mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-24 06:16:30 +03:00
1057 lines
44 KiB
C++
1057 lines
44 KiB
C++
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "net/cert/cert_verify_proc_mac.h"
|
|
|
|
#include <CommonCrypto/CommonDigest.h>
|
|
#include <CoreServices/CoreServices.h>
|
|
#include <Security/Security.h>
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "base/logging.h"
|
|
#include "base/mac/mac_logging.h"
|
|
#include "base/mac/mac_util.h"
|
|
#include "base/mac/scoped_cftyperef.h"
|
|
#include "base/strings/string_piece.h"
|
|
#include "base/synchronization/lock.h"
|
|
#include "crypto/mac_security_services_lock.h"
|
|
#include "crypto/sha2.h"
|
|
#include "net/base/hash_value.h"
|
|
#include "net/base/net_errors.h"
|
|
#include "net/cert/asn1_util.h"
|
|
#include "net/cert/cert_status_flags.h"
|
|
#include "net/cert/cert_verifier.h"
|
|
#include "net/cert/cert_verify_result.h"
|
|
#include "net/cert/crl_set.h"
|
|
#include "net/cert/ev_root_ca_metadata.h"
|
|
#include "net/cert/internal/certificate_policies.h"
|
|
#include "net/cert/internal/parsed_certificate.h"
|
|
#include "net/cert/known_roots_mac.h"
|
|
#include "net/cert/test_keychain_search_list_mac.h"
|
|
#include "net/cert/test_root_certs.h"
|
|
#include "net/cert/x509_certificate.h"
|
|
#include "net/cert/x509_util.h"
|
|
#include "net/cert/x509_util_ios_and_mac.h"
|
|
#include "net/cert/x509_util_mac.h"
|
|
|
|
// CSSM functions are deprecated as of OSX 10.7, but have no replacement.
|
|
// https://bugs.chromium.org/p/chromium/issues/detail?id=590914#c1
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
|
|
|
|
using base::ScopedCFTypeRef;
|
|
|
|
namespace net {
|
|
|
|
namespace {
|
|
|
|
typedef OSStatus (*SecTrustCopyExtendedResultFuncPtr)(SecTrustRef,
|
|
CFDictionaryRef*);
|
|
|
|
int NetErrorFromOSStatus(OSStatus status) {
|
|
switch (status) {
|
|
case noErr:
|
|
return OK;
|
|
case errSecNotAvailable:
|
|
case errSecNoCertificateModule:
|
|
case errSecNoPolicyModule:
|
|
return ERR_NOT_IMPLEMENTED;
|
|
case errSecAuthFailed:
|
|
return ERR_ACCESS_DENIED;
|
|
default: {
|
|
OSSTATUS_LOG(ERROR, status) << "Unknown error mapped to ERR_FAILED";
|
|
return ERR_FAILED;
|
|
}
|
|
}
|
|
}
|
|
|
|
CertStatus CertStatusFromOSStatus(OSStatus status) {
|
|
switch (status) {
|
|
case noErr:
|
|
return 0;
|
|
|
|
case CSSMERR_TP_INVALID_ANCHOR_CERT:
|
|
case CSSMERR_TP_NOT_TRUSTED:
|
|
case CSSMERR_TP_INVALID_CERT_AUTHORITY:
|
|
return CERT_STATUS_AUTHORITY_INVALID;
|
|
|
|
case CSSMERR_TP_CERT_EXPIRED:
|
|
case CSSMERR_TP_CERT_NOT_VALID_YET:
|
|
// "Expired" and "not yet valid" collapse into a single status.
|
|
return CERT_STATUS_DATE_INVALID;
|
|
|
|
case CSSMERR_TP_CERT_REVOKED:
|
|
case CSSMERR_TP_CERT_SUSPENDED:
|
|
return CERT_STATUS_REVOKED;
|
|
|
|
case CSSMERR_APPLETP_HOSTNAME_MISMATCH:
|
|
return CERT_STATUS_COMMON_NAME_INVALID;
|
|
|
|
case CSSMERR_APPLETP_CRL_NOT_FOUND:
|
|
case CSSMERR_APPLETP_OCSP_UNAVAILABLE:
|
|
return CERT_STATUS_NO_REVOCATION_MECHANISM;
|
|
|
|
case CSSMERR_APPLETP_INCOMPLETE_REVOCATION_CHECK:
|
|
// Starting with later 10.12 versions,
|
|
// CSSMERR_APPLETP_INCOMPLETE_REVOCATION_CHECK is a catch-all code for
|
|
// failures to check revocation status.
|
|
// However, on pre-10.12 versions, it would also be used on revocation
|
|
// failures. (CERT_STATUS_NO_REVOCATION_MECHANISM isn't really right
|
|
// there either, but that's what the old code has, and it just gets
|
|
// masked off later so has no actual effect.)
|
|
return base::mac::IsAtLeastOS10_12()
|
|
? CERT_STATUS_UNABLE_TO_CHECK_REVOCATION
|
|
: CERT_STATUS_NO_REVOCATION_MECHANISM;
|
|
|
|
case CSSMERR_APPLETP_CRL_EXPIRED:
|
|
case CSSMERR_APPLETP_CRL_NOT_VALID_YET:
|
|
case CSSMERR_APPLETP_CRL_SERVER_DOWN:
|
|
case CSSMERR_APPLETP_CRL_NOT_TRUSTED:
|
|
case CSSMERR_APPLETP_CRL_INVALID_ANCHOR_CERT:
|
|
case CSSMERR_APPLETP_CRL_POLICY_FAIL:
|
|
case CSSMERR_APPLETP_OCSP_BAD_RESPONSE:
|
|
case CSSMERR_APPLETP_OCSP_BAD_REQUEST:
|
|
case CSSMERR_APPLETP_OCSP_STATUS_UNRECOGNIZED:
|
|
case CSSMERR_APPLETP_NETWORK_FAILURE:
|
|
case CSSMERR_APPLETP_OCSP_NOT_TRUSTED:
|
|
case CSSMERR_APPLETP_OCSP_INVALID_ANCHOR_CERT:
|
|
case CSSMERR_APPLETP_OCSP_SIG_ERROR:
|
|
case CSSMERR_APPLETP_OCSP_NO_SIGNER:
|
|
case CSSMERR_APPLETP_OCSP_RESP_MALFORMED_REQ:
|
|
case CSSMERR_APPLETP_OCSP_RESP_INTERNAL_ERR:
|
|
case CSSMERR_APPLETP_OCSP_RESP_TRY_LATER:
|
|
case CSSMERR_APPLETP_OCSP_RESP_SIG_REQUIRED:
|
|
case CSSMERR_APPLETP_OCSP_RESP_UNAUTHORIZED:
|
|
case CSSMERR_APPLETP_OCSP_NONCE_MISMATCH:
|
|
// We asked for a revocation check, but didn't get it.
