mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-24 14:26:09 +03:00
710 lines
26 KiB
C++
710 lines
26 KiB
C++
// Copyright 2015 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "base/profiler/stack_sampling_profiler.h"
|
|
|
|
#include <algorithm>
|
|
#include <map>
|
|
#include <utility>
|
|
|
|
#include "base/atomic_sequence_num.h"
|
|
#include "base/atomicops.h"
|
|
#include "base/bind.h"
|
|
#include "base/bind_helpers.h"
|
|
#include "base/callback.h"
|
|
#include "base/location.h"
|
|
#include "base/macros.h"
|
|
#include "base/memory/ptr_util.h"
|
|
#include "base/memory/singleton.h"
|
|
#include "base/profiler/native_stack_sampler.h"
|
|
#include "base/synchronization/lock.h"
|
|
#include "base/threading/thread.h"
|
|
#include "base/threading/thread_restrictions.h"
|
|
#include "base/threading/thread_task_runner_handle.h"
|
|
#include "base/timer/elapsed_timer.h"
|
|
|
|
namespace base {
|
|
|
|
namespace {
|
|
|
|
// This value is used to initialize the WaitableEvent object. This MUST BE set
|
|
// to MANUAL for correct operation of the IsSignaled() call in Start(). See the
|
|
// comment there for why.
|
|
constexpr WaitableEvent::ResetPolicy kResetPolicy =
|
|
WaitableEvent::ResetPolicy::MANUAL;
|
|
|
|
// This value is used when there is no collection in progress and thus no ID
|
|
// for referencing the active collection to the SamplingThread.
|
|
const int kNullProfilerId = -1;
|
|
|
|
} // namespace
|
|
|
|
// StackSamplingProfiler::Frame -------------------------------------
|
|
|
|
StackSamplingProfiler::Frame::Frame(uintptr_t instruction_pointer,
|
|
ModuleCache::Module module)
|
|
: instruction_pointer(instruction_pointer), module(std::move(module)) {}
|
|
|
|
StackSamplingProfiler::Frame::~Frame() = default;
|
|
|
|
// StackSamplingProfiler::SamplingThread --------------------------------------
|
|
|
|
class StackSamplingProfiler::SamplingThread : public Thread {
|
|
public:
|
|
class TestAPI {
|
|
public:
|
|
// Reset the existing sampler. This will unfortunately create the object
|
|
// unnecessarily if it doesn't already exist but there's no way around that.
|
|
static void Reset();
|
|
|
|
// Disables inherent idle-shutdown behavior.
|
|
static void DisableIdleShutdown();
|
|
|
|
// Begins an idle shutdown as if the idle-timer had expired and wait for
|
|
// it to execute. Since the timer would have only been started at a time
|
|
// when the sampling thread actually was idle, this must be called only
|
|
// when it is known that there are no active sampling threads. If
|
|
// |simulate_intervening_add| is true then, when executed, the shutdown
|
|
// task will believe that a new collection has been added since it was
|
|
// posted.
|
|
static void ShutdownAssumingIdle(bool simulate_intervening_add);
|
|
|
|
private:
|
|
// Calls the sampling threads ShutdownTask and then signals an event.
|
|
static void ShutdownTaskAndSignalEvent(SamplingThread* sampler,
|
|
int add_events,
|
|
WaitableEvent* event);
|
|
};
|
|
|
|
struct CollectionContext {
|
|
CollectionContext(PlatformThreadId target,
|
|
const SamplingParams& params,
|
|
WaitableEvent* finished,
|
|
std::unique_ptr<NativeStackSampler> sampler,
|
|
std::unique_ptr<ProfileBuilder> profile_builder)
|
|
: collection_id(next_collection_id.GetNext()),
|
|
target(target),
|
|
params(params),
|
|
finished(finished),
|
|
native_sampler(std::move(sampler)),
|
|
profile_builder(std::move(profile_builder)) {}
|
|
~CollectionContext() = default;
|
|
|
|
// An identifier for this collection, used to uniquely identify the
|
|
// collection to outside interests.
|
|
const int collection_id;
|
|
|
|
const PlatformThreadId target; // ID of The thread being sampled.
|
|
const SamplingParams params; // Information about how to sample.
|
|
WaitableEvent* const finished; // Signaled when all sampling complete.
|
|
|
|
// Platform-specific module that does the actual sampling.
|
|
std::unique_ptr<NativeStackSampler> native_sampler;
|
|
|
|
// Receives the sampling data and builds a CallStackProfile.
|
|
std::unique_ptr<ProfileBuilder> profile_builder;
|
|
|
|
// The absolute time for the next sample.
|
|
Time next_sample_time;
|
|
|
|
// The time that a profile was started, for calculating the total duration.
|
|
Time profile_start_time;
|
|
|
|
// Counter that indicates the current sample position along the acquisition.
|
|
int sample_count = 0;
|
|
|
|
// Sequence number for generating new collection ids.
|
|
static AtomicSequenceNumber next_collection_id;
|
|
};
|
|
|
|
// Gets the single instance of this class.
|
|
static SamplingThread* GetInstance();
|
|
|
|
// Adds a new CollectionContext to the thread. This can be called externally
|
|
// from any thread. This returns a collection id that can later be used to
|
|
// stop the sampling.
|
|
int Add(std::unique_ptr<CollectionContext> collection);
|
|
|
|
// Removes an active collection based on its collection id, forcing it to run
|
|
// its callback if any data has been collected. This can be called externally
|
|
// from any thread.
|
|
void Remove(int collection_id);
|
|
|
|
private:
|
|
friend class TestAPI;
|
|
friend struct DefaultSingletonTraits<SamplingThread>;
|
|
|
|
// The different states in which the sampling-thread can be.
|
|
enum ThreadExecutionState {
|
|
// The thread is not running because it has never been started. It will be
|
|
// started when a sampling request is received.
|
|
NOT_STARTED,
|
|
|
|
// The thread is running and processing tasks. This is the state when any
|
|
// sampling requests are active and during the "idle" period afterward
|
|
// before the thread is stopped.
|
|
RUNNING,
|
|
|
|
// Once all sampling requests have finished and the "idle" period has
|
|
// expired, the thread will be set to this state and its shutdown
|
|
// initiated. A call to Stop() must be made to ensure the previous thread
|
|
// has completely exited before calling Start() and moving back to the
|
|
// RUNNING state.
|
|
EXITING,
|
|
};
|
|
|
|
SamplingThread();
|
|
~SamplingThread() override;
|
|
|
|
// Get task runner that is usable from the outside.
|
|
scoped_refptr<SingleThreadTaskRunner> GetOrCreateTaskRunnerForAdd();
|
|
scoped_refptr<SingleThreadTaskRunner> GetTaskRunner(
|
|
ThreadExecutionState* out_state);
|
|
|
|
// Get task runner that is usable from the sampling thread itself.
|
|
scoped_refptr<SingleThreadTaskRunner> GetTaskRunnerOnSamplingThread();
|
|
|
|
// Finishes a collection. The collection's |finished| waitable event will be
|
|
// signalled. The |collection| should already have been removed from
|
|
// |active_collections_| by the caller, as this is needed to avoid flakiness
|
|
// in unit tests.
|
|
void FinishCollection(CollectionContext* collection);
|
|
|
|
// Check if the sampling thread is idle and begin a shutdown if it is.
|
|
void ScheduleShutdownIfIdle();
|
|
|
|
// These methods are tasks that get posted to the internal message queue.
|
|
void AddCollectionTask(std::unique_ptr<CollectionContext> collection);
|
|
void RemoveCollectionTask(int collection_id);
|
|
void RecordSampleTask(int collection_id);
|
|
void ShutdownTask(int add_events);
|
|
|
|
// Thread:
|
|
void CleanUp() override;
|
|
|
|
// A stack-buffer used by the native sampler for its work. This buffer can
|
|
// be re-used for multiple native sampler objects so long as the API calls
|
|
// that take it are not called concurrently.
|
|
std::unique_ptr<NativeStackSampler::StackBuffer> stack_buffer_;
|
|
|
|
// A map of collection ids to collection contexts. Because this class is a
|
|
// singleton that is never destroyed, context objects will never be destructed
|
|
// except by explicit action. Thus, it's acceptable to pass unretained
|
|
// pointers to these objects when posting tasks.
|
|
std::map<int, std::unique_ptr<CollectionContext>> active_collections_;
|
|
|
|
// State maintained about the current execution (or non-execution) of
|
|
// the thread. This state must always be accessed while holding the
|
|
// lock. A copy of the task-runner is maintained here for use by any
|
|
// calling thread; this is necessary because Thread's accessor for it is
|
|
// not itself thread-safe. The lock is also used to order calls to the
|
|
// Thread API (Start, Stop, StopSoon, & DetachFromSequence) so that
|
|
// multiple threads may make those calls.
|
|
Lock thread_execution_state_lock_; // Protects all thread_execution_state_*
|
|
ThreadExecutionState thread_execution_state_ = NOT_STARTED;
|
|
scoped_refptr<SingleThreadTaskRunner> thread_execution_state_task_runner_;
|
|
bool thread_execution_state_disable_idle_shutdown_for_testing_ = false;
|
|
|
|
// A counter that notes adds of new collection requests. It is incremented
|
|
// when changes occur so that delayed shutdown tasks are able to detect if
|
|
// something new has happened while it was waiting. Like all "execution_state"
|
|
// vars, this must be accessed while holding |thread_execution_state_lock_|.
|
|
int thread_execution_state_add_events_ = 0;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(SamplingThread);
|
|
};
|
|
|
|
// static
|
|
void StackSamplingProfiler::SamplingThread::TestAPI::Reset() {
|
|
SamplingThread* sampler = SamplingThread::GetInstance();
|
|
|
|
ThreadExecutionState state;
|
|
{
|
|
AutoLock lock(sampler->thread_execution_state_lock_);
|
|
state = sampler->thread_execution_state_;
|
|
DCHECK(sampler->active_collections_.empty());
|
|
}
|
|
|
|
// Stop the thread and wait for it to exit. This has to be done through by
|
|
// the thread itself because it has taken ownership of its own lifetime.
|
|
if (state == RUNNING) {
|
|
ShutdownAssumingIdle(false);
|
|
state = EXITING;
|
|
}
|
|
// Make sure thread is cleaned up since state will be reset to NOT_STARTED.
|
|
if (state == EXITING)
|
|
sampler->Stop();
|
|
|
|
// Reset internal variables to the just-initialized state.
|
|
{
|
|
AutoLock lock(sampler->thread_execution_state_lock_);
|
|
sampler->thread_execution_state_ = NOT_STARTED;
|
|
sampler->thread_execution_state_task_runner_ = nullptr;
|
|
sampler->thread_execution_state_disable_idle_shutdown_for_testing_ = false;
|
|
sampler->thread_execution_state_add_events_ = 0;
|
|
}
|
|
}
|
|
|
|
// static
|
|
void StackSamplingProfiler::SamplingThread::TestAPI::DisableIdleShutdown() {
|
|
SamplingThread* sampler = SamplingThread::GetInstance();
|
|
|
|
{
|
|
AutoLock lock(sampler->thread_execution_state_lock_);
|
|
sampler->thread_execution_state_disable_idle_shutdown_for_testing_ = true;
|
|
}
|
|
}
|
|
|
|
// static
|
|
void StackSamplingProfiler::SamplingThread::TestAPI::ShutdownAssumingIdle(
|
|
bool simulate_intervening_add) {
|
|
SamplingThread* sampler = SamplingThread::GetInstance();
|
|
|
|
ThreadExecutionState state;
|
|
scoped_refptr<SingleThreadTaskRunner> task_runner =
|
|
sampler->GetTaskRunner(&state);
|
|
DCHECK_EQ(RUNNING, state);
|
|
DCHECK(task_runner);
|
|
|
|
int add_events;
|
|
{
|
|
AutoLock lock(sampler->thread_execution_state_lock_);
|
|
add_events = sampler->thread_execution_state_add_events_;
|
|
if (simulate_intervening_add)
|
|
++sampler->thread_execution_state_add_events_;
|
|
}
|
|
|
|
WaitableEvent executed(WaitableEvent::ResetPolicy::MANUAL,
|
|
WaitableEvent::InitialState::NOT_SIGNALED);
|
|
// PostTaskAndReply won't work because thread and associated message-loop may
|
|
// be shut down.
|
|
task_runner->PostTask(
|
|
FROM_HERE, BindOnce(&ShutdownTaskAndSignalEvent, Unretained(sampler),
|
|
add_events, Unretained(&executed)));
|
|
executed.Wait();
|
|
}
|
|
|
|
// static
|
|
void StackSamplingProfiler::SamplingThread::TestAPI::ShutdownTaskAndSignalEvent(
|
|
SamplingThread* sampler,
|
|
int add_events,
|
|
WaitableEvent* event) {
|
|
sampler->ShutdownTask(add_events);
|
|
event->Signal();
|
|
}
|
|
|
|
AtomicSequenceNumber StackSamplingProfiler::SamplingThread::CollectionContext::
|
|
next_collection_id;
|
|
|
|
StackSamplingProfiler::SamplingThread::SamplingThread()
|
|
: Thread("StackSamplingProfiler") {}
|
|
|
|
StackSamplingProfiler::SamplingThread::~SamplingThread() = default;
|
|
|
|
StackSamplingProfiler::SamplingThread*
|
|
StackSamplingProfiler::SamplingThread::GetInstance() {
|
|
return Singleton<SamplingThread, LeakySingletonTraits<SamplingThread>>::get();
|
|
}
|
|
|
|
int StackSamplingProfiler::SamplingThread::Add(
|
|
std::unique_ptr<CollectionContext> collection) {
|
|
// This is not to be run on the sampling thread.
|
|
|
|
int collection_id = collection->collection_id;
|
|
scoped_refptr<SingleThreadTaskRunner> task_runner =
|
|
GetOrCreateTaskRunnerForAdd();
|
|
|
|
task_runner->PostTask(
|
|
FROM_HERE, BindOnce(&SamplingThread::AddCollectionTask, Unretained(this),
|
|
std::move(collection)));
|
|
|
|
return collection_id;
|
|
}
|
|
|
|
void StackSamplingProfiler::SamplingThread::Remove(int collection_id) {
|
|
// This is not to be run on the sampling thread.
|
|
|
|
ThreadExecutionState state;
|
|
scoped_refptr<SingleThreadTaskRunner> task_runner = GetTaskRunner(&state);
|
|
if (state != RUNNING)
|
|
return;
|
|
DCHECK(task_runner);
|
|
|
|
// This can fail if the thread were to exit between acquisition of the task
|
|
// runner above and the call below. In that case, however, everything has
|
|
// stopped so there's no need to try to stop it.
|
|
task_runner->PostTask(FROM_HERE,
|
|
BindOnce(&SamplingThread::RemoveCollectionTask,
|
|
Unretained(this), collection_id));
|
|
}
|
|
|
|
scoped_refptr<SingleThreadTaskRunner>
|
|
StackSamplingProfiler::SamplingThread::GetOrCreateTaskRunnerForAdd() {
|
|
AutoLock lock(thread_execution_state_lock_);
|
|
|
|
// The increment of the "add events" count is why this method is to be only
|
|
// called from "add".
|
|
++thread_execution_state_add_events_;
|
|
|
|
if (thread_execution_state_ == RUNNING) {
|
|
DCHECK(thread_execution_state_task_runner_);
|
|
// This shouldn't be called from the sampling thread as it's inefficient.
|
|
// Use GetTaskRunnerOnSamplingThread() instead.
|
|
DCHECK_NE(GetThreadId(), PlatformThread::CurrentId());
|
|
return thread_execution_state_task_runner_;
|
|
}
|
|
|
|
if (thread_execution_state_ == EXITING) {
|
|
// StopSoon() was previously called to shut down the thread
|
|
// asynchonously. Stop() must now be called before calling Start() again to
|
|
// reset the thread state.
|
|
//
|
|
// We must allow blocking here to satisfy the Thread implementation, but in
|
|
// practice the Stop() call is unlikely to actually block. For this to
|
|
// happen a new profiling request would have to be made within the narrow
|
|
// window between StopSoon() and thread exit following the end of the 60
|
|
// second idle period.
|
|
ScopedAllowBlocking allow_blocking;
|
|
Stop();
|
|
}
|
|
|
|
DCHECK(!stack_buffer_);
|
|
stack_buffer_ = NativeStackSampler::CreateStackBuffer();
|
|
|
|
// The thread is not running. Start it and get associated runner. The task-
|
|
// runner has to be saved for future use because though it can be used from
|
|
// any thread, it can be acquired via task_runner() only on the created
|
|
// thread and the thread that creates it (i.e. this thread) for thread-safety
|
|
// reasons which are alleviated in SamplingThread by gating access to it with
|
|
// the |thread_execution_state_lock_|.
|
|
Start();
|
|
thread_execution_state_ = RUNNING;
|
|
thread_execution_state_task_runner_ = Thread::task_runner();
|
|
|
|
// Detach the sampling thread from the "sequence" (i.e. thread) that
|
|
// started it so that it can be self-managed or stopped by another thread.
|
|
DetachFromSequence();
|
|
|
|
return thread_execution_state_task_runner_;
|
|
}
|
|
|
|
scoped_refptr<SingleThreadTaskRunner>
|
|
StackSamplingProfiler::SamplingThread::GetTaskRunner(
|
|
ThreadExecutionState* out_state) {
|
|
AutoLock lock(thread_execution_state_lock_);
|
|
if (out_state)
|
|
*out_state = thread_execution_state_;
|
|
if (thread_execution_state_ == RUNNING) {
|
|
// This shouldn't be called from the sampling thread as it's inefficient.
|
|
// Use GetTaskRunnerOnSamplingThread() instead.
|
|
DCHECK_NE(GetThreadId(), PlatformThread::CurrentId());
|
|
DCHECK(thread_execution_state_task_runner_);
|
|
} else {
|
|
DCHECK(!thread_execution_state_task_runner_);
|
|
}
|
|
|
|
return thread_execution_state_task_runner_;
|
|
}
|
|
|
|
scoped_refptr<SingleThreadTaskRunner>
|
|
StackSamplingProfiler::SamplingThread::GetTaskRunnerOnSamplingThread() {
|
|
// This should be called only from the sampling thread as it has limited
|
|
// accessibility.
|
|
DCHECK_EQ(GetThreadId(), PlatformThread::CurrentId());
|
|
|
|
return Thread::task_runner();
|
|
}
|
|
|
|
void StackSamplingProfiler::SamplingThread::FinishCollection(
|
|
CollectionContext* collection) {
|
|
DCHECK_EQ(GetThreadId(), PlatformThread::CurrentId());
|
|
DCHECK_EQ(0u, active_collections_.count(collection->collection_id));
|
|
|
|
TimeDelta profile_duration = Time::Now() - collection->profile_start_time +
|
|
collection->params.sampling_interval;
|
|
|
|
collection->profile_builder->OnProfileCompleted(
|
|
profile_duration, collection->params.sampling_interval);
|
|
|
|
// Signal that this collection is finished.
|
|
collection->finished->Signal();
|
|
|
|
ScheduleShutdownIfIdle();
|
|
}
|
|
|
|
void StackSamplingProfiler::SamplingThread::ScheduleShutdownIfIdle() {
|
|
DCHECK_EQ(GetThreadId(), PlatformThread::CurrentId());
|
|
|
|
if (!active_collections_.empty())
|
|
return;
|
|
|
|
int add_events;
|
|
{
|
|
AutoLock lock(thread_execution_state_lock_);
|
|
if (thread_execution_state_disable_idle_shutdown_for_testing_)
|
|
return;
|
|
add_events = thread_execution_state_add_events_;
|
|
}
|
|
|
|
GetTaskRunnerOnSamplingThread()->PostDelayedTask(
|
|
FROM_HERE,
|
|
BindOnce(&SamplingThread::ShutdownTask, Unretained(this), add_events),
|
|
TimeDelta::FromSeconds(60));
|
|
}
|
|
|
|
void StackSamplingProfiler::SamplingThread::AddCollectionTask(
|
|
std::unique_ptr<CollectionContext> collection) {
|
|
DCHECK_EQ(GetThreadId(), PlatformThread::CurrentId());
|
|
|
|
const int collection_id = collection->collection_id;
|
|
const TimeDelta initial_delay = collection->params.initial_delay;
|
|
|
|
active_collections_.insert(
|
|
std::make_pair(collection_id, std::move(collection)));
|
|
|
|
GetTaskRunnerOnSamplingThread()->PostDelayedTask(
|
|
FROM_HERE,
|
|
BindOnce(&SamplingThread::RecordSampleTask, Unretained(this),
|
|
collection_id),
|
|
initial_delay);
|
|
|
|
// Another increment of "add events" serves to invalidate any pending
|
|
// shutdown tasks that may have been initiated between the Add() and this
|
|
// task running.
|
|
{
|
|
AutoLock lock(thread_execution_state_lock_);
|
|
++thread_execution_state_add_events_;
|
|
}
|
|
}
|
|
|
|
void StackSamplingProfiler::SamplingThread::RemoveCollectionTask(
|
|
int collection_id) {
|
|
DCHECK_EQ(GetThreadId(), PlatformThread::CurrentId());
|
|
|
|
auto found = active_collections_.find(collection_id);
|
|
if (found == active_collections_.end())
|
|
return;
|
|
|
|
// Remove |collection| from |active_collections_|.
|
|
std::unique_ptr<CollectionContext> collection = std::move(found->second);
|
|
size_t count = active_collections_.erase(collection_id);
|
|
DCHECK_EQ(1U, count);
|
|
|
|
FinishCollection(collection.get());
|
|
}
|
|
|
|
void StackSamplingProfiler::SamplingThread::RecordSampleTask(
|
|
int collection_id) {
|
|
DCHECK_EQ(GetThreadId(), PlatformThread::CurrentId());
|
|
|
|
auto found = active_collections_.find(collection_id);
|
|
|
|
// The task won't be found if it has been stopped.
|
|
if (found == active_collections_.end())
|
|
return;
|
|
|
|
CollectionContext* collection = found->second.get();
|
|
|
|
// If this is the first sample, the collection params need to be filled.
|
|
if (collection->sample_count == 0) {
|
|
collection->profile_start_time = Time::Now();
|
|
collection->next_sample_time = Time::Now();
|
|
collection->native_sampler->ProfileRecordingStarting();
|
|
}
|
|
|
|
// Record a single sample.
|
|
collection->profile_builder->OnSampleCompleted(
|
|
collection->native_sampler->RecordStackFrames(
|
|
stack_buffer_.get(), collection->profile_builder.get()));
|
|
|
|
// Schedule the next sample recording if there is one.
|
|
if (++collection->sample_count < collection->params.samples_per_profile) {
|
|
// This will keep a consistent average interval between samples but will
|
|
// result in constant series of acquisitions, thus nearly locking out the
|
|
// target thread, if the interval is smaller than the time it takes to
|
|
// actually acquire the sample. Anything sampling that quickly is going
|
|
// to be a problem anyway so don't worry about it.
|
|
collection->next_sample_time += collection->params.sampling_interval;
|
|
bool success = GetTaskRunnerOnSamplingThread()->PostDelayedTask(
|
|
FROM_HERE,
|
|
BindOnce(&SamplingThread::RecordSampleTask, Unretained(this),
|
|
collection_id),
|
|
std::max(collection->next_sample_time - Time::Now(), TimeDelta()));
|
|
DCHECK(success);
|
|
return;
|
|
}
|
|
|
|
// Take ownership of |collection| and remove it from the map.
|
|
std::unique_ptr<CollectionContext> owned_collection =
|
|
std::move(found->second);
|
|
size_t count = active_collections_.erase(collection_id);
|
|
DCHECK_EQ(1U, count);
|
|
|
|
// All capturing has completed so finish the collection.
|
|
FinishCollection(collection);
|
|
}
|
|
|
|
void StackSamplingProfiler::SamplingThread::ShutdownTask(int add_events) {
|
|
DCHECK_EQ(GetThreadId(), PlatformThread::CurrentId());
|
|
|
|
// Holding this lock ensures that any attempt to start another job will
|
|
// get postponed until |thread_execution_state_| is updated, thus eliminating
|
|
// the race in starting a new thread while the previous one is exiting.
|
|
AutoLock lock(thread_execution_state_lock_);
|
|
|
|
// If the current count of creation requests doesn't match the passed count
|
|
// then other tasks have been created since this was posted. Abort shutdown.
|
|
if (thread_execution_state_add_events_ != add_events)
|
|
return;
|
|
|
|
// There can be no new AddCollectionTasks at this point because creating
|
|
// those always increments "add events". There may be other requests, like
|
|
// Remove, but it's okay to schedule the thread to stop once they've been
|
|
// executed (i.e. "soon").
|
|
DCHECK(active_collections_.empty());
|
|
StopSoon();
|
|
|
|
// StopSoon will have set the owning sequence (again) so it must be detached
|
|
// (again) in order for Stop/Start to be called (again) should more work
|
|
// come in. Holding the |thread_execution_state_lock_| ensures the necessary
|
|
// happens-after with regard to this detach and future Thread API calls.
|
|
DetachFromSequence();
|
|
|
|
// Set the thread_state variable so the thread will be restarted when new
|
|
// work comes in. Remove the |thread_execution_state_task_runner_| to avoid
|
|
// confusion.
|
|
thread_execution_state_ = EXITING;
|
|
thread_execution_state_task_runner_ = nullptr;
|
|
stack_buffer_.reset();
|
|
}
|
|
|
|
void StackSamplingProfiler::SamplingThread::CleanUp() {
|
|
DCHECK_EQ(GetThreadId(), PlatformThread::CurrentId());
|
|
|
|
// There should be no collections remaining when the thread stops.
|
|
DCHECK(active_collections_.empty());
|
|
|
|
// Let the parent clean up.
|
|
Thread::CleanUp();
|
|
}
|
|
|
|
// StackSamplingProfiler ------------------------------------------------------
|
|
|
|
// static
|
|
void StackSamplingProfiler::TestAPI::Reset() {
|
|
SamplingThread::TestAPI::Reset();
|
|
}
|
|
|
|
// static
|
|
bool StackSamplingProfiler::TestAPI::IsSamplingThreadRunning() {
|
|
return SamplingThread::GetInstance()->IsRunning();
|
|
}
|
|
|
|
// static
|
|
void StackSamplingProfiler::TestAPI::DisableIdleShutdown() {
|
|
SamplingThread::TestAPI::DisableIdleShutdown();
|
|
}
|
|
|
|
// static
|
|
void StackSamplingProfiler::TestAPI::PerformSamplingThreadIdleShutdown(
|
|
bool simulate_intervening_start) {
|
|
SamplingThread::TestAPI::ShutdownAssumingIdle(simulate_intervening_start);
|
|
}
|
|
|
|
StackSamplingProfiler::StackSamplingProfiler(
|
|
const SamplingParams& params,
|
|
std::unique_ptr<ProfileBuilder> profile_builder,
|
|
NativeStackSamplerTestDelegate* test_delegate)
|
|
: StackSamplingProfiler(PlatformThread::CurrentId(),
|
|
params,
|
|
std::move(profile_builder),
|
|
test_delegate) {}
|
|
|
|
StackSamplingProfiler::StackSamplingProfiler(
|
|
PlatformThreadId thread_id,
|
|
const SamplingParams& params,
|
|
std::unique_ptr<ProfileBuilder> profile_builder,
|
|
NativeStackSamplerTestDelegate* test_delegate)
|
|
: StackSamplingProfiler(thread_id,
|
|
params,
|
|
std::move(profile_builder),
|
|
nullptr,
|
|
test_delegate) {}
|
|
|
|
StackSamplingProfiler::StackSamplingProfiler(
|
|
PlatformThreadId thread_id,
|
|
const SamplingParams& params,
|
|
std::unique_ptr<ProfileBuilder> profile_builder,
|
|
std::unique_ptr<NativeStackSampler> sampler,
|
|
NativeStackSamplerTestDelegate* test_delegate)
|
|
: thread_id_(thread_id),
|
|
params_(params),
|
|
profile_builder_(std::move(profile_builder)),
|
|
native_sampler_(std::move(sampler)),
|
|
// The event starts "signaled" so code knows it's safe to start thread
|
|
// and "manual" so that it can be waited in multiple places.
