naiveproxy/base/profiler/stack_sampling_profiler.cc
2018-02-02 05:49:39 -05:00

893 lines
33 KiB
C++

// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/profiler/stack_sampling_profiler.h"
#include <algorithm>
#include <map>
#include <utility>
#include "base/atomic_sequence_num.h"
#include "base/atomicops.h"
#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/callback.h"
#include "base/lazy_instance.h"
#include "base/location.h"
#include "base/macros.h"
#include "base/memory/ptr_util.h"
#include "base/memory/singleton.h"
#include "base/profiler/native_stack_sampler.h"
#include "base/synchronization/lock.h"
#include "base/threading/thread.h"
#include "base/threading/thread_restrictions.h"
#include "base/threading/thread_task_runner_handle.h"
#include "base/timer/elapsed_timer.h"
namespace base {
namespace {
// This value is used when there is no collection in progress and thus no ID
// for referencing the active collection to the SamplingThread.
const int NULL_PROFILER_ID = -1;
void ChangeAtomicFlags(subtle::Atomic32* flags,
subtle::Atomic32 set,
subtle::Atomic32 clear) {
DCHECK(set != 0 || clear != 0);
DCHECK_EQ(0, set & clear);
subtle::Atomic32 bits = subtle::NoBarrier_Load(flags);
while (true) {
subtle::Atomic32 existing =
subtle::NoBarrier_CompareAndSwap(flags, bits, (bits | set) & ~clear);
if (existing == bits)
break;
bits = existing;
}
}
} // namespace
// StackSamplingProfiler::Module ----------------------------------------------
StackSamplingProfiler::Module::Module() : base_address(0u) {}
StackSamplingProfiler::Module::Module(uintptr_t base_address,
const std::string& id,
const FilePath& filename)
: base_address(base_address), id(id), filename(filename) {}
StackSamplingProfiler::Module::~Module() = default;
// StackSamplingProfiler::Frame -----------------------------------------------
StackSamplingProfiler::Frame::Frame(uintptr_t instruction_pointer,
size_t module_index)
: instruction_pointer(instruction_pointer), module_index(module_index) {}
StackSamplingProfiler::Frame::~Frame() = default;
StackSamplingProfiler::Frame::Frame()
: instruction_pointer(0), module_index(kUnknownModuleIndex) {
}
// StackSamplingProfiler::Sample ----------------------------------------------
StackSamplingProfiler::Sample::Sample() = default;
StackSamplingProfiler::Sample::Sample(const Sample& sample) = default;
StackSamplingProfiler::Sample::~Sample() = default;
StackSamplingProfiler::Sample::Sample(const Frame& frame) {
frames.push_back(std::move(frame));
}
StackSamplingProfiler::Sample::Sample(const std::vector<Frame>& frames)
: frames(frames) {}
// StackSamplingProfiler::CallStackProfile ------------------------------------
StackSamplingProfiler::CallStackProfile::CallStackProfile() = default;
StackSamplingProfiler::CallStackProfile::CallStackProfile(
CallStackProfile&& other) = default;
StackSamplingProfiler::CallStackProfile::~CallStackProfile() = default;
StackSamplingProfiler::CallStackProfile&
StackSamplingProfiler::CallStackProfile::operator=(CallStackProfile&& other) =
default;
StackSamplingProfiler::CallStackProfile
StackSamplingProfiler::CallStackProfile::CopyForTesting() const {
return CallStackProfile(*this);
}
StackSamplingProfiler::CallStackProfile::CallStackProfile(
const CallStackProfile& other) = default;
// StackSamplingProfiler::SamplingThread --------------------------------------
class StackSamplingProfiler::SamplingThread : public Thread {
public:
class TestAPI {
public:
// Reset the existing sampler. This will unfortunately create the object
// unnecessarily if it doesn't already exist but there's no way around that.
static void Reset();
// Disables inherent idle-shutdown behavior.
static void DisableIdleShutdown();
// Begins an idle shutdown as if the idle-timer had expired and wait for
// it to execute. Since the timer would have only been started at a time
// when the sampling thread actually was idle, this must be called only
// when it is known that there are no active sampling threads. If
// |simulate_intervening_add| is true then, when executed, the shutdown
// task will believe that a new collection has been added since it was
// posted.
static void ShutdownAssumingIdle(bool simulate_intervening_add);
private:
// Calls the sampling threads ShutdownTask and then signals an event.
static void ShutdownTaskAndSignalEvent(SamplingThread* sampler,
int add_events,
WaitableEvent* event);
};
struct CollectionContext {
CollectionContext(int profiler_id,
PlatformThreadId target,
const SamplingParams& params,
const CompletedCallback& callback,
WaitableEvent* finished,
std::unique_ptr<NativeStackSampler> sampler)
: profiler_id(profiler_id),
target(target),
params(params),
callback(callback),
finished(finished),
native_sampler(std::move(sampler)) {}
~CollectionContext() = default;
// An identifier for the profiler associated with this collection, used to
// uniquely identify the collection to outside interests.
const int profiler_id;
const PlatformThreadId target; // ID of The thread being sampled.
const SamplingParams params; // Information about how to sample.
const CompletedCallback callback; // Callback made when sampling complete.
WaitableEvent* const finished; // Signaled when all sampling complete.
// Platform-specific module that does the actual sampling.
std::unique_ptr<NativeStackSampler> native_sampler;
// The absolute time for the next sample.
Time next_sample_time;
// The time that a profile was started, for calculating the total duration.
Time profile_start_time;
// Counters that indicate the current position along the acquisition.
int burst = 0;
int sample = 0;
// The collected stack samples. The active profile is always at the back().
CallStackProfiles profiles;
// Sequence number for generating new profiler ids.
static AtomicSequenceNumber next_profiler_id;
};
// Gets the single instance of this class.
static SamplingThread* GetInstance();
// Adds a new CollectionContext to the thread. This can be called externally
// from any thread. This returns an ID that can later be used to stop
// the sampling.
int Add(std::unique_ptr<CollectionContext> collection);
// Removes an active collection based on its ID, forcing it to run its
// callback if any data has been collected. This can be called externally
// from any thread.
void Remove(int id);
private:
friend class TestAPI;
friend struct DefaultSingletonTraits<SamplingThread>;
// The different states in which the sampling-thread can be.
enum ThreadExecutionState {
// The thread is not running because it has never been started. It will be
// started when a sampling request is received.
NOT_STARTED,
// The thread is running and processing tasks. This is the state when any
// sampling requests are active and during the "idle" period afterward
// before the thread is stopped.
RUNNING,
// Once all sampling requests have finished and the "idle" period has
// expired, the thread will be set to this state and its shutdown
// initiated. A call to Stop() must be made to ensure the previous thread
// has completely exited before calling Start() and moving back to the
// RUNNING state.
EXITING,
};
SamplingThread();
~SamplingThread() override;
// Get task runner that is usable from the outside.
scoped_refptr<SingleThreadTaskRunner> GetOrCreateTaskRunnerForAdd();
scoped_refptr<SingleThreadTaskRunner> GetTaskRunner(
ThreadExecutionState* out_state);
// Get task runner that is usable from the sampling thread itself.
scoped_refptr<SingleThreadTaskRunner> GetTaskRunnerOnSamplingThread();
// Finishes a collection and reports collected data via callback. Returns
// the new collection params, if a new collection should be started. The
// collection's |finished| waitable event will be signalled if no new params
// are available or |allow_collection_restart| is false. The |collection|
// should already have been removed from |active_collections_| by the caller,
// as this is needed to avoid flakyness in unit tests.
Optional<SamplingParams> FinishCollection(CollectionContext* collection,
bool allow_collection_restart);
// Records a single sample of a collection.
void RecordSample(CollectionContext* collection);
// Check if the sampling thread is idle and begin a shutdown if it is.
void ScheduleShutdownIfIdle();
// These methods are tasks that get posted to the internal message queue.
void AddCollectionTask(std::unique_ptr<CollectionContext> collection);
void RemoveCollectionTask(int id);
void PerformCollectionTask(int id);
void ShutdownTask(int add_events);
// Updates the |next_sample_time| time based on configured parameters.
// Returns true if there is a next sample or false if sampling is complete.
bool UpdateNextSampleTime(CollectionContext* collection);
// Thread:
void CleanUp() override;
// A stack-buffer used by the native sampler for its work. This buffer can
// be re-used for multiple native sampler objects so long as the API calls
// that take it are not called concurrently.
std::unique_ptr<NativeStackSampler::StackBuffer> stack_buffer_;
// A map of IDs to collection contexts. Because this class is a singleton
// that is never destroyed, context objects will never be destructed except
// by explicit action. Thus, it's acceptable to pass unretained pointers
// to these objects when posting tasks.
std::map<int, std::unique_ptr<CollectionContext>> active_collections_;
// State maintained about the current execution (or non-execution) of
// the thread. This state must always be accessed while holding the
// lock. A copy of the task-runner is maintained here for use by any
// calling thread; this is necessary because Thread's accessor for it is
// not itself thread-safe. The lock is also used to order calls to the
// Thread API (Start, Stop, StopSoon, & DetachFromSequence) so that
// multiple threads may make those calls.
Lock thread_execution_state_lock_; // Protects all thread_execution_state_*
ThreadExecutionState thread_execution_state_ = NOT_STARTED;
scoped_refptr<SingleThreadTaskRunner> thread_execution_state_task_runner_;
bool thread_execution_state_disable_idle_shutdown_for_testing_ = false;
// A counter that notes adds of new collection requests. It is incremented
// when changes occur so that delayed shutdown tasks are able to detect if
// samething new has happened while it was waiting. Like all "execution_state"
// vars, this must be accessed while holding |thread_execution_state_lock_|.
int thread_execution_state_add_events_ = 0;
DISALLOW_COPY_AND_ASSIGN(SamplingThread);
};
// static
void StackSamplingProfiler::SamplingThread::TestAPI::Reset() {
SamplingThread* sampler = SamplingThread::GetInstance();
ThreadExecutionState state;
{
AutoLock lock(sampler->thread_execution_state_lock_);
state = sampler->thread_execution_state_;
DCHECK(sampler->active_collections_.empty());
}
// Stop the thread and wait for it to exit. This has to be done through by
// the thread itself because it has taken ownership of its own lifetime.
if (state == RUNNING) {
ShutdownAssumingIdle(false);
state = EXITING;
}
// Make sure thread is cleaned up since state will be reset to NOT_STARTED.
if (state == EXITING)
sampler->Stop();
// Reset internal variables to the just-initialized state.
{
AutoLock lock(sampler->thread_execution_state_lock_);
sampler->thread_execution_state_ = NOT_STARTED;
sampler->thread_execution_state_task_runner_ = nullptr;
sampler->thread_execution_state_disable_idle_shutdown_for_testing_ = false;
sampler->thread_execution_state_add_events_ = 0;
}
}
// static
void StackSamplingProfiler::SamplingThread::TestAPI::DisableIdleShutdown() {
SamplingThread* sampler = SamplingThread::GetInstance();
{
AutoLock lock(sampler->thread_execution_state_lock_);
sampler->thread_execution_state_disable_idle_shutdown_for_testing_ = true;
}
}
// static
void StackSamplingProfiler::SamplingThread::TestAPI::ShutdownAssumingIdle(
bool simulate_intervening_add) {
SamplingThread* sampler = SamplingThread::GetInstance();
ThreadExecutionState state;
scoped_refptr<SingleThreadTaskRunner> task_runner =
sampler->GetTaskRunner(&state);
DCHECK_EQ(RUNNING, state);
DCHECK(task_runner);
int add_events;
{
AutoLock lock(sampler->thread_execution_state_lock_);
add_events = sampler->thread_execution_state_add_events_;
if (simulate_intervening_add)
++sampler->thread_execution_state_add_events_;
}
WaitableEvent executed(WaitableEvent::ResetPolicy::MANUAL,
WaitableEvent::InitialState::NOT_SIGNALED);
// PostTaskAndReply won't work because thread and associated message-loop may
// be shut down.
task_runner->PostTask(
FROM_HERE, BindOnce(&ShutdownTaskAndSignalEvent, Unretained(sampler),
add_events, Unretained(&executed)));
executed.Wait();
}
// static
void StackSamplingProfiler::SamplingThread::TestAPI::ShutdownTaskAndSignalEvent(
SamplingThread* sampler,
int add_events,
WaitableEvent* event) {
sampler->ShutdownTask(add_events);
event->Signal();
}
AtomicSequenceNumber
StackSamplingProfiler::SamplingThread::CollectionContext::next_profiler_id;
StackSamplingProfiler::SamplingThread::SamplingThread()
: Thread("StackSamplingProfiler") {}
StackSamplingProfiler::SamplingThread::~SamplingThread() = default;
StackSamplingProfiler::SamplingThread*
StackSamplingProfiler::SamplingThread::GetInstance() {
return Singleton<SamplingThread, LeakySingletonTraits<SamplingThread>>::get();
}
int StackSamplingProfiler::SamplingThread::Add(
std::unique_ptr<CollectionContext> collection) {
// This is not to be run on the sampling thread.
int id = collection->profiler_id;
scoped_refptr<SingleThreadTaskRunner> task_runner =
GetOrCreateTaskRunnerForAdd();
task_runner->PostTask(
FROM_HERE, BindOnce(&SamplingThread::AddCollectionTask, Unretained(this),
Passed(&collection)));
return id;
}
void StackSamplingProfiler::SamplingThread::Remove(int id) {
// This is not to be run on the sampling thread.
ThreadExecutionState state;
scoped_refptr<SingleThreadTaskRunner> task_runner = GetTaskRunner(&state);
if (state != RUNNING)
return;
DCHECK(task_runner);
// This can fail if the thread were to exit between acquisition of the task
// runner above and the call below. In that case, however, everything has
// stopped so there's no need to try to stop it.
task_runner->PostTask(
FROM_HERE,
BindOnce(&SamplingThread::RemoveCollectionTask, Unretained(this), id));
}
scoped_refptr<SingleThreadTaskRunner>
StackSamplingProfiler::SamplingThread::GetOrCreateTaskRunnerForAdd() {
AutoLock lock(thread_execution_state_lock_);
// The increment of the "add events" count is why this method is to be only
// called from "add".
++thread_execution_state_add_events_;
if (thread_execution_state_ == RUNNING) {
DCHECK(thread_execution_state_task_runner_);
// This shouldn't be called from the sampling thread as it's inefficient.
// Use GetTaskRunnerOnSamplingThread() instead.
DCHECK_NE(GetThreadId(), PlatformThread::CurrentId());
return thread_execution_state_task_runner_;
}
if (thread_execution_state_ == EXITING) {
// The previous instance has only been partially cleaned up. It is necessary
// to call Stop() before Start().
Stop();
}
DCHECK(!stack_buffer_);
stack_buffer_ = NativeStackSampler::CreateStackBuffer();
// The thread is not running. Start it and get associated runner. The task-
// runner has to be saved for future use because though it can be used from
// any thread, it can be acquired via task_runner() only on the created
// thread and the thread that creates it (i.e. this thread) for thread-safety
// reasons which are alleviated in SamplingThread by gating access to it with
// the |thread_execution_state_lock_|.
Start();
thread_execution_state_ = RUNNING;
thread_execution_state_task_runner_ = Thread::task_runner();
// Detach the sampling thread from the "sequence" (i.e. thread) that
// started it so that it can be self-managed or stopped by another thread.
DetachFromSequence();
return thread_execution_state_task_runner_;
}
scoped_refptr<SingleThreadTaskRunner>
StackSamplingProfiler::SamplingThread::GetTaskRunner(
ThreadExecutionState* out_state) {
AutoLock lock(thread_execution_state_lock_);
if (out_state)
*out_state = thread_execution_state_;
if (thread_execution_state_ == RUNNING) {
// This shouldn't be called from the sampling thread as it's inefficient.
// Use GetTaskRunnerOnSamplingThread() instead.
DCHECK_NE(GetThreadId(), PlatformThread::CurrentId());
DCHECK(thread_execution_state_task_runner_);
} else {
DCHECK(!thread_execution_state_task_runner_);
}
return thread_execution_state_task_runner_;
}
scoped_refptr<SingleThreadTaskRunner>
StackSamplingProfiler::SamplingThread::GetTaskRunnerOnSamplingThread() {
// This should be called only from the sampling thread as it has limited
// accessibility.
DCHECK_EQ(GetThreadId(), PlatformThread::CurrentId());
return Thread::task_runner();
}
Optional<StackSamplingProfiler::SamplingParams>
StackSamplingProfiler::SamplingThread::FinishCollection(
CollectionContext* collection,
bool allow_collection_restart) {
DCHECK_EQ(GetThreadId(), PlatformThread::CurrentId());
DCHECK_EQ(0u, active_collections_.count(collection->profiler_id));
// If there is no duration for the final profile (because it was stopped),
// calculate it now.
if (!collection->profiles.empty() &&
collection->profiles.back().profile_duration == TimeDelta()) {
collection->profiles.back().profile_duration =
Time::Now() - collection->profile_start_time +
collection->params.sampling_interval;
}
// Extract some information so callback and event-signalling can still be
// done after the collection has been removed from the list of "active" ones.
// This allows the the controlling object (and tests using it) to be confident
// that collection is fully finished when those things occur.
const CompletedCallback callback = collection->callback;
CallStackProfiles profiles = std::move(collection->profiles);
WaitableEvent* finished = collection->finished;
// Run the associated callback, passing the collected profiles.
Optional<SamplingParams> new_params = callback.Run(std::move(profiles));
if (!allow_collection_restart)
new_params.reset();
// Signal that this collection is finished if it shouldn't be rescheduled.
if (!new_params.has_value())
finished->Signal();
return new_params;
}
void StackSamplingProfiler::SamplingThread::RecordSample(
CollectionContext* collection) {
DCHECK_EQ(GetThreadId(), PlatformThread::CurrentId());
DCHECK(collection->native_sampler);
// If this is the first sample of a burst, a new Profile needs to be created
// and filled.
if (collection->sample == 0) {
collection->profiles.push_back(CallStackProfile());
CallStackProfile& profile = collection->profiles.back();
profile.sampling_period = collection->params.sampling_interval;
collection->profile_start_time = Time::Now();
collection->native_sampler->ProfileRecordingStarting(&profile.modules);
}
// The currently active profile being captured.
CallStackProfile& profile = collection->profiles.back();
// Record a single sample.
profile.samples.push_back(Sample());
collection->native_sampler->RecordStackSample(stack_buffer_.get(),
&profile.samples.back());
// If this is the last sample of a burst, record the total time.
if (collection->sample == collection->params.samples_per_burst - 1) {
profile.profile_duration = Time::Now() - collection->profile_start_time +
collection->params.sampling_interval;
collection->native_sampler->ProfileRecordingStopped(stack_buffer_.get());
}
}
void StackSamplingProfiler::SamplingThread::ScheduleShutdownIfIdle() {
DCHECK_EQ(GetThreadId(), PlatformThread::CurrentId());
if (!active_collections_.empty())
return;
int add_events;
{
AutoLock lock(thread_execution_state_lock_);
if (thread_execution_state_disable_idle_shutdown_for_testing_)
return;
add_events = thread_execution_state_add_events_;
}
GetTaskRunnerOnSamplingThread()->PostDelayedTask(
FROM_HERE,
BindOnce(&SamplingThread::ShutdownTask, Unretained(this), add_events),
TimeDelta::FromSeconds(60));
}
void StackSamplingProfiler::SamplingThread::AddCollectionTask(
std::unique_ptr<CollectionContext> collection) {
DCHECK_EQ(GetThreadId(), PlatformThread::CurrentId());
const int profiler_id = collection->profiler_id;
const TimeDelta initial_delay = collection->params.initial_delay;
active_collections_.insert(
std::make_pair(profiler_id, std::move(collection)));
GetTaskRunnerOnSamplingThread()->PostDelayedTask(
FROM_HERE,
BindOnce(&SamplingThread::PerformCollectionTask, Unretained(this),
profiler_id),
initial_delay);
// Another increment of "add events" serves to invalidate any pending
// shutdown tasks that may have been initiated between the Add() and this
// task running.
{
AutoLock lock(thread_execution_state_lock_);
++thread_execution_state_add_events_;
}
}
void StackSamplingProfiler::SamplingThread::RemoveCollectionTask(int id) {
DCHECK_EQ(GetThreadId(), PlatformThread::CurrentId());
auto found = active_collections_.find(id);
if (found == active_collections_.end())
return;
// Remove |collection| from |active_collections_|.
std::unique_ptr<CollectionContext> collection = std::move(found->second);
size_t count = active_collections_.erase(id);
DCHECK_EQ(1U, count);
FinishCollection(collection.get(), false);
ScheduleShutdownIfIdle();
}
void StackSamplingProfiler::SamplingThread::PerformCollectionTask(int id) {
DCHECK_EQ(GetThreadId(), PlatformThread::CurrentId());
auto found = active_collections_.find(id);
// The task won't be found if it has been stopped.
if (found == active_collections_.end())
return;
CollectionContext* collection = found->second.get();
// Handle first-run with no "next time".
if (collection->next_sample_time == Time())
collection->next_sample_time = Time::Now();
// Do the collection of a single sample.
RecordSample(collection);
// Update the time of the next sample recording.
const bool collection_finished = !UpdateNextSampleTime(collection);
if (!collection_finished) {
bool success = GetTaskRunnerOnSamplingThread()->PostDelayedTask(
FROM_HERE,
BindOnce(&SamplingThread::PerformCollectionTask, Unretained(this), id),
std::max(collection->next_sample_time - Time::Now(), TimeDelta()));
DCHECK(success);
return;
}
// Take ownership of |collection| and remove it from the map. If collection is
// to be restarted, a new collection task will be added below.
std::unique_ptr<CollectionContext> owned_collection =
std::move(found->second);
size_t count = active_collections_.erase(id);
DCHECK_EQ(1U, count);
// All capturing has completed so finish the collection. If no new params
// are returned, a new collection should not be started.
Optional<SamplingParams> new_params = FinishCollection(collection, true);
if (!new_params.has_value()) {
// By not adding it to the task queue, the collection will "expire" (i.e.
// no further work will be done).
ScheduleShutdownIfIdle();
return;
}
// Restart the collection with the new params. Keep the same id so the
// Stop() operation continues to work.
auto new_collection = std::make_unique<SamplingThread::CollectionContext>(
id, collection->target, new_params.value(), collection->callback,
collection->finished, std::move(collection->native_sampler));
AddCollectionTask(std::move(new_collection));
}
void StackSamplingProfiler::SamplingThread::ShutdownTask(int add_events) {
DCHECK_EQ(GetThreadId(), PlatformThread::CurrentId());
// Holding this lock ensures that any attempt to start another job will
// get postponed until |thread_execution_state_| is updated, thus eliminating
// the race in starting a new thread while the previous one is exiting.
AutoLock lock(thread_execution_state_lock_);
// If the current count of creation requests doesn't match the passed count
// then other tasks have been created since this was posted. Abort shutdown.
if (thread_execution_state_add_events_ != add_events)
return;
// There can be no new AddCollectionTasks at this point because creating
// those always increments "add events". There may be other requests, like
// Remove, but it's okay to schedule the thread to stop once they've been
// executed (i.e. "soon").
DCHECK(active_collections_.empty());
StopSoon();
// StopSoon will have set the owning sequence (again) so it must be detached
// (again) in order for Stop/Start to be called (again) should more work
// come in. Holding the |thread_execution_state_lock_| ensures the necessary
// happens-after with regard to this detach and future Thread API calls.
DetachFromSequence();
// Set the thread_state variable so the thread will be restarted when new
// work comes in. Remove the |thread_execution_state_task_runner_| to avoid
// confusion.
thread_execution_state_ = EXITING;
thread_execution_state_task_runner_ = nullptr;
stack_buffer_.reset();
}
bool StackSamplingProfiler::SamplingThread::UpdateNextSampleTime(
CollectionContext* collection) {
// This will keep a consistent average interval between samples but will
// result in constant series of acquisitions, thus nearly locking out the
// target thread, if the interval is smaller than the time it takes to
// actually acquire the sample. Anything sampling that quickly is going
// to be a problem anyway so don't worry about it.
if (++collection->sample < collection->params.samples_per_burst) {
collection->next_sample_time += collection->params.sampling_interval;
return true;
}
if (++collection->burst < collection->params.bursts) {
collection->sample = 0;
collection->next_sample_time += collection->params.burst_interval;
return true;
}
return false;
}
void StackSamplingProfiler::SamplingThread::CleanUp() {
DCHECK_EQ(GetThreadId(), PlatformThread::CurrentId());
// There should be no collections remaining when the thread stops.
DCHECK(active_collections_.empty());
// Let the parent clean up.
Thread::CleanUp();
}
// StackSamplingProfiler ------------------------------------------------------
// static
void StackSamplingProfiler::TestAPI::Reset() {
SamplingThread::TestAPI::Reset();
ResetAnnotations();
}
// static
void StackSamplingProfiler::TestAPI::ResetAnnotations() {
subtle::NoBarrier_Store(&process_milestones_, 0u);
}
// static
bool StackSamplingProfiler::TestAPI::IsSamplingThreadRunning() {
return SamplingThread::GetInstance()->IsRunning();
}
// static
void StackSamplingProfiler::TestAPI::DisableIdleShutdown() {
SamplingThread::TestAPI::DisableIdleShutdown();
}
// static
void StackSamplingProfiler::TestAPI::PerformSamplingThreadIdleShutdown(
bool simulate_intervening_start) {
SamplingThread::TestAPI::ShutdownAssumingIdle(simulate_intervening_start);
}
subtle::Atomic32 StackSamplingProfiler::process_milestones_ = 0;
StackSamplingProfiler::StackSamplingProfiler(
const SamplingParams& params,
const CompletedCallback& callback,
NativeStackSamplerTestDelegate* test_delegate)
: StackSamplingProfiler(base::PlatformThread::CurrentId(),
params,
callback,
test_delegate) {}
StackSamplingProfiler::StackSamplingProfiler(
PlatformThreadId thread_id,
const SamplingParams& params,
const CompletedCallback& callback,
NativeStackSamplerTestDelegate* test_delegate)
: thread_id_(thread_id),
params_(params),
completed_callback_(callback),
// The event starts "signaled" so code knows it's safe to start thread
// and "manual" so that it can be waited in multiple places.
profiling_inactive_(WaitableEvent::ResetPolicy::MANUAL,
WaitableEvent::InitialState::SIGNALED),
profiler_id_(NULL_PROFILER_ID),
test_delegate_(test_delegate) {}
StackSamplingProfiler::~StackSamplingProfiler() {
// Stop returns immediately but the shutdown runs asynchronously. There is a
// non-zero probability that one more sample will be taken after this call
// returns.
Stop();
// The behavior of sampling a thread that has exited is undefined and could
// cause Bad Things(tm) to occur. The safety model provided by this class is
// that an instance of this object is expected to live at least as long as
// the thread it is sampling. However, because the sampling is performed
// asynchronously by the SamplingThread, there is no way to guarantee this
// is true without waiting for it to signal that it has finished.
//
// The wait time should, at most, be only as long as it takes to collect one
// sample (~200us) or none at all if sampling has already completed.
ThreadRestrictions::ScopedAllowWait allow_wait;
profiling_inactive_.Wait();
}
void StackSamplingProfiler::Start() {
if (completed_callback_.is_null())
return;
std::unique_ptr<NativeStackSampler> native_sampler =
NativeStackSampler::Create(thread_id_, &RecordAnnotations,
test_delegate_);
if (!native_sampler)
return;
// Wait for profiling to be "inactive", then reset it for the upcoming run.
profiling_inactive_.Wait();
profiling_inactive_.Reset();
DCHECK_EQ(NULL_PROFILER_ID, profiler_id_);
profiler_id_ = SamplingThread::GetInstance()->Add(
std::make_unique<SamplingThread::CollectionContext>(
SamplingThread::CollectionContext::next_profiler_id.GetNext(),
thread_id_, params_, completed_callback_, &profiling_inactive_,
std::move(native_sampler)));
DCHECK_NE(NULL_PROFILER_ID, profiler_id_);
}
void StackSamplingProfiler::Stop() {
SamplingThread::GetInstance()->Remove(profiler_id_);
profiler_id_ = NULL_PROFILER_ID;
}
// static
void StackSamplingProfiler::SetProcessMilestone(int milestone) {
DCHECK_LE(0, milestone);
DCHECK_GT(static_cast<int>(sizeof(process_milestones_) * 8), milestone);
DCHECK_EQ(0, subtle::NoBarrier_Load(&process_milestones_) & (1 << milestone));
ChangeAtomicFlags(&process_milestones_, 1 << milestone, 0);
}
// static
void StackSamplingProfiler::RecordAnnotations(Sample* sample) {
// The code inside this method must not do anything that could acquire a
// mutex, including allocating memory (which includes LOG messages) because
// that mutex could be held by a stopped thread, thus resulting in deadlock.
sample->process_milestones = subtle::NoBarrier_Load(&process_milestones_);
}
// StackSamplingProfiler::Frame global functions ------------------------------
bool operator==(const StackSamplingProfiler::Module& a,
const StackSamplingProfiler::Module& b) {
return a.base_address == b.base_address && a.id == b.id &&
a.filename == b.filename;
}
bool operator==(const StackSamplingProfiler::Sample& a,
const StackSamplingProfiler::Sample& b) {
return a.process_milestones == b.process_milestones && a.frames == b.frames;
}
bool operator!=(const StackSamplingProfiler::Sample& a,
const StackSamplingProfiler::Sample& b) {
return !(a == b);
}
bool operator<(const StackSamplingProfiler::Sample& a,
const StackSamplingProfiler::Sample& b) {
if (a.process_milestones < b.process_milestones)
return true;
if (a.process_milestones > b.process_milestones)
return false;
return a.frames < b.frames;
}
bool operator==(const StackSamplingProfiler::Frame &a,
const StackSamplingProfiler::Frame &b) {
return a.instruction_pointer == b.instruction_pointer &&
a.module_index == b.module_index;
}
bool operator<(const StackSamplingProfiler::Frame &a,
const StackSamplingProfiler::Frame &b) {
return (a.module_index < b.module_index) ||
(a.module_index == b.module_index &&
a.instruction_pointer < b.instruction_pointer);
}
} // namespace base