mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-24 14:26:09 +03:00
546 lines
20 KiB
C++
546 lines
20 KiB
C++
// Copyright 2015 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "base/trace_event/process_memory_dump.h"
|
|
|
|
#include <errno.h>
|
|
|
|
#include <vector>
|
|
|
|
#include "base/memory/ptr_util.h"
|
|
#include "base/memory/shared_memory_tracker.h"
|
|
#include "base/process/process_metrics.h"
|
|
#include "base/strings/stringprintf.h"
|
|
#include "base/trace_event/heap_profiler_heap_dump_writer.h"
|
|
#include "base/trace_event/heap_profiler_serialization_state.h"
|
|
#include "base/trace_event/memory_infra_background_whitelist.h"
|
|
#include "base/trace_event/trace_event_argument.h"
|
|
#include "base/unguessable_token.h"
|
|
#include "build/build_config.h"
|
|
|
|
#if defined(OS_IOS)
|
|
#include <mach/vm_page_size.h>
|
|
#endif
|
|
|
|
#if defined(OS_POSIX) || defined(OS_FUCHSIA)
|
|
#include <sys/mman.h>
|
|
#endif
|
|
|
|
#if defined(OS_WIN)
|
|
#include <windows.h> // Must be in front of other Windows header files
|
|
|
|
#include <Psapi.h>
|
|
#endif
|
|
|
|
namespace base {
|
|
namespace trace_event {
|
|
|
|
namespace {
|
|
|
|
const char kEdgeTypeOwnership[] = "ownership";
|
|
|
|
std::string GetSharedGlobalAllocatorDumpName(
|
|
const MemoryAllocatorDumpGuid& guid) {
|
|
return "global/" + guid.ToString();
|
|
}
|
|
|
|
#if defined(COUNT_RESIDENT_BYTES_SUPPORTED)
|
|
size_t GetSystemPageCount(size_t mapped_size, size_t page_size) {
|
|
return (mapped_size + page_size - 1) / page_size;
|
|
}
|
|
#endif
|
|
|
|
UnguessableToken GetTokenForCurrentProcess() {
|
|
static UnguessableToken instance = UnguessableToken::Create();
|
|
return instance;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// static
|
|
bool ProcessMemoryDump::is_black_hole_non_fatal_for_testing_ = false;
|
|
|
|
#if defined(COUNT_RESIDENT_BYTES_SUPPORTED)
|
|
// static
|
|
size_t ProcessMemoryDump::GetSystemPageSize() {
|
|
#if defined(OS_IOS)
|
|
// On iOS, getpagesize() returns the user page sizes, but for allocating
|
|
// arrays for mincore(), kernel page sizes is needed. Use vm_kernel_page_size
|
|
// as recommended by Apple, https://forums.developer.apple.com/thread/47532/.
|
|
// Refer to http://crbug.com/542671 and Apple rdar://23651782
|
|
return vm_kernel_page_size;
|
|
#else
|
|
return base::GetPageSize();
|
|
#endif // defined(OS_IOS)
|
|
}
|
|
|
|
// static
|
|
size_t ProcessMemoryDump::CountResidentBytes(void* start_address,
|
|
size_t mapped_size) {
|
|
const size_t page_size = GetSystemPageSize();
|
|
const uintptr_t start_pointer = reinterpret_cast<uintptr_t>(start_address);
|
|
DCHECK_EQ(0u, start_pointer % page_size);
|
|
|
|
size_t offset = 0;
|
|
size_t total_resident_pages = 0;
|
|
bool failure = false;
|
|
|
|
// An array as large as number of pages in memory segment needs to be passed
|
|
// to the query function. To avoid allocating a large array, the given block
|
|
// of memory is split into chunks of size |kMaxChunkSize|.