|
|
return CERT_STATUS_UNABLE_TO_CHECK_REVOCATION;
|
|
|
|
case CSSMERR_APPLETP_SSL_BAD_EXT_KEY_USE:
|
|
// TODO(wtc): Should we add CERT_STATUS_WRONG_USAGE?
|
|
return CERT_STATUS_INVALID;
|
|
|
|
case CSSMERR_APPLETP_CRL_BAD_URI:
|
|
case CSSMERR_APPLETP_IDP_FAIL:
|
|
return CERT_STATUS_INVALID;
|
|
|
|
case CSSMERR_CSP_UNSUPPORTED_KEY_SIZE:
|
|
// Mapping UNSUPPORTED_KEY_SIZE to CERT_STATUS_WEAK_KEY is not strictly
|
|
// accurate, as the error may have been returned due to a key size
|
|
// that exceeded the maximum supported. However, within
|
|
// CertVerifyProcMac::VerifyInternal(), this code should only be
|
|
// encountered as a certificate status code, and only when the key size
|
|
// is smaller than the minimum required (1024 bits).
|
|
return CERT_STATUS_WEAK_KEY;
|
|
|
|
default: {
|
|
// Failure was due to something Chromium doesn't define a
|
|
// specific status for (such as basic constraints violation, or
|
|
// unknown critical extension)
|
|
OSSTATUS_LOG(WARNING, status)
|
|
<< "Unknown error mapped to CERT_STATUS_INVALID";
|
|
return CERT_STATUS_INVALID;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Creates a series of SecPolicyRefs to be added to a SecTrustRef used to
|
|
// validate a certificate for an SSL server. |flags| is a bitwise-OR of
|
|
// VerifyFlags that can further alter how trust is validated, such as how
|
|
// revocation is checked. If successful, returns noErr, and stores the
|
|
// resultant array of SecPolicyRefs in |policies|.
|
|
OSStatus CreateTrustPolicies(int flags, ScopedCFTypeRef<CFArrayRef>* policies) {
|
|
ScopedCFTypeRef<CFMutableArrayRef> local_policies(
|
|
CFArrayCreateMutable(kCFAllocatorDefault, 0, &kCFTypeArrayCallBacks));
|
|
if (!local_policies)
|
|
return memFullErr;
|
|
|
|
SecPolicyRef ssl_policy;
|
|
OSStatus status =
|
|
x509_util::CreateSSLServerPolicy(std::string(), &ssl_policy);
|
|
if (status)
|
|
return status;
|
|
CFArrayAppendValue(local_policies, ssl_policy);
|
|
CFRelease(ssl_policy);
|
|
|
|
// Explicitly add revocation policies, in order to override system
|
|
// revocation checking policies and instead respect the application-level
|
|
// revocation preference.
|
|
status = x509_util::CreateRevocationPolicies(
|
|
(flags & CertVerifier::VERIFY_REV_CHECKING_ENABLED), local_policies);
|
|
if (status)
|
|
return status;
|
|
|
|
policies->reset(local_policies.release());
|
|
return noErr;
|
|
}
|
|
|
|
// Stores the constructed certificate chain |cert_chain| into
|
|
// |*verify_result|. |cert_chain| must not be empty.
|
|
void CopyCertChainToVerifyResult(CFArrayRef cert_chain,
|
|
CertVerifyResult* verify_result) {
|
|
DCHECK_LT(0, CFArrayGetCount(cert_chain));
|
|
|
|
SecCertificateRef verified_cert = NULL;
|
|
std::vector<SecCertificateRef> verified_chain;
|
|
for (CFIndex i = 0, count = CFArrayGetCount(cert_chain); i < count; ++i) {
|
|
SecCertificateRef chain_cert = reinterpret_cast<SecCertificateRef>(
|
|
const_cast<void*>(CFArrayGetValueAtIndex(cert_chain, i)));
|
|
if (i == 0) {
|
|
verified_cert = chain_cert;
|
|
} else {
|
|
verified_chain.push_back(chain_cert);
|
|
}
|
|
}
|
|
if (!verified_cert) {
|
|
NOTREACHED();
|
|
verify_result->cert_status |= CERT_STATUS_INVALID;
|
|
return;
|
|
}
|
|
|
|
scoped_refptr<X509Certificate> verified_cert_with_chain =
|
|
x509_util::CreateX509CertificateFromSecCertificate(verified_cert,
|
|
verified_chain);
|
|
if (verified_cert_with_chain)
|
|
verify_result->verified_cert = std::move(verified_cert_with_chain);
|
|
else
|
|
verify_result->cert_status |= CERT_STATUS_INVALID;
|
|
}
|
|
|
|
// Returns true if the certificate uses MD2, MD4, MD5, or SHA1, and false
|
|
// otherwise. A return of false also includes the case where the signature
|
|
// algorithm couldn't be conclusively labeled as weak.
|
|
bool CertUsesWeakHash(SecCertificateRef cert_handle) {
|
|
x509_util::CSSMCachedCertificate cached_cert;
|
|
OSStatus status = cached_cert.Init(cert_handle);
|
|
if (status)
|
|
return false;
|
|
|
|
x509_util::CSSMFieldValue signature_field;
|
|
status =
|
|
cached_cert.GetField(&CSSMOID_X509V1SignatureAlgorithm, &signature_field);
|
|
if (status || !signature_field.field())
|
|
return false;
|
|
|
|
const CSSM_X509_ALGORITHM_IDENTIFIER* sig_algorithm =
|
|
signature_field.GetAs<CSSM_X509_ALGORITHM_IDENTIFIER>();
|
|
if (!sig_algorithm)
|
|
return false;
|
|
|
|
const CSSM_OID* alg_oid = &sig_algorithm->algorithm;
|
|
|
|
return (x509_util::CSSMOIDEqual(alg_oid, &CSSMOID_MD2WithRSA) ||
|
|
x509_util::CSSMOIDEqual(alg_oid, &CSSMOID_MD4WithRSA) ||
|
|
x509_util::CSSMOIDEqual(alg_oid, &CSSMOID_MD5WithRSA) ||
|
|
x509_util::CSSMOIDEqual(alg_oid, &CSSMOID_SHA1WithRSA) ||
|
|
x509_util::CSSMOIDEqual(alg_oid, &CSSMOID_SHA1WithRSA_OIW) ||
|
|
x509_util::CSSMOIDEqual(alg_oid, &CSSMOID_SHA1WithDSA) ||
|
|
x509_util::CSSMOIDEqual(alg_oid, &CSSMOID_SHA1WithDSA_CMS) ||
|
|
x509_util::CSSMOIDEqual(alg_oid, &CSSMOID_SHA1WithDSA_JDK) ||
|
|
x509_util::CSSMOIDEqual(alg_oid, &CSSMOID_ECDSA_WithSHA1));
|
|
}
|
|
|
|
// Returns true if the intermediates (excluding trusted certificates) use a
|
|
// weak hashing algorithm, but the target does not use a weak hash.
|
|
bool IsWeakChainBasedOnHashingAlgorithms(
|
|
CFArrayRef cert_chain,
|
|
CSSM_TP_APPLE_EVIDENCE_INFO* chain_info) {
|
|
DCHECK_LT(0, CFArrayGetCount(cert_chain));
|
|
|
|
bool intermediates_contain_weak_hash = false;
|
|
bool leaf_uses_weak_hash = false;
|
|
|
|
for (CFIndex i = 0, count = CFArrayGetCount(cert_chain); i < count; ++i) {
|
|
SecCertificateRef chain_cert = reinterpret_cast<SecCertificateRef>(
|
|
const_cast<void*>(CFArrayGetValueAtIndex(cert_chain, i)));
|
|
|
|
if ((chain_info[i].StatusBits & CSSM_CERT_STATUS_IS_IN_ANCHORS) ||
|
|
(chain_info[i].StatusBits & CSSM_CERT_STATUS_IS_ROOT)) {
|
|
// The current certificate is either in the user's trusted store or is
|
|
// a root (self-signed) certificate. Ignore the signature algorithm for
|
|
// these certificates, as it is meaningless for security. We allow
|
|
// self-signed certificates (i == 0 & IS_ROOT), since we accept that
|
|
// any security assertions by such a cert are inherently meaningless.
|
|
continue;
|
|
}
|
|
|
|
if (CertUsesWeakHash(chain_cert)) {
|
|
if (i == 0) {
|
|
leaf_uses_weak_hash = true;
|
|
} else {
|
|
intermediates_contain_weak_hash = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return !leaf_uses_weak_hash && intermediates_contain_weak_hash;
|
|
}
|
|
|
|
// Checks if |*cert| has a Certificate Policies extension containing either
|
|
// of |ev_policy_oid| or anyPolicy.
|
|
bool HasPolicyOrAnyPolicy(const ParsedCertificate* cert,
|
|
const der::Input& ev_policy_oid) {
|
|
if (!cert->has_policy_oids())
|
|
return false;
|
|
|
|
for (const der::Input& policy_oid : cert->policy_oids()) {
|
|
if (policy_oid == ev_policy_oid || policy_oid == AnyPolicy())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Looks for known EV policy OIDs in |cert_input|, if one is found it will be
|
|
// stored in |*ev_policy_oid| as a DER-encoded OID value (no tag or length).
|
|
void GetCandidateEVPolicy(const X509Certificate* cert_input,
|
|
std::string* ev_policy_oid) {
|
|
ev_policy_oid->clear();
|
|
|
|
std::string der_cert;
|
|
if (!X509Certificate::GetDEREncoded(cert_input->os_cert_handle(),
|
|
&der_cert)) {
|
|
return;
|
|
}
|
|
|
|
scoped_refptr<ParsedCertificate> cert(ParsedCertificate::Create(
|
|
x509_util::CreateCryptoBuffer(der_cert), {}, nullptr));
|
|
if (!cert)
|
|
return;
|
|
|
|
if (!cert->has_policy_oids())
|
|
return;
|
|
|
|
EVRootCAMetadata* metadata = EVRootCAMetadata::GetInstance();
|
|
for (const der::Input& policy_oid : cert->policy_oids()) {
|
|
if (metadata->IsEVPolicyOID(policy_oid)) {
|
|
*ev_policy_oid = policy_oid.AsString();
|
|
|
|
// De-prioritize the CA/Browser forum Extended Validation policy
|
|
// (2.23.140.1.1). See crbug.com/705285.
|
|
if (!EVRootCAMetadata::IsCaBrowserForumEvOid(policy_oid))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Checks that the certificate chain of |cert| has policies consistent with
|
|
// |ev_policy_oid_string|. The leaf is not checked, as it is assumed that is
|
|
// where the policy came from.
|
|
bool CheckCertChainEV(const X509Certificate* cert,
|
|
const std::string& ev_policy_oid_string) {
|
|
der::Input ev_policy_oid(&ev_policy_oid_string);
|
|
X509Certificate::OSCertHandles os_cert_chain =
|
|
cert->GetIntermediateCertificates();
|
|
|
|
// Root should have matching policy in EVRootCAMetadata.
|
|
if (os_cert_chain.empty())
|
|
return false;
|
|
SHA256HashValue fingerprint =
|
|
X509Certificate::CalculateFingerprint256(os_cert_chain.back());
|
|
EVRootCAMetadata* metadata = EVRootCAMetadata::GetInstance();
|
|
if (!metadata->HasEVPolicyOID(fingerprint, ev_policy_oid))
|
|
return false;
|
|
|
|
// Intermediates should have Certificate Policies extension with the EV policy
|
|
// or AnyPolicy.
|
|
for (size_t i = 0; i < os_cert_chain.size() - 1; ++i) {
|
|
std::string der_cert;
|
|
if (!X509Certificate::GetDEREncoded(os_cert_chain[i], &der_cert))
|
|
return false;
|
|
scoped_refptr<ParsedCertificate> intermediate_cert(
|
|
ParsedCertificate::Create(x509_util::CreateCryptoBuffer(der_cert), {},
|
|
nullptr));
|
|
if (!intermediate_cert)
|
|
return false;
|
|
if (!HasPolicyOrAnyPolicy(intermediate_cert.get(), ev_policy_oid))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void AppendPublicKeyHashes(CFArrayRef chain,
|
|
HashValueVector* hashes) {
|
|
const CFIndex n = CFArrayGetCount(chain);
|
|
for (CFIndex i = 0; i < n; i++) {
|
|
SecCertificateRef cert = reinterpret_cast<SecCertificateRef>(
|
|
const_cast<void*>(CFArrayGetValueAtIndex(chain, i)));
|
|
|
|
CSSM_DATA cert_data;
|
|
OSStatus err = SecCertificateGetData(cert, &cert_data);
|
|
DCHECK_EQ(err, noErr);
|
|
base::StringPiece der_bytes(reinterpret_cast<const char*>(cert_data.Data),
|
|
cert_data.Length);
|
|
base::StringPiece spki_bytes;
|
|
if (!asn1::ExtractSPKIFromDERCert(der_bytes, &spki_bytes))
|
|
continue;
|
|
|
|
HashValue sha256(HASH_VALUE_SHA256);
|
|
CC_SHA256(spki_bytes.data(), spki_bytes.size(), sha256.data());
|
|
hashes->push_back(sha256);
|
|
}
|
|
}
|
|
|
|
enum CRLSetResult {
|
|
kCRLSetOk,
|
|
kCRLSetRevoked,
|
|
kCRLSetUnknown,
|
|
};
|
|
|
|
// CheckRevocationWithCRLSet attempts to check each element of |cert_list|
|
|
// against |crl_set|. It returns:
|
|
// kCRLSetRevoked: if any element of the chain is known to have been revoked.
