naiveproxy/base/memory/ref_counted.h
2018-01-29 00:30:36 +08:00

725 lines
20 KiB
C++

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_MEMORY_REF_COUNTED_H_
#define BASE_MEMORY_REF_COUNTED_H_
#include <stddef.h>
#include <iosfwd>
#include <type_traits>
#include "base/atomic_ref_count.h"
#include "base/base_export.h"
#include "base/compiler_specific.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/sequence_checker.h"
#include "base/threading/thread_collision_warner.h"
#include "build/build_config.h"
template <class T>
class scoped_refptr;
namespace base {
template <typename T>
scoped_refptr<T> AdoptRef(T* t);
namespace subtle {
enum AdoptRefTag { kAdoptRefTag };
enum StartRefCountFromZeroTag { kStartRefCountFromZeroTag };
enum StartRefCountFromOneTag { kStartRefCountFromOneTag };
class BASE_EXPORT RefCountedBase {
public:
bool HasOneRef() const { return ref_count_ == 1; }
protected:
explicit RefCountedBase(StartRefCountFromZeroTag) {
#if DCHECK_IS_ON()
sequence_checker_.DetachFromSequence();
#endif
}
explicit RefCountedBase(StartRefCountFromOneTag) : ref_count_(1) {
#if DCHECK_IS_ON()
needs_adopt_ref_ = true;
sequence_checker_.DetachFromSequence();
#endif
}
~RefCountedBase() {
#if DCHECK_IS_ON()
DCHECK(in_dtor_) << "RefCounted object deleted without calling Release()";
#endif
}
void AddRef() const {
// TODO(maruel): Add back once it doesn't assert 500 times/sec.
// Current thread books the critical section "AddRelease"
// without release it.
// DFAKE_SCOPED_LOCK_THREAD_LOCKED(add_release_);
#if DCHECK_IS_ON()
DCHECK(!in_dtor_);
DCHECK(!needs_adopt_ref_)
<< "This RefCounted object is created with non-zero reference count."
<< " The first reference to such a object has to be made by AdoptRef or"
<< " MakeRefCounted.";
if (ref_count_ >= 1) {
DCHECK(CalledOnValidSequence());
}
#endif
AddRefImpl();
}
// Returns true if the object should self-delete.
bool Release() const {
--ref_count_;
// TODO(maruel): Add back once it doesn't assert 500 times/sec.
// Current thread books the critical section "AddRelease"
// without release it.
// DFAKE_SCOPED_LOCK_THREAD_LOCKED(add_release_);
#if DCHECK_IS_ON()
DCHECK(!in_dtor_);
if (ref_count_ == 0)
in_dtor_ = true;
if (ref_count_ >= 1)
DCHECK(CalledOnValidSequence());
if (ref_count_ == 1)
sequence_checker_.DetachFromSequence();
#endif
return ref_count_ == 0;
}
// Returns true if it is safe to read or write the object, from a thread
// safety standpoint. Should be DCHECK'd from the methods of RefCounted
// classes if there is a danger of objects being shared across threads.
//
// This produces fewer false positives than adding a separate SequenceChecker
// into the subclass, because it automatically detaches from the sequence when
// the reference count is 1 (and never fails if there is only one reference).
//
// This means unlike a separate SequenceChecker, it will permit a singly
// referenced object to be passed between threads (not holding a reference on
// the sending thread), but will trap if the sending thread holds onto a
// reference, or if the object is accessed from multiple threads
// simultaneously.
bool IsOnValidSequence() const {
#if DCHECK_IS_ON()
return ref_count_ <= 1 || CalledOnValidSequence();
#else
return true;
#endif
}
private:
template <typename U>
friend scoped_refptr<U> base::AdoptRef(U*);
void Adopted() const {
#if DCHECK_IS_ON()
DCHECK(needs_adopt_ref_);
needs_adopt_ref_ = false;
#endif
}
#if defined(ARCH_CPU_64_BIT)
void AddRefImpl() const;
#else
void AddRefImpl() const { ++ref_count_; }
#endif
#if DCHECK_IS_ON()
bool CalledOnValidSequence() const;
#endif
mutable uint32_t ref_count_ = 0;
#if DCHECK_IS_ON()
mutable bool needs_adopt_ref_ = false;
mutable bool in_dtor_ = false;
mutable SequenceChecker sequence_checker_;
#endif
DFAKE_MUTEX(add_release_);
DISALLOW_COPY_AND_ASSIGN(RefCountedBase);
};
class BASE_EXPORT RefCountedThreadSafeBase {
public:
bool HasOneRef() const;
protected:
explicit RefCountedThreadSafeBase(StartRefCountFromZeroTag) {}
explicit RefCountedThreadSafeBase(StartRefCountFromOneTag) : ref_count_(1) {
#if DCHECK_IS_ON()
needs_adopt_ref_ = true;
#endif
}
#if DCHECK_IS_ON()
~RefCountedThreadSafeBase();
#else
~RefCountedThreadSafeBase() = default;
#endif
// Release and AddRef are suitable for inlining on X86 because they generate
// very small code sequences. On other platforms (ARM), it causes a size
// regression and is probably not worth it.
#if defined(ARCH_CPU_X86_FAMILY)
// Returns true if the object should self-delete.
bool Release() const { return ReleaseImpl(); }
void AddRef() const { AddRefImpl(); }
#else
// Returns true if the object should self-delete.
bool Release() const;
void AddRef() const;
#endif
private:
template <typename U>
friend scoped_refptr<U> base::AdoptRef(U*);
void Adopted() const {
#if DCHECK_IS_ON()
DCHECK(needs_adopt_ref_);
needs_adopt_ref_ = false;
#endif
}
ALWAYS_INLINE void AddRefImpl() const {
#if DCHECK_IS_ON()
DCHECK(!in_dtor_);
DCHECK(!needs_adopt_ref_)
<< "This RefCounted object is created with non-zero reference count."
<< " The first reference to such a object has to be made by AdoptRef or"
<< " MakeRefCounted.";
#endif
ref_count_.Increment();
}
ALWAYS_INLINE bool ReleaseImpl() const {
#if DCHECK_IS_ON()
DCHECK(!in_dtor_);
DCHECK(!ref_count_.IsZero());
#endif
if (!ref_count_.Decrement()) {
#if DCHECK_IS_ON()
in_dtor_ = true;
#endif
return true;
}
return false;
}
mutable AtomicRefCount ref_count_{0};
#if DCHECK_IS_ON()
mutable bool needs_adopt_ref_ = false;
mutable bool in_dtor_ = false;
#endif
DISALLOW_COPY_AND_ASSIGN(RefCountedThreadSafeBase);
};
} // namespace subtle
// ScopedAllowCrossThreadRefCountAccess disables the check documented on
// RefCounted below for rare pre-existing use cases where thread-safety was
// guaranteed through other means (e.g. explicit sequencing of calls across
// execution sequences when bouncing between threads in order). New callers
// should refrain from using this (callsites handling thread-safety through
// locks should use RefCountedThreadSafe per the overhead of its atomics being
// negligible compared to locks anyways and callsites doing explicit sequencing
// should properly std::move() the ref to avoid hitting this check).
// TODO(tzik): Cleanup existing use cases and remove
// ScopedAllowCrossThreadRefCountAccess.
class BASE_EXPORT ScopedAllowCrossThreadRefCountAccess final {
public:
#if DCHECK_IS_ON()
ScopedAllowCrossThreadRefCountAccess();
~ScopedAllowCrossThreadRefCountAccess();
#else
ScopedAllowCrossThreadRefCountAccess() {}
~ScopedAllowCrossThreadRefCountAccess() {}
#endif
};
//
// A base class for reference counted classes. Otherwise, known as a cheap
// knock-off of WebKit's RefCounted<T> class. To use this, just extend your
// class from it like so:
//
// class MyFoo : public base::RefCounted<MyFoo> {
// ...
// private:
// friend class base::RefCounted<MyFoo>;
// ~MyFoo();
// };
//
// You should always make your destructor non-public, to avoid any code deleting
// the object accidently while there are references to it.
//
//
// The ref count manipulation to RefCounted is NOT thread safe and has DCHECKs
// to trap unsafe cross thread usage. A subclass instance of RefCounted can be
// passed to another execution sequence only when its ref count is 1. If the ref
// count is more than 1, the RefCounted class verifies the ref updates are made
// on the same execution sequence as the previous ones. The subclass can also
// manually call IsOnValidSequence to trap other non-thread-safe accesses; see
// the documentation for that method.
//
//
// The reference count starts from zero by default, and we intended to migrate
// to start-from-one ref count. Put REQUIRE_ADOPTION_FOR_REFCOUNTED_TYPE() to
// the ref counted class to opt-in.
//
// If an object has start-from-one ref count, the first scoped_refptr need to be
// created by base::AdoptRef() or base::MakeRefCounted(). We can use
// base::MakeRefCounted() to create create both type of ref counted object.
//
// The motivations to use start-from-one ref count are:
// - Start-from-one ref count doesn't need the ref count increment for the
// first reference.
// - It can detect an invalid object acquisition for a being-deleted object
// that has zero ref count. That tends to happen on custom deleter that
// delays the deletion.
// TODO(tzik): Implement invalid acquisition detection.
// - Behavior parity to Blink's WTF::RefCounted, whose count starts from one.
// And start-from-one ref count is a step to merge WTF::RefCounted into
// base::RefCounted.
//
#define REQUIRE_ADOPTION_FOR_REFCOUNTED_TYPE() \
static constexpr ::base::subtle::StartRefCountFromOneTag \
kRefCountPreference = ::base::subtle::kStartRefCountFromOneTag
template <class T, typename Traits>
class RefCounted;
template <typename T>
struct DefaultRefCountedTraits {
static void Destruct(const T* x) {
RefCounted<T, DefaultRefCountedTraits>::DeleteInternal(x);
}
};
template <class T, typename Traits = DefaultRefCountedTraits<T>>
class RefCounted : public subtle::RefCountedBase {
public:
static constexpr subtle::StartRefCountFromZeroTag kRefCountPreference =
subtle::kStartRefCountFromZeroTag;
RefCounted() : subtle::RefCountedBase(T::kRefCountPreference) {}
void AddRef() const {
subtle::RefCountedBase::AddRef();
}
void Release() const {
if (subtle::RefCountedBase::Release()) {
// Prune the code paths which the static analyzer may take to simulate
// object destruction. Use-after-free errors aren't possible given the
// lifetime guarantees of the refcounting system.
ANALYZER_SKIP_THIS_PATH();
Traits::Destruct(static_cast<const T*>(this));
}
}
protected:
~RefCounted() = default;
private:
friend struct DefaultRefCountedTraits<T>;
template <typename U>
static void DeleteInternal(const U* x) {
delete x;
}
DISALLOW_COPY_AND_ASSIGN(RefCounted);
};
// Forward declaration.
template <class T, typename Traits> class RefCountedThreadSafe;
// Default traits for RefCountedThreadSafe<T>. Deletes the object when its ref
// count reaches 0. Overload to delete it on a different thread etc.
template<typename T>
struct DefaultRefCountedThreadSafeTraits {
static void Destruct(const T* x) {
// Delete through RefCountedThreadSafe to make child classes only need to be
// friend with RefCountedThreadSafe instead of this struct, which is an
// implementation detail.
RefCountedThreadSafe<T,
DefaultRefCountedThreadSafeTraits>::DeleteInternal(x);
}
};
//
// A thread-safe variant of RefCounted<T>
//
// class MyFoo : public base::RefCountedThreadSafe<MyFoo> {
// ...
// };
//
// If you're using the default trait, then you should add compile time
// asserts that no one else is deleting your object. i.e.
// private:
// friend class base::RefCountedThreadSafe<MyFoo>;
// ~MyFoo();
//
// We can use REQUIRE_ADOPTION_FOR_REFCOUNTED_TYPE() with RefCountedThreadSafe
// too. See the comment above the RefCounted definition for details.
template <class T, typename Traits = DefaultRefCountedThreadSafeTraits<T> >
class RefCountedThreadSafe : public subtle::RefCountedThreadSafeBase {
public:
static constexpr subtle::StartRefCountFromZeroTag kRefCountPreference =
subtle::kStartRefCountFromZeroTag;
explicit RefCountedThreadSafe()
: subtle::RefCountedThreadSafeBase(T::kRefCountPreference) {}
void AddRef() const {
subtle::RefCountedThreadSafeBase::AddRef();
}
void Release() const {
if (subtle::RefCountedThreadSafeBase::Release()) {
ANALYZER_SKIP_THIS_PATH();
Traits::Destruct(static_cast<const T*>(this));
}
}
protected:
~RefCountedThreadSafe() = default;
private:
friend struct DefaultRefCountedThreadSafeTraits<T>;
template <typename U>
static void DeleteInternal(const U* x) {
delete x;
}
DISALLOW_COPY_AND_ASSIGN(RefCountedThreadSafe);
};
//
// A thread-safe wrapper for some piece of data so we can place other
// things in scoped_refptrs<>.
//
template<typename T>
class RefCountedData
: public base::RefCountedThreadSafe< base::RefCountedData<T> > {
public:
RefCountedData() : data() {}
RefCountedData(const T& in_value) : data(in_value) {}
RefCountedData(T&& in_value) : data(std::move(in_value)) {}
T data;
private:
friend class base::RefCountedThreadSafe<base::RefCountedData<T> >;
~RefCountedData() = default;
};
// Creates a scoped_refptr from a raw pointer without incrementing the reference
// count. Use this only for a newly created object whose reference count starts
// from 1 instead of 0.
template <typename T>
scoped_refptr<T> AdoptRef(T* obj) {
using Tag = typename std::decay<decltype(T::kRefCountPreference)>::type;
static_assert(std::is_same<subtle::StartRefCountFromOneTag, Tag>::value,
"Use AdoptRef only for the reference count starts from one.");
DCHECK(obj);
DCHECK(obj->HasOneRef());
obj->Adopted();
return scoped_refptr<T>(obj, subtle::kAdoptRefTag);
}
namespace subtle {
template <typename T>
scoped_refptr<T> AdoptRefIfNeeded(T* obj, StartRefCountFromZeroTag) {
return scoped_refptr<T>(obj);
}
template <typename T>
scoped_refptr<T> AdoptRefIfNeeded(T* obj, StartRefCountFromOneTag) {
return AdoptRef(obj);
}
} // namespace subtle
// Constructs an instance of T, which is a ref counted type, and wraps the
// object into a scoped_refptr<T>.
template <typename T, typename... Args>
scoped_refptr<T> MakeRefCounted(Args&&... args) {
T* obj = new T(std::forward<Args>(args)...);
return subtle::AdoptRefIfNeeded(obj, T::kRefCountPreference);
}
// Takes an instance of T, which is a ref counted type, and wraps the object
// into a scoped_refptr<T>.
template <typename T>
scoped_refptr<T> WrapRefCounted(T* t) {
return scoped_refptr<T>(t);
}
} // namespace base
//
// A smart pointer class for reference counted objects. Use this class instead
// of calling AddRef and Release manually on a reference counted object to
// avoid common memory leaks caused by forgetting to Release an object
// reference. Sample usage:
//
// class MyFoo : public RefCounted<MyFoo> {
// ...
// private:
// friend class RefCounted<MyFoo>; // Allow destruction by RefCounted<>.
// ~MyFoo(); // Destructor must be private/protected.
// };
//
// void some_function() {
// scoped_refptr<MyFoo> foo = new MyFoo();
// foo->Method(param);
// // |foo| is released when this function returns
// }
//
// void some_other_function() {
// scoped_refptr<MyFoo> foo = new MyFoo();
// ...
// foo = nullptr; // explicitly releases |foo|
// ...
// if (foo)
// foo->Method(param);
// }
//
// The above examples show how scoped_refptr<T> acts like a pointer to T.
// Given two scoped_refptr<T> classes, it is also possible to exchange
// references between the two objects, like so:
//
// {
// scoped_refptr<MyFoo> a = new MyFoo();
// scoped_refptr<MyFoo> b;
//
// b.swap(a);
// // now, |b| references the MyFoo object, and |a| references nullptr.
// }
//
// To make both |a| and |b| in the above example reference the same MyFoo
// object, simply use the assignment operator:
//
// {
// scoped_refptr<MyFoo> a = new MyFoo();
// scoped_refptr<MyFoo> b;
//
// b = a;
// // now, |a| and |b| each own a reference to the same MyFoo object.
// }
//
template <class T>
class scoped_refptr {
public:
typedef T element_type;
scoped_refptr() {}
scoped_refptr(T* p) : ptr_(p) {
if (ptr_)
AddRef(ptr_);
}
// Copy constructor.
scoped_refptr(const scoped_refptr<T>& r) : ptr_(r.ptr_) {
if (ptr_)
AddRef(ptr_);
}
// Copy conversion constructor.
template <typename U,
typename = typename std::enable_if<
std::is_convertible<U*, T*>::value>::type>
scoped_refptr(const scoped_refptr<U>& r) : ptr_(r.get()) {
if (ptr_)
AddRef(ptr_);
}
// Move constructor. This is required in addition to the conversion
// constructor below in order for clang to warn about pessimizing moves.
scoped_refptr(scoped_refptr&& r) : ptr_(r.get()) { r.ptr_ = nullptr; }
// Move conversion constructor.
template <typename U,
typename = typename std::enable_if<
std::is_convertible<U*, T*>::value>::type>
scoped_refptr(scoped_refptr<U>&& r) : ptr_(r.get()) {
r.ptr_ = nullptr;
}
~scoped_refptr() {
if (ptr_)
Release(ptr_);
}
T* get() const { return ptr_; }
T& operator*() const {
DCHECK(ptr_);
return *ptr_;
}
T* operator->() const {
DCHECK(ptr_);
return ptr_;
}
scoped_refptr<T>& operator=(T* p) {
// AddRef first so that self assignment should work
if (p)
AddRef(p);
T* old_ptr = ptr_;
ptr_ = p;
if (old_ptr)
Release(old_ptr);
return *this;
}
scoped_refptr<T>& operator=(const scoped_refptr<T>& r) {
return *this = r.ptr_;
}
template <typename U>
scoped_refptr<T>& operator=(const scoped_refptr<U>& r) {
return *this = r.get();
}
scoped_refptr<T>& operator=(scoped_refptr<T>&& r) {
scoped_refptr<T> tmp(std::move(r));
tmp.swap(*this);
return *this;
}
template <typename U>
scoped_refptr<T>& operator=(scoped_refptr<U>&& r) {
// We swap with a temporary variable to guarantee that |ptr_| is released
// immediately. A naive implementation which swaps |this| and |r| would
// unintentionally extend the lifetime of |ptr_| to at least the lifetime of
// |r|.
scoped_refptr<T> tmp(std::move(r));
tmp.swap(*this);
return *this;
}
void swap(scoped_refptr<T>& r) {
T* tmp = ptr_;
ptr_ = r.ptr_;
r.ptr_ = tmp;
}
explicit operator bool() const { return ptr_ != nullptr; }
template <typename U>
bool operator==(const scoped_refptr<U>& rhs) const {
return ptr_ == rhs.get();
}
template <typename U>
bool operator!=(const scoped_refptr<U>& rhs) const {
return !operator==(rhs);
}
template <typename U>
bool operator<(const scoped_refptr<U>& rhs) const {
return ptr_ < rhs.get();
}
protected:
T* ptr_ = nullptr;
private:
template <typename U>
friend scoped_refptr<U> base::AdoptRef(U*);
scoped_refptr(T* p, base::subtle::AdoptRefTag) : ptr_(p) {}
// Friend required for move constructors that set r.ptr_ to null.
template <typename U>
friend class scoped_refptr;
// Non-inline helpers to allow:
// class Opaque;
// extern template class scoped_refptr<Opaque>;
// Otherwise the compiler will complain that Opaque is an incomplete type.
static void AddRef(T* ptr);
static void Release(T* ptr);
};
// static
template <typename T>
void scoped_refptr<T>::AddRef(T* ptr) {
ptr->AddRef();
}
// static
template <typename T>
void scoped_refptr<T>::Release(T* ptr) {
ptr->Release();
}
template <typename T, typename U>
bool operator==(const scoped_refptr<T>& lhs, const U* rhs) {
return lhs.get() == rhs;
}
template <typename T, typename U>
bool operator==(const T* lhs, const scoped_refptr<U>& rhs) {
return lhs == rhs.get();
}
template <typename T>
bool operator==(const scoped_refptr<T>& lhs, std::nullptr_t null) {
return !static_cast<bool>(lhs);
}
template <typename T>
bool operator==(std::nullptr_t null, const scoped_refptr<T>& rhs) {
return !static_cast<bool>(rhs);
}
template <typename T, typename U>
bool operator!=(const scoped_refptr<T>& lhs, const U* rhs) {
return !operator==(lhs, rhs);
}
template <typename T, typename U>
bool operator!=(const T* lhs, const scoped_refptr<U>& rhs) {
return !operator==(lhs, rhs);
}
template <typename T>
bool operator!=(const scoped_refptr<T>& lhs, std::nullptr_t null) {
return !operator==(lhs, null);
}
template <typename T>
bool operator!=(std::nullptr_t null, const scoped_refptr<T>& rhs) {
return !operator==(null, rhs);
}
template <typename T>
std::ostream& operator<<(std::ostream& out, const scoped_refptr<T>& p) {
return out << p.get();
}
#endif // BASE_MEMORY_REF_COUNTED_H_