|
|
const size_t kMaxChunkSize = 8 * 1024 * 1024;
|
|
size_t max_vec_size =
|
|
GetSystemPageCount(std::min(mapped_size, kMaxChunkSize), page_size);
|
|
#if defined(OS_WIN)
|
|
std::unique_ptr<PSAPI_WORKING_SET_EX_INFORMATION[]> vec(
|
|
new PSAPI_WORKING_SET_EX_INFORMATION[max_vec_size]);
|
|
#elif defined(OS_MACOSX)
|
|
std::unique_ptr<char[]> vec(new char[max_vec_size]);
|
|
#elif defined(OS_POSIX) || defined(OS_FUCHSIA)
|
|
std::unique_ptr<unsigned char[]> vec(new unsigned char[max_vec_size]);
|
|
#endif
|
|
|
|
while (offset < mapped_size) {
|
|
uintptr_t chunk_start = (start_pointer + offset);
|
|
const size_t chunk_size = std::min(mapped_size - offset, kMaxChunkSize);
|
|
const size_t page_count = GetSystemPageCount(chunk_size, page_size);
|
|
size_t resident_page_count = 0;
|
|
#if defined(OS_WIN)
|
|
for (size_t i = 0; i < page_count; i++) {
|
|
vec[i].VirtualAddress =
|
|
reinterpret_cast<void*>(chunk_start + i * page_size);
|
|
}
|
|
DWORD vec_size = static_cast<DWORD>(
|
|
page_count * sizeof(PSAPI_WORKING_SET_EX_INFORMATION));
|
|
failure = !QueryWorkingSetEx(GetCurrentProcess(), vec.get(), vec_size);
|
|
|
|
for (size_t i = 0; i < page_count; i++)
|
|
resident_page_count += vec[i].VirtualAttributes.Valid;
|
|
#elif defined(OS_FUCHSIA)
|
|
// TODO(fuchsia): Port, see https://crbug.com/706592.
|
|
ALLOW_UNUSED_LOCAL(chunk_start);
|
|
ALLOW_UNUSED_LOCAL(page_count);
|
|
#elif defined(OS_MACOSX)
|
|
// mincore in MAC does not fail with EAGAIN.
|
|
failure =
|
|
!!mincore(reinterpret_cast<void*>(chunk_start), chunk_size, vec.get());
|
|
for (size_t i = 0; i < page_count; i++)
|
|
resident_page_count += vec[i] & MINCORE_INCORE ? 1 : 0;
|
|
#elif defined(OS_POSIX)
|
|
int error_counter = 0;
|
|
int result = 0;
|
|
// HANDLE_EINTR tries for 100 times. So following the same pattern.
|
|
do {
|
|
result =
|
|
#if defined(OS_AIX)
|
|
mincore(reinterpret_cast<char*>(chunk_start), chunk_size,
|
|
reinterpret_cast<char*>(vec.get()));
|
|
#else
|
|
mincore(reinterpret_cast<void*>(chunk_start), chunk_size, vec.get());
|
|
#endif
|
|
} while (result == -1 && errno == EAGAIN && error_counter++ < 100);
|
|
failure = !!result;
|
|
|
|
for (size_t i = 0; i < page_count; i++)
|
|
resident_page_count += vec[i] & 1;
|
|
#endif
|
|
|
|
if (failure)
|
|
break;
|
|
|
|
total_resident_pages += resident_page_count * page_size;
|
|
offset += kMaxChunkSize;
|
|
}
|
|
|
|
DCHECK(!failure);
|
|
if (failure) {
|
|
total_resident_pages = 0;
|
|
LOG(ERROR) << "CountResidentBytes failed. The resident size is invalid";
|
|
}
|
|
return total_resident_pages;
|
|
}
|
|
|
|
// static
|
|
base::Optional<size_t> ProcessMemoryDump::CountResidentBytesInSharedMemory(
|
|
void* start_address,
|
|
size_t mapped_size) {
|
|
#if defined(OS_MACOSX) && !defined(OS_IOS)
|
|
// On macOS, use mach_vm_region instead of mincore for performance
|
|
// (crbug.com/742042).
|
|
mach_vm_size_t dummy_size = 0;
|
|
mach_vm_address_t address =
|
|
reinterpret_cast<mach_vm_address_t>(start_address);
|
|
vm_region_top_info_data_t info;
|
|
MachVMRegionResult result =
|
|
GetTopInfo(mach_task_self(), &dummy_size, &address, &info);
|
|
if (result == MachVMRegionResult::Error) {
|
|
LOG(ERROR) << "CountResidentBytesInSharedMemory failed. The resident size "
|
|
"is invalid";
|
|
return base::Optional<size_t>();
|
|
}
|
|
|
|
size_t resident_pages =
|
|
info.private_pages_resident + info.shared_pages_resident;
|
|
|
|
// On macOS, measurements for private memory footprint overcount by
|
|
// faulted pages in anonymous shared memory. To discount for this, we touch
|
|
// all the resident pages in anonymous shared memory here, thus making them
|
|
// faulted as well. This relies on two assumptions:
|
|
//
|
|
// 1) Consumers use shared memory from front to back. Thus, if there are
|
|
// (N) resident pages, those pages represent the first N * PAGE_SIZE bytes in
|
|
// the shared memory region.