|
|
// kCRLSetUnknown: if there is no fresh information about the leaf
|
|
// certificate in the chain or if the CRLSet has expired.
|
|
//
|
|
// Only the leaf certificate is considered for coverage because some
|
|
// intermediates have CRLs with no revocations (after filtering) and
|
|
// those CRLs are pruned from the CRLSet at generation time. This means
|
|
// that some EV sites would otherwise take the hit of an OCSP lookup for
|
|
// no reason.
|
|
// kCRLSetOk: otherwise.
|
|
CRLSetResult CheckRevocationWithCRLSet(CFArrayRef chain, CRLSet* crl_set) {
|
|
if (CFArrayGetCount(chain) == 0)
|
|
return kCRLSetOk;
|
|
|
|
// error is set to true if any errors are found. It causes such chains to be
|
|
// considered as not covered.
|
|
bool error = false;
|
|
// last_covered is set to the coverage state of the previous certificate. The
|
|
// certificates are iterated over backwards thus, after the iteration,
|
|
// |last_covered| contains the coverage state of the leaf certificate.
|
|
bool last_covered = false;
|
|
|
|
// We iterate from the root certificate down to the leaf, keeping track of
|
|
// the issuer's SPKI at each step.
|
|
std::string issuer_spki_hash;
|
|
for (CFIndex i = CFArrayGetCount(chain) - 1; i >= 0; i--) {
|
|
SecCertificateRef cert = reinterpret_cast<SecCertificateRef>(
|
|
const_cast<void*>(CFArrayGetValueAtIndex(chain, i)));
|
|
|
|
CSSM_DATA cert_data;
|
|
OSStatus err = SecCertificateGetData(cert, &cert_data);
|
|
if (err != noErr) {
|
|
NOTREACHED();
|
|
error = true;
|
|
continue;
|
|
}
|
|
base::StringPiece der_bytes(reinterpret_cast<const char*>(cert_data.Data),
|
|
cert_data.Length);
|
|
base::StringPiece spki;
|
|
if (!asn1::ExtractSPKIFromDERCert(der_bytes, &spki)) {
|
|
NOTREACHED();
|
|
error = true;
|
|
continue;
|
|
}
|
|
|
|
const std::string spki_hash = crypto::SHA256HashString(spki);
|
|
x509_util::CSSMCachedCertificate cached_cert;
|
|
if (cached_cert.Init(cert) != CSSM_OK) {
|
|
NOTREACHED();
|
|
error = true;
|
|
continue;
|
|
}
|
|
x509_util::CSSMFieldValue serial_number;
|
|
err = cached_cert.GetField(&CSSMOID_X509V1SerialNumber, &serial_number);
|
|
if (err || !serial_number.field()) {
|
|
NOTREACHED();
|
|
error = true;
|
|
continue;
|
|
}
|
|
|
|
base::StringPiece serial(
|
|
reinterpret_cast<const char*>(serial_number.field()->Data),
|
|
serial_number.field()->Length);
|
|
|
|
CRLSet::Result result = crl_set->CheckSPKI(spki_hash);
|
|
|
|
if (result != CRLSet::REVOKED && !issuer_spki_hash.empty())
|
|
result = crl_set->CheckSerial(serial, issuer_spki_hash);
|
|
|
|
issuer_spki_hash = spki_hash;
|
|
|
|
switch (result) {
|
|
case CRLSet::REVOKED:
|
|
return kCRLSetRevoked;
|
|
case CRLSet::UNKNOWN:
|
|
last_covered = false;
|
|
continue;
|
|
case CRLSet::GOOD:
|
|
last_covered = true;
|
|
continue;
|
|
default:
|
|
NOTREACHED();
|
|
error = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (error || !last_covered || crl_set->IsExpired())
|
|
return kCRLSetUnknown;
|
|
return kCRLSetOk;
|
|
}
|
|
|
|
// Builds and evaluates a SecTrustRef for the certificate chain contained
|
|
// in |cert_array|, using the verification policies in |trust_policies|. On
|
|
// success, returns OK, and updates |trust_ref|, |trust_result|,
|
|
// |verified_chain|, and |chain_info| with the verification results. On
|
|
// failure, no output parameters are modified.
|
|
//
|
|
// Note: An OK return does not mean that |cert_array| is trusted, merely that
|
|
// verification was performed successfully.
|
|
//
|
|
// This function should only be called while the Mac Security Services lock is
|
|
// held.
|
|
int BuildAndEvaluateSecTrustRef(CFArrayRef cert_array,
|
|
CFArrayRef trust_policies,
|
|
int flags,
|
|
CFArrayRef keychain_search_list,
|
|
ScopedCFTypeRef<SecTrustRef>* trust_ref,
|
|
SecTrustResultType* trust_result,
|
|
ScopedCFTypeRef<CFArrayRef>* verified_chain,
|
|
CSSM_TP_APPLE_EVIDENCE_INFO** chain_info) {
|
|
SecTrustRef tmp_trust = NULL;
|
|
OSStatus status = SecTrustCreateWithCertificates(cert_array, trust_policies,
|
|
&tmp_trust);
|
|
if (status)
|
|
return NetErrorFromOSStatus(status);
|
|
ScopedCFTypeRef<SecTrustRef> scoped_tmp_trust(tmp_trust);
|
|
|
|
if (TestRootCerts::HasInstance()) {
|
|
status = TestRootCerts::GetInstance()->FixupSecTrustRef(tmp_trust);
|
|
if (status)
|
|
return NetErrorFromOSStatus(status);
|
|
}
|
|
|
|
if (keychain_search_list) {
|
|
status = SecTrustSetKeychains(tmp_trust, keychain_search_list);
|
|
if (status)
|
|
return NetErrorFromOSStatus(status);
|
|
}
|
|
|
|
CSSM_APPLE_TP_ACTION_DATA tp_action_data;
|
|
memset(&tp_action_data, 0, sizeof(tp_action_data));
|
|
tp_action_data.Version = CSSM_APPLE_TP_ACTION_VERSION;
|
|
// Allow CSSM to download any missing intermediate certificates if an
|
|
// authorityInfoAccess extension or issuerAltName extension is present.
|
|
tp_action_data.ActionFlags = CSSM_TP_ACTION_FETCH_CERT_FROM_NET |
|
|
CSSM_TP_ACTION_TRUST_SETTINGS;
|
|
|
|
// Note: For EV certificates, the Apple TP will handle setting these flags
|
|
// as part of EV evaluation.
|
|
if (flags & CertVerifier::VERIFY_REV_CHECKING_ENABLED) {
|
|
// Require a positive result from an OCSP responder or a CRL (or both)
|
|
// for every certificate in the chain. The Apple TP automatically
|
|
// excludes the self-signed root from this requirement. If a certificate
|
|
// is missing both a crlDistributionPoints extension and an
|
|
// authorityInfoAccess extension with an OCSP responder URL, then we
|
|
// will get a kSecTrustResultRecoverableTrustFailure back from
|
|
// SecTrustEvaluate(), with a
|
|
// CSSMERR_APPLETP_INCOMPLETE_REVOCATION_CHECK error code. In that case,
|
|
// we'll set our own result to include
|
|
// CERT_STATUS_NO_REVOCATION_MECHANISM. If one or both extensions are
|
|
// present, and a check fails (server unavailable, OCSP retry later,
|
|
// signature mismatch), then we'll set our own result to include
|
|
// CERT_STATUS_UNABLE_TO_CHECK_REVOCATION.
|
|
tp_action_data.ActionFlags |= CSSM_TP_ACTION_REQUIRE_REV_PER_CERT;
|
|
|
|
// Note, even if revocation checking is disabled, SecTrustEvaluate() will
|
|
// modify the OCSP options so as to attempt OCSP checking if it believes a
|
|
// certificate may chain to an EV root. However, because network fetches
|
|
// are disabled in CreateTrustPolicies() when revocation checking is
|
|
// disabled, these will only go against the local cache.
|
|
}
|
|
|
|
CFDataRef action_data_ref =
|
|
CFDataCreateWithBytesNoCopy(kCFAllocatorDefault,
|
|
reinterpret_cast<UInt8*>(&tp_action_data),
|
|
sizeof(tp_action_data), kCFAllocatorNull);
|
|
if (!action_data_ref)
|
|
return ERR_OUT_OF_MEMORY;
|
|
ScopedCFTypeRef<CFDataRef> scoped_action_data_ref(action_data_ref);
|
|
status = SecTrustSetParameters(tmp_trust, CSSM_TP_ACTION_DEFAULT,
|
|
action_data_ref);
|
|
if (status)
|
|
return NetErrorFromOSStatus(status);
|
|
|
|
// Verify the certificate. A non-zero result from SecTrustGetResult()
|
|
// indicates that some fatal error occurred and the chain couldn't be
|
|
// processed, not that the chain contains no errors. We need to examine the
|
|
// output of SecTrustGetResult() to determine that.
|
|
SecTrustResultType tmp_trust_result;
|
|
status = SecTrustEvaluate(tmp_trust, &tmp_trust_result);
|
|
if (status)
|
|
return NetErrorFromOSStatus(status);
|
|
CFArrayRef tmp_verified_chain = NULL;
|
|
CSSM_TP_APPLE_EVIDENCE_INFO* tmp_chain_info;
|
|
status = SecTrustGetResult(tmp_trust, &tmp_trust_result, &tmp_verified_chain,
|
|
&tmp_chain_info);
|
|
if (status)
|
|
return NetErrorFromOSStatus(status);
|
|
|
|
trust_ref->swap(scoped_tmp_trust);
|
|
*trust_result = tmp_trust_result;
|
|
verified_chain->reset(tmp_verified_chain);
|
|
*chain_info = tmp_chain_info;
|
|
|
|
return OK;
|
|
}
|
|
|
|
// IsIssuedByKnownRoot returns true if the given chain is rooted at a root CA
|
|
// that we recognise as a standard root.
|
|
bool IsIssuedByKnownRoot(CFArrayRef chain) {
|
|
CFIndex n = CFArrayGetCount(chain);
|
|
if (n < 1)
|
|
return false;
|
|
SecCertificateRef root_ref = reinterpret_cast<SecCertificateRef>(
|
|
const_cast<void*>(CFArrayGetValueAtIndex(chain, n - 1)));
|
|
return IsKnownRoot(root_ref);
|
|
}
|
|
|
|
// Runs path building & verification loop for |cert|, given |flags|. This is
|
|
// split into a separate function so verification can be repeated with different
|
|
// flags. This function does not handle EV.
|
|
int VerifyWithGivenFlags(X509Certificate* cert,
|
|
const std::string& hostname,
|
|
const int flags,
|
|
CRLSet* crl_set,
|
|
CertVerifyResult* verify_result,
|
|
CRLSetResult* completed_chain_crl_result) {
|
|
ScopedCFTypeRef<CFArrayRef> trust_policies;
|
|
OSStatus status = CreateTrustPolicies(flags, &trust_policies);
|
|
if (status)
|
|
return NetErrorFromOSStatus(status);
|
|
|
|
*completed_chain_crl_result = kCRLSetUnknown;
|
|
|
|
// Serialize all calls that may use the Keychain, to work around various
|
|
// issues in OS X 10.6+ with multi-threaded access to Security.framework.
|
|
base::AutoLock lock(crypto::GetMacSecurityServicesLock());
|
|
|
|
ScopedCFTypeRef<SecTrustRef> trust_ref;
|
|
SecTrustResultType trust_result = kSecTrustResultDeny;
|
|
ScopedCFTypeRef<CFArrayRef> completed_chain;
|
|
CSSM_TP_APPLE_EVIDENCE_INFO* chain_info = NULL;
|
|
bool candidate_untrusted = true;
|
|
bool candidate_weak = false;
|
|
|
|
// OS X lacks proper path discovery; it will take the input certs and never
|
|
// backtrack the graph attempting to discover valid paths.
|
|
// This can create issues in some situations:
|
|
// - When OS X changes the trust store, there may be a chain
|
|
// A -> B -> C -> D
|
|
// where OS X trusts D (on some versions) and trusts C (on some versions).
|
|
// If a server supplies a chain A, B, C (cross-signed by D), then this chain
|
|
// will successfully validate on systems that trust D, but fail for systems
|
|
// that trust C. If the server supplies a chain of A -> B, then it forces
|
|
// all clients to fetch C (via AIA) if they trust D, and not all clients
|
|
// (notably, Firefox and Android) will do this, thus breaking them.
|
|
// An example of this is the Verizon Business Services root - GTE CyberTrust
|
|
// and Baltimore CyberTrust roots represent old and new roots that cause
|
|
// issues depending on which version of OS X being used.
|
|
//
|
|
// - A server may be (misconfigured) to send an expired intermediate
|
|
// certificate. On platforms with path discovery, the graph traversal
|
|
// will back up to immediately before this intermediate, and then
|
|
// attempt an AIA fetch or retrieval from local store. However, OS X
|
|
// does not do this, and thus prevents access. While this is ostensibly
|
|
// a server misconfiguration issue, the fact that it works on other
|
|
// platforms is a jarring inconsistency for users.
|
|
//
|
|
// - When OS X trusts both C and D (simultaneously), it's possible that the
|
|
// version of C signed by D is signed using a weak algorithm (e.g. SHA-1),
|
|
// while the version of C in the trust store's signature doesn't matter.
|
|
// Since a 'strong' chain exists, it would be desirable to prefer this
|
|
// chain.
|
|
//
|
|
// - A variant of the above example, it may be that the version of B sent by
|
|
// the server is signed using a weak algorithm, but the version of B
|
|
// present in the AIA of A is signed using a strong algorithm. Since a
|
|
// 'strong' chain exists, it would be desirable to prefer this chain.
|
|
//
|
|
// - A user keychain may contain a less desirable intermediate or root.
|
|
// OS X gives the user keychains higher priority than the system keychain,
|
|
// so it may build a weak chain.
|
|
//
|
|
// Because of this, the code below first attempts to validate the peer's
|
|
// identity using the supplied chain. If it is not trusted (e.g. the OS only
|
|
// trusts C, but the version of C signed by D was sent, and D is not trusted),
|
|
// or if it contains a weak chain, it will begin lopping off certificates
|
|
// from the end of the chain and attempting to verify. If a stronger, trusted
|
|
// chain is found, it is used, otherwise, the algorithm continues until only
|
|
// the peer's certificate remains.
|
|
//
|
|
// If the loop does not find a trusted chain, the loop will be repeated with
|
|
// the keychain search order altered to give priority to the System Roots
|
|
// keychain.
|
|
//
|
|
// This does cause a performance hit for these users, but only in cases where
|
|
// OS X is building weaker chains than desired, or when it would otherwise
|
|
// fail the connection.
|
|
for (bool try_reordered_keychain : {false, true}) {
|
|
ScopedCFTypeRef<CFArrayRef> scoped_alternate_keychain_search_list;
|
|
if (TestKeychainSearchList::HasInstance()) {
|
|
// Unit tests need to be able to hermetically simulate situations where a
|
|
// user has an undesirable certificate in a per-user keychain.
|
|
// Adding/Removing a Keychain using SecKeychainCreate/SecKeychainDelete
|
|
// has global side effects, which would break other tests and processes
|
|
// running on the same machine, so instead tests may load pre-created
|
|
// keychains using SecKeychainOpen and then inject them through
|
|
// TestKeychainSearchList.
|
|
CFArrayRef keychain_search_list;
|
|
status = TestKeychainSearchList::GetInstance()->CopySearchList(
|
|
&keychain_search_list);
|
|
if (status)
|
|
return NetErrorFromOSStatus(status);
|
|
scoped_alternate_keychain_search_list.reset(keychain_search_list);
|
|
}
|
|
if (try_reordered_keychain) {
|
|
// If a TestKeychainSearchList is present, it will have already set
|
|
// |scoped_alternate_keychain_search_list|, which will be used as the
|
|
// basis for reordering the keychain. Otherwise, get the current keychain
|
|
// search list and use that.
|
|
if (!scoped_alternate_keychain_search_list) {
|
|
CFArrayRef keychain_search_list;
|
|
status = SecKeychainCopySearchList(&keychain_search_list);
|
|
if (status)
|
|
return NetErrorFromOSStatus(status);
|
|
scoped_alternate_keychain_search_list.reset(keychain_search_list);
|
|
}
|
|
CFMutableArrayRef mutable_keychain_search_list = CFArrayCreateMutableCopy(
|
|
kCFAllocatorDefault,
|
|
CFArrayGetCount(scoped_alternate_keychain_search_list.get()) + 1,
|
|
scoped_alternate_keychain_search_list.get());
|
|
if (!mutable_keychain_search_list)
|
|
return ERR_OUT_OF_MEMORY;
|
|
scoped_alternate_keychain_search_list.reset(mutable_keychain_search_list);
|
|
|
|
SecKeychainRef keychain;
|
|
// Get a reference to the System Roots keychain. The System Roots
|
|
// keychain is not normally present in the keychain search list, but is
|
|
// implicitly checked after the keychains in the search list. By
|
|
// including it directly, force it to be checked first. This is a gross
|
|
// hack, but the path is known to be valid on OS X 10.9-10.11.
|
|
status = SecKeychainOpen(
|
|
"/System/Library/Keychains/SystemRootCertificates.keychain",
|
|
&keychain);
|
|
if (status)
|
|
return NetErrorFromOSStatus(status);
|
|
ScopedCFTypeRef<SecKeychainRef> scoped_keychain(keychain);
|
|
|
|
CFArrayInsertValueAtIndex(mutable_keychain_search_list, 0, keychain);
|
|
}
|
|
|
|
ScopedCFTypeRef<CFMutableArrayRef> cert_array(
|
|
x509_util::CreateSecCertificateArrayForX509Certificate(
|
|
cert, x509_util::InvalidIntermediateBehavior::kIgnore));
|
|
if (!cert_array) {
|
|
verify_result->cert_status |= CERT_STATUS_INVALID;
|
|
return ERR_CERT_INVALID;
|
|
}
|
|
|
|
// Beginning with the certificate chain as supplied by the server, attempt
|
|
// to verify the chain. If a failure is encountered, trim a certificate
|
|
// from the end (so long as one remains) and retry, in the hope of forcing
|
|
// OS X to find a better path.
|
|
while (CFArrayGetCount(cert_array) > 0) {
|
|
ScopedCFTypeRef<SecTrustRef> temp_ref;
|
|
SecTrustResultType temp_trust_result = kSecTrustResultDeny;
|
|
ScopedCFTypeRef<CFArrayRef> temp_chain;
|
|
CSSM_TP_APPLE_EVIDENCE_INFO* temp_chain_info = NULL;
|
|
|
|
int rv = BuildAndEvaluateSecTrustRef(
|
|
cert_array, trust_policies, flags,
|
|
scoped_alternate_keychain_search_list.get(), &temp_ref,
|
|
&temp_trust_result, &temp_chain, &temp_chain_info);
|
|
if (rv != OK)
|
|
return rv;
|
|
|
|
// Check to see if the path |temp_chain| has been revoked. This is less
|
|
// than ideal to perform after path building, rather than during, because
|
|
// there may be multiple paths to trust anchors, and only some of them
|
|
// are revoked. Ideally, CRLSets would be part of path building, which
|
|
// they are when using NSS (Linux) or CryptoAPI (Windows).
|
|
//
|
|
// The CRLSet checking is performed inside the loop in the hope that if a
|
|
// path is revoked, it's an older path, and the only reason it was built
|
|
// is because the server forced it (by supplying an older or less
|
|
// desirable intermediate) or because the user had installed a
|
|
// certificate in their Keychain forcing this path. However, this means
|
|
// its still possible for a CRLSet block of an intermediate to prevent
|
|
// access, even when there is a 'good' chain. To fully remedy this, a
|
|
// solution might be to have CRLSets contain enough knowledge about what
|
|
// the 'desired' path might be, but for the time being, the
|
|
// implementation is kept as 'simple' as it can be.
|
|
CRLSetResult crl_result = kCRLSetUnknown;
|
|
if (crl_set)
|
|
crl_result = CheckRevocationWithCRLSet(temp_chain, crl_set);
|
|
bool untrusted = (temp_trust_result != kSecTrustResultUnspecified &&
|
|
temp_trust_result != kSecTrustResultProceed) ||
|
|
crl_result == kCRLSetRevoked;
|
|
bool weak_chain = false;
|
|
if (CFArrayGetCount(temp_chain) == 0) {
|
|
// If the chain is empty, it cannot be trusted or have recoverable
|
|
// errors.
|
|
DCHECK(untrusted);
|
|
DCHECK_NE(kSecTrustResultRecoverableTrustFailure, temp_trust_result);
|
|
} else {
|
|
weak_chain =
|
|
IsWeakChainBasedOnHashingAlgorithms(temp_chain, temp_chain_info);
|
|
}
|
|
// Set the result to the current chain if:
|
|
// - This is the first verification attempt. This ensures that if
|
|
// everything is awful (e.g. it may just be an untrusted cert), that
|
|
// what is reported is exactly what was sent by the server
|
|
// - If the current chain is trusted, and the old chain was not trusted,
|
|
// then prefer this chain. This ensures that if there is at least a
|
|
// valid path to a trust anchor, it's preferred over reporting an error.
|
|
// - If the current chain is trusted, and the old chain is trusted, but
|
|
// the old chain contained weak algorithms while the current chain only
|
|
// contains strong algorithms, then prefer the current chain over the
|
|
// old chain.
|
|
//
|
|
// Note: If the leaf certificate itself is weak, then the only
|
|
// consideration is whether or not there is a trusted chain. That's
|
|
// because no amount of path discovery will fix a weak leaf.
|
|
if (!trust_ref || (!untrusted && (candidate_untrusted ||
|
|
(candidate_weak && !weak_chain)))) {
|
|
trust_ref = temp_ref;
|
|
trust_result = temp_trust_result;
|
|
completed_chain = temp_chain;
|
|
*completed_chain_crl_result = crl_result;
|
|
chain_info = temp_chain_info;
|
|
|
|
candidate_untrusted = untrusted;
|
|
candidate_weak = weak_chain;
|
|
}
|
|
// Short-circuit when a current, trusted chain is found.
|
|
if (!untrusted && !weak_chain)
|
|
break;
|
|
CFArrayRemoveValueAtIndex(cert_array, CFArrayGetCount(cert_array) - 1);
|
|
}
|
|
// Short-circuit when a current, trusted chain is found.
|
|
if (!candidate_untrusted && !candidate_weak)
|
|
break;
|
|
}
|
|
|
|
if (flags & CertVerifier::VERIFY_REV_CHECKING_ENABLED)
|
|
verify_result->cert_status |= CERT_STATUS_REV_CHECKING_ENABLED;
|
|
|
|
if (*completed_chain_crl_result == kCRLSetRevoked)
|
|
verify_result->cert_status |= CERT_STATUS_REVOKED;
|
|
|
|
if (CFArrayGetCount(completed_chain) > 0) {
|
|
CopyCertChainToVerifyResult(completed_chain, verify_result);
|
|
}
|
|
|
|
// As of Security Update 2012-002/OS X 10.7.4, when an RSA key < 1024 bits
|
|
// is encountered, CSSM returns CSSMERR_TP_VERIFY_ACTION_FAILED and adds
|
|
// CSSMERR_CSP_UNSUPPORTED_KEY_SIZE as a certificate status. Avoid mapping
|
|
// the CSSMERR_TP_VERIFY_ACTION_FAILED to CERT_STATUS_INVALID if the only
|
|
// error was due to an unsupported key size.
|
|
bool policy_failed = false;
|
|
bool policy_fail_already_mapped = false;
|
|
bool weak_key_or_signature_algorithm = false;
|
|
|
|
// Evaluate the results
|
|
OSStatus cssm_result;
|
|
switch (trust_result) {
|
|
case kSecTrustResultUnspecified:
|
|
case kSecTrustResultProceed:
|
|
// Certificate chain is valid and trusted ("unspecified" indicates that
|
|
// the user has not explicitly set a trust setting)
|
|
break;
|
|
|
|
// According to SecTrust.h, kSecTrustResultConfirm isn't returned on 10.5+,
|
|
// and it is marked deprecated in the 10.9 SDK.
|
|
case kSecTrustResultDeny:
|
|
// Certificate chain is explicitly untrusted.
|
|
verify_result->cert_status |= CERT_STATUS_AUTHORITY_INVALID;
|
|
break;
|
|
|
|
case kSecTrustResultRecoverableTrustFailure:
|
|
// Certificate chain has a failure that can be overridden by the user.
|
|
status = SecTrustGetCssmResultCode(trust_ref, &cssm_result);
|
|
if (status)
|
|
return NetErrorFromOSStatus(status);
|
|
if (cssm_result == CSSMERR_TP_VERIFY_ACTION_FAILED) {
|
|
policy_failed = true;
|
|
} else {
|
|
verify_result->cert_status |= CertStatusFromOSStatus(cssm_result);
|
|
}
|
|
// Walk the chain of error codes in the CSSM_TP_APPLE_EVIDENCE_INFO
|
|
// structure which can catch multiple errors from each certificate.
|
|
for (CFIndex index = 0, chain_count = CFArrayGetCount(completed_chain);
|
|
index < chain_count; ++index) {
|
|
if (chain_info[index].StatusBits & CSSM_CERT_STATUS_EXPIRED ||
|
|
chain_info[index].StatusBits & CSSM_CERT_STATUS_NOT_VALID_YET)
|
|
verify_result->cert_status |= CERT_STATUS_DATE_INVALID;
|
|
if (!IsCertStatusError(verify_result->cert_status) &&
|
|
chain_info[index].NumStatusCodes == 0) {
|
|
LOG(WARNING) << "chain_info[" << index << "].NumStatusCodes is 0"
|
|
", chain_info[" << index << "].StatusBits is "
|
|
<< chain_info[index].StatusBits;
|
|
}
|
|
for (uint32_t status_code_index = 0;
|
|
status_code_index < chain_info[index].NumStatusCodes;
|
|
++status_code_index) {
|
|
// As of OS X 10.9, attempting to verify a certificate chain that
|
|
// contains a weak signature algorithm (MD2, MD5) in an intermediate
|
|
// or leaf cert will be treated as a (recoverable) policy validation
|
|
// failure, with the status code CSSMERR_TP_INVALID_CERTIFICATE
|
|
// added to the Status Codes. Don't treat this code as an invalid
|
|
// certificate; instead, map it to a weak key. Any truly invalid
|
|
// certificates will have the major error (cssm_result) set to
|
|
// CSSMERR_TP_INVALID_CERTIFICATE, rather than
|
|
// CSSMERR_TP_VERIFY_ACTION_FAILED.
|
|
CertStatus mapped_status = 0;
|
|
if (policy_failed &&
|
|
chain_info[index].StatusCodes[status_code_index] ==
|
|
CSSMERR_TP_INVALID_CERTIFICATE) {
|
|
mapped_status = CERT_STATUS_WEAK_SIGNATURE_ALGORITHM;
|
|
weak_key_or_signature_algorithm = true;
|
|
policy_fail_already_mapped = true;
|
|
} else if (policy_failed &&
|
|
(flags & CertVerifier::VERIFY_REV_CHECKING_ENABLED) &&
|
|
chain_info[index].StatusCodes[status_code_index] ==
|
|
CSSMERR_TP_VERIFY_ACTION_FAILED &&
|
|
base::mac::IsOS10_12()) {
|
|
// On early versions of 10.12, using
|
|
// kSecRevocationRequirePositiveResponse flag causes a
|
|
// CSSMERR_TP_VERIFY_ACTION_FAILED status if revocation couldn't be
|
|
// checked. (Note: even if the cert had no crlDistributionPoints or
|
|
// OCSP AIA.) This isn't needed on later 10.12 versions, but it
|
|
// should be mostly harmless.
|
|
mapped_status = CERT_STATUS_UNABLE_TO_CHECK_REVOCATION;
|
|
policy_fail_already_mapped = true;
|
|
} else {
|
|
mapped_status = CertStatusFromOSStatus(
|
|
chain_info[index].StatusCodes[status_code_index]);
|
|
if (mapped_status == CERT_STATUS_WEAK_KEY) {
|
|
weak_key_or_signature_algorithm = true;
|
|
policy_fail_already_mapped = true;
|
|
}
|
|
}
|
|
verify_result->cert_status |= mapped_status;
|
|
}
|
|
}
|
|
if (policy_failed && !policy_fail_already_mapped) {
|
|
// If CSSMERR_TP_VERIFY_ACTION_FAILED wasn't returned due to a weak
|
|
// key or problem checking revocation, map it back to an appropriate
|
|
// error code.
|
|
verify_result->cert_status |= CertStatusFromOSStatus(cssm_result);
|
|
}
|
|
if (!IsCertStatusError(verify_result->cert_status)) {
|
|
LOG(ERROR) << "cssm_result=" << cssm_result;
|
|
verify_result->cert_status |= CERT_STATUS_INVALID;
|
|
NOTREACHED();
|
|
}
|
|
break;
|
|
|
|
default:
|
|
status = SecTrustGetCssmResultCode(trust_ref, &cssm_result);
|
|
if (status)
|
|
return NetErrorFromOSStatus(status);
|
|
verify_result->cert_status |= CertStatusFromOSStatus(cssm_result);
|
|
if (!IsCertStatusError(verify_result->cert_status)) {
|
|
LOG(WARNING) << "trust_result=" << trust_result;
|
|
verify_result->cert_status |= CERT_STATUS_INVALID;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Hostname validation is handled by CertVerifyProc, so mask off any errors
|
|
// that SecTrustEvaluate may have set, as its results are not used.
|
|
verify_result->cert_status &= ~CERT_STATUS_COMMON_NAME_INVALID;
|
|
|
|
// TODO(wtc): Suppress CERT_STATUS_NO_REVOCATION_MECHANISM for now to be
|
|
// compatible with Windows, which in turn implements this behavior to be
|
|
// compatible with WinHTTP, which doesn't report this error (bug 3004).
|
|
verify_result->cert_status &= ~CERT_STATUS_NO_REVOCATION_MECHANISM;
|
|
|
|
AppendPublicKeyHashes(completed_chain, &verify_result->public_key_hashes);
|
|
verify_result->is_issued_by_known_root = IsIssuedByKnownRoot(completed_chain);
|
|
|
|
if (IsCertStatusError(verify_result->cert_status))
|
|
return MapCertStatusToNetError(verify_result->cert_status);
|
|
|
|
return OK;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
CertVerifyProcMac::CertVerifyProcMac() {}
|
|
|
|
CertVerifyProcMac::~CertVerifyProcMac() {}
|
|
|
|
bool CertVerifyProcMac::SupportsAdditionalTrustAnchors() const {
|
|
return false;
|
|
}
|
|
|
|
bool CertVerifyProcMac::SupportsOCSPStapling() const {
|
|
// TODO(rsleevi): Plumb an OCSP response into the Mac system library.
|
|
// https://crbug.com/430714
|
|
return false;
|
|
}
|
|
|
|
int CertVerifyProcMac::VerifyInternal(
|
|
X509Certificate* cert,
|
|
const std::string& hostname,
|
|
const std::string& ocsp_response,
|
|
int flags,
|
|
CRLSet* crl_set,
|
|
const CertificateList& additional_trust_anchors,
|
|
CertVerifyResult* verify_result) {
|
|
// Save the input state of |*verify_result|, which may be needed to re-do
|
|
// verification with different flags.
|
|
const CertVerifyResult input_verify_result(*verify_result);
|
|
|
|
// If EV verification is enabled, check for EV policy in leaf cert.
|
|
std::string candidate_ev_policy_oid;
|
|
if (flags & CertVerifier::VERIFY_EV_CERT)
|
|
GetCandidateEVPolicy(cert, &candidate_ev_policy_oid);
|
|
|
|
CRLSetResult completed_chain_crl_result;
|
|
int rv = VerifyWithGivenFlags(cert, hostname, flags, crl_set, verify_result,
|
|
&completed_chain_crl_result);
|
|
if (rv != OK)
|
|
return rv;
|
|
|
|
if (!candidate_ev_policy_oid.empty() &&
|
|
CheckCertChainEV(verify_result->verified_cert.get(),
|
|
candidate_ev_policy_oid)) {
|
|
// EV policies check out and the verification succeeded. See if revocation
|
|
// checking still needs to be done before it can be marked as EV.
|
|
if (completed_chain_crl_result == kCRLSetUnknown &&
|
|
(flags & CertVerifier::VERIFY_REV_CHECKING_ENABLED_EV_ONLY) &&
|
|
!(flags & CertVerifier::VERIFY_REV_CHECKING_ENABLED)) {
|
|
// If this is an EV cert and it wasn't covered by CRLSets and revocation
|
|
// checking wasn't already on, try again with revocation forced on.
|
|
//
|
|
// Restore the input state of |*verify_result|, so that the
|
|
// re-verification starts with a clean slate.
|
|
*verify_result = input_verify_result;
|
|
int tmp_rv = VerifyWithGivenFlags(
|
|
verify_result->verified_cert.get(), hostname,
|
|
flags | CertVerifier::VERIFY_REV_CHECKING_ENABLED, crl_set,
|
|
verify_result, &completed_chain_crl_result);
|
|
// If re-verification failed, return those results without setting EV
|
|
// status.
|
|
if (tmp_rv != OK)
|
|
return tmp_rv;
|
|
// Otherwise, fall through and add the EV status flag.
|
|
}
|
|
// EV cert and it was covered by CRLSets or revocation checking passed.
|
|
verify_result->cert_status |= CERT_STATUS_IS_EV;
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
} // namespace net
|
|
|
|
#pragma clang diagnostic pop // "-Wdeprecated-declarations"
|