|
|
profiling_inactive_(kResetPolicy, WaitableEvent::InitialState::SIGNALED),
|
|
profiler_id_(kNullProfilerId),
|
|
test_delegate_(test_delegate) {
|
|
DCHECK(profile_builder_);
|
|
}
|
|
|
|
StackSamplingProfiler::~StackSamplingProfiler() {
|
|
// Stop returns immediately but the shutdown runs asynchronously. There is a
|
|
// non-zero probability that one more sample will be taken after this call
|
|
// returns.
|
|
Stop();
|
|
|
|
// The behavior of sampling a thread that has exited is undefined and could
|
|
// cause Bad Things(tm) to occur. The safety model provided by this class is
|
|
// that an instance of this object is expected to live at least as long as
|
|
// the thread it is sampling. However, because the sampling is performed
|
|
// asynchronously by the SamplingThread, there is no way to guarantee this
|
|
// is true without waiting for it to signal that it has finished.
|
|
//
|
|
// The wait time should, at most, be only as long as it takes to collect one
|
|
// sample (~200us) or none at all if sampling has already completed.
|
|
ThreadRestrictions::ScopedAllowWait allow_wait;
|
|
profiling_inactive_.Wait();
|
|
}
|
|
|
|
void StackSamplingProfiler::Start() {
|
|
// Multiple calls to Start() for a single StackSamplingProfiler object is not
|
|
// allowed. If profile_builder_ is nullptr, then Start() has been called
|
|
// already.
|
|
DCHECK(profile_builder_);
|
|
|
|
if (!native_sampler_)
|
|
native_sampler_ = NativeStackSampler::Create(thread_id_, test_delegate_);
|
|
|
|
if (!native_sampler_)
|
|
return;
|
|
|
|
// The IsSignaled() check below requires that the WaitableEvent be manually
|
|
// reset, to avoid signaling the event in IsSignaled() itself.
|
|
static_assert(kResetPolicy == WaitableEvent::ResetPolicy::MANUAL,
|
|
"The reset policy must be set to MANUAL");
|
|
|
|
// If a previous profiling phase is still winding down, wait for it to
|
|
// complete. We can't use task posting for this coordination because the
|
|
// thread owning the profiler may not have a message loop.
|
|
if (!profiling_inactive_.IsSignaled())
|
|
profiling_inactive_.Wait();
|
|
profiling_inactive_.Reset();
|
|
|
|
DCHECK_EQ(kNullProfilerId, profiler_id_);
|
|
profiler_id_ = SamplingThread::GetInstance()->Add(
|
|
std::make_unique<SamplingThread::CollectionContext>(
|
|
thread_id_, params_, &profiling_inactive_, std::move(native_sampler_),
|
|
std::move(profile_builder_)));
|
|
DCHECK_NE(kNullProfilerId, profiler_id_);
|
|
}
|
|
|
|
void StackSamplingProfiler::Stop() {
|
|
SamplingThread::GetInstance()->Remove(profiler_id_);
|
|
profiler_id_ = kNullProfilerId;
|
|
}
|
|
|
|
} // namespace base
|