|
|
//
|
|
// 2) This logic is run shortly before the logic that calculates
|
|
// phys_footprint, thus ensuring that the discrepancy between faulted and
|
|
// resident pages is minimal.
|
|
//
|
|
// The performance penalty is expected to be small.
|
|
//
|
|
// * Most of the time, we expect the pages to already be resident and faulted,
|
|
// thus incurring a cache penalty read hit [since we read from each resident
|
|
// page].
|
|
//
|
|
// * Rarely, we expect the pages to be resident but not faulted, resulting in
|
|
// soft faults + cache penalty.
|
|
//
|
|
// * If assumption (1) is invalid, this will potentially fault some
|
|
// previously non-resident pages, thus increasing memory usage, without fixing
|
|
// the accounting.
|
|
//
|
|
// Sanity check in case the mapped size is less than the total size of the
|
|
// region.
|
|
size_t pages_to_fault =
|
|
std::min(resident_pages, (mapped_size + PAGE_SIZE - 1) / PAGE_SIZE);
|
|
|
|
volatile char* base_address = static_cast<char*>(start_address);
|
|
for (size_t i = 0; i < pages_to_fault; ++i) {
|
|
// Reading from a volatile is a visible side-effect for the purposes of
|
|
// optimization. This guarantees that the optimizer will not kill this line.
|
|
base_address[i * PAGE_SIZE];
|
|
}
|
|
|
|
return resident_pages * PAGE_SIZE;
|
|
#else
|
|
return CountResidentBytes(start_address, mapped_size);
|
|
#endif // defined(OS_MACOSX) && !defined(OS_IOS)
|
|
}
|
|
|
|
#endif // defined(COUNT_RESIDENT_BYTES_SUPPORTED)
|
|
|
|
ProcessMemoryDump::ProcessMemoryDump(
|
|
scoped_refptr<HeapProfilerSerializationState>
|
|
heap_profiler_serialization_state,
|
|
const MemoryDumpArgs& dump_args)
|
|
: process_token_(GetTokenForCurrentProcess()),
|
|
heap_profiler_serialization_state_(
|
|
std::move(heap_profiler_serialization_state)),
|
|
dump_args_(dump_args) {}
|
|
|
|
ProcessMemoryDump::~ProcessMemoryDump() = default;
|
|
ProcessMemoryDump::ProcessMemoryDump(ProcessMemoryDump&& other) = default;
|
|
ProcessMemoryDump& ProcessMemoryDump::operator=(ProcessMemoryDump&& other) =
|
|
default;
|
|
|
|
MemoryAllocatorDump* ProcessMemoryDump::CreateAllocatorDump(
|
|
const std::string& absolute_name) {
|
|
return AddAllocatorDumpInternal(std::make_unique<MemoryAllocatorDump>(
|
|
absolute_name, dump_args_.level_of_detail, GetDumpId(absolute_name)));
|
|
}
|
|
|
|
MemoryAllocatorDump* ProcessMemoryDump::CreateAllocatorDump(
|
|
const std::string& absolute_name,
|
|
const MemoryAllocatorDumpGuid& guid) {
|
|
return AddAllocatorDumpInternal(std::make_unique<MemoryAllocatorDump>(
|
|
absolute_name, dump_args_.level_of_detail, guid));
|
|
}
|
|
|
|
MemoryAllocatorDump* ProcessMemoryDump::AddAllocatorDumpInternal(
|
|
std::unique_ptr<MemoryAllocatorDump> mad) {
|
|
// In background mode return the black hole dump, if invalid dump name is
|
|
// given.
|
|
if (dump_args_.level_of_detail == MemoryDumpLevelOfDetail::BACKGROUND &&
|
|
!IsMemoryAllocatorDumpNameWhitelisted(mad->absolute_name())) {
|
|
return GetBlackHoleMad();
|
|
}
|
|
|
|
auto insertion_result = allