(T::kRefCountPreference)>::type;
|
|
static_assert(std::is_same<subtle::StartRefCountFromOneTag, Tag>::value,
|
|
"Use AdoptRef only for the reference count starts from one.");
|
|
|
|
DCHECK(obj);
|
|
DCHECK(obj->HasOneRef());
|
|
obj->Adopted();
|
|
return scoped_refptr<T>(obj, subtle::kAdoptRefTag);
|
|
}
|
|
|
|
namespace subtle {
|
|
|
|
template <typename T>
|
|
scoped_refptr<T> AdoptRefIfNeeded(T* obj, StartRefCountFromZeroTag) {
|
|
return scoped_refptr<T>(obj);
|
|
}
|
|
|
|
template <typename T>
|
|
scoped_refptr<T> AdoptRefIfNeeded(T* obj, StartRefCountFromOneTag) {
|
|
return AdoptRef(obj);
|
|
}
|
|
|
|
} // namespace subtle
|
|
|
|
// Constructs an instance of T, which is a ref counted type, and wraps the
|
|
// object into a scoped_refptr<T>.
|
|
template <typename T, typename... Args>
|
|
scoped_refptr<T> MakeRefCounted(Args&&... args) {
|
|
T* obj = new T(std::forward<Args>(args)...);
|
|
return subtle::AdoptRefIfNeeded(obj, T::kRefCountPreference);
|
|
}
|
|
|
|
// Takes an instance of T, which is a ref counted type, and wraps the object
|
|
// into a scoped_refptr<T>.
|
|
template <typename T>
|
|
scoped_refptr<T> WrapRefCounted(T* t) {
|
|
return scoped_refptr<T>(t);
|
|
}
|
|
|
|
} // namespace base
|
|
|
|
//
|
|
// A smart pointer class for reference counted objects. Use this class instead
|
|
// of calling AddRef and Release manually on a reference counted object to
|
|
// avoid common memory leaks caused by forgetting to Release an object
|
|
// reference. Sample usage:
|
|
//
|
|
// class MyFoo : public RefCounted<MyFoo> {
|
|
// ...
|
|
// private:
|
|
// friend class RefCounted<MyFoo>; // Allow destruction by RefCounted<>.
|
|
// ~MyFoo(); // Destructor must be private/protected.
|
|
// };
|
|
//
|
|
// void some_function() {
|
|
// scoped_refptr<MyFoo> foo = new MyFoo();
|
|
// foo->Method(param);
|
|
// // |foo| is released when this function returns
|
|
// }
|
|
//
|
|
// void some_other_function() {
|
|
// scoped_refptr<MyFoo> foo = new MyFoo();
|
|
// ...
|
|
// foo = nullptr; // explicitly releases |foo|
|
|
// ...
|
|
// if (foo)
|
|
// foo->Method(param);
|
|
// }
|
|
//
|
|
// The above examples show how scoped_refptr<T> acts like a pointer to T.
|
|
// Given two scoped_refptr<T> classes, it is also possible to exchange
|
|
// references between the two objects, like so:
|
|
//
|
|
// {
|
|
// scoped_refptr<MyFoo> a = new MyFoo();
|
|
// scoped_refptr<MyFoo> b;
|
|
//
|
|
// b.swap(a);
|
|
// // now, |b| references the MyFoo object, and |a| references nullptr.
|
|
// }
|
|
//
|
|
// To make both |a| and |b| in the above example reference the same MyFoo
|
|
// object, simply use the assignment operator:
|
|
//
|
|
// {
|
|
// scoped_refptr<MyFoo> a = new MyFoo();
|
|
// scoped_refptr<MyFoo> b;
|
|
//
|
|
// b = a;
|
|
// // now, |a| and |b| each own a reference to the same MyFoo object.
|
|
// }
|
|
//
|
|
template <class T>
|
|
class scoped_refptr {
|
|
public:
|
|
typedef T element_type;
|
|
|
|
scoped_refptr() {}
|
|
|
|
scoped_refptr(T* p) : ptr_(p) {
|
|
if (ptr_)
|
|
AddRef(ptr_);
|
|
}
|
|
|
|
// Copy constructor.
|
|
scoped_refptr(const scoped_refptr<T>& r) : ptr_(r.ptr_) {
|
|
if (ptr_)
|
|
AddRef(ptr_);
|
|
}
|
|
|
|
// Copy conversion constructor.
|
|
template <typename U,
|
|
typename = typename std::enable_if<
|
|
std::is_convertible<U*, T*>::value>::type>
|
|
scoped_refptr(const scoped_refptr<U>& r) : ptr_(r.get()) {
|
|
if (ptr_)
|
|
AddRef(ptr_);
|
|
}
|
|
|
|
// Move constructor. This is required in addition to the conversion
|
|
// constructor below in order for clang to warn about pessimizing moves.
|
|
scoped_refptr(scoped_refptr&& r) : ptr_(r.get()) { r.ptr_ = nullptr; }
|
|
|
|
// Move conversion constructor.
|
|
template <typename U,
|
|
typename = typename std::enable_if<
|
|
std::is_convertible<U*, T*>::value>::type>
|
|
scoped_refptr(scoped_refptr<U>&& r) : ptr_(r.get()) {
|
|
r.ptr_ = nullptr;
|
|
}
|
|
|
|
~scoped_refptr() {
|
|
if (ptr_)
|
|
Release(ptr_);
|
|
}
|
|
|
|
T* get() const { return ptr_; }
|
|
|
|
T& operator*() const {
|
|
DCHECK(ptr_);
|
|
return *ptr_;
|
|
}
|
|
|
|
T* operator->() const {
|
|
DCHECK(ptr_);
|
|
return ptr_;
|
|
}
|
|
|
|
scoped_refptr<T>& operator=(T* p) {
|
|
// AddRef first so that self assignment should work
|
|
if (p)
|
|
AddRef(p);
|
|
T* old_ptr = ptr_;
|
|
ptr_ = p;
|
|
if (old_ptr)
|
|
Release(old_ptr);
|
|
return *this;
|
|
}
|
|
|
|
scoped_refptr<T>& operator=(const scoped_refptr<T>& r) {
|
|
return *this = r.ptr_;
|
|
}
|
|
|
|
template <typename U>
|
|
scoped_refptr<T>& operator=(const scoped_refptr<U>& r) {
|
|
return *this = r.get();
|
|
}
|
|
|
|
scoped_refptr<T>& operator=(scoped_refptr<T>&& r) {
|
|
scoped_refptr<T> tmp(std::move(r));
|
|
tmp.swap(*this);
|
|
return *this;
|
|
}
|
|
|
|
template <typename U>
|
|
scoped_refptr<T>& operator=(scoped_refptr<U>&& r) {
|
|
// We swap with a temporary variable to guarantee that |ptr_| is released
|
|
// immediately. A naive implementation which swaps |this| and |r| would
|
|
// unintentionally extend the lifetime of |ptr_| to at least the lifetime of
|
|
// |r|.
|
|
scoped_refptr<T> tmp(std::move(r));
|
|
tmp.swap(*this);
|
|
return *this;
|
|
}
|
|
|
|
void swap(scoped_refptr<T>& r) {
|
|
T* tmp = ptr_;
|
|
ptr_ = r.ptr_;
|
|
r.ptr_ = tmp;
|
|
}
|
|
|
|
explicit operator bool() const { return ptr_ != nullptr; }
|
|
|
|
template <typename U>
|
|
bool operator==(const scoped_refptr<U>& rhs) const {
|
|
return ptr_ == rhs.get();
|
|
}
|
|
|
|
template <typename U>
|
|
bool operator!=(const scoped_refptr<U>& rhs) const {
|
|
return !operator==(rhs);
|
|
}
|
|
|
|
template <typename U>
|
|
bool operator<(const scoped_refptr<U>& rhs) const {
|
|
return ptr_ < rhs.get();
|
|
}
|
|
|
|
protected:
|
|
T* ptr_ = nullptr;
|
|
|
|
private:
|
|
template <typename U>
|
|
friend scoped_refptr<U> base::AdoptRef(U*);
|
|
|
|
scoped_refptr(T* p, base::subtle::AdoptRefTag) : ptr_(p) {}
|
|
|
|
// Friend required for move constructors that set r.ptr_ to null.
|
|
template <typename U>
|
|
friend class scoped_refptr;
|
|
|
|
// Non-inline helpers to allow:
|
|
// class Opaque;
|
|
// extern template class scoped_refptr<Opaque>;
|
|
// Otherwise the compiler will complain that Opaque is an incomplete type.
|
|
static void AddRef(T* ptr);
|
|
static void Release(T* ptr);
|
|
};
|
|
|
|
// static
|
|
template <typename T>
|
|
void scoped_refptr<T>::AddRef(T* ptr) {
|
|
ptr->AddRef();
|
|
}
|
|
|
|
// static
|
|
template <typename T>
|
|
void scoped_refptr<T>::Release(T* ptr) {
|
|
ptr->Release();
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
bool operator==(const scoped_refptr<T>& lhs, const U* rhs) {
|
|
return lhs.get() == rhs;
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
bool operator==(const T* lhs, const scoped_refptr<U>& rhs) {
|
|
return lhs == rhs.get();
|
|
}
|
|
|
|
template <typename T>
|
|
bool operator==(const scoped_refptr<T>& lhs, std::nullptr_t null) {
|
|
return !static_cast<bool>(lhs);
|
|
}
|
|
|
|
template <typename T>
|
|
bool operator==(std::nullptr_t null, const scoped_refptr<T>& rhs) {
|
|
return !static_cast<bool>(rhs);
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
bool operator!=(const scoped_refptr<T>& lhs, const U* rhs) {
|
|
return !operator==(lhs, rhs);
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
bool operator!=(const T* lhs, const scoped_refptr<U>& rhs) {
|
|
return !operator==(lhs, rhs);
|
|
}
|
|
|
|
template <typename T>
|
|
bool operator!=(const scoped_refptr<T>& lhs, std::nullptr_t null) {
|
|
return !operator==(lhs, null);
|
|
}
|
|
|
|
template <typename T>
|
|
bool operator!=(std::nullptr_t null, const scoped_refptr<T>& rhs) {
|
|
return !operator==(null, rhs);
|
|
}
|
|
|
|
template <typename T>
|
|
std::ostream& operator<<(std::ostream& out, const scoped_refptr<T>& p) {
|
|
return out << p.get();
|
|
}
|
|
|
|
#endif // BASE_MEMORY_REF_COUNTED_H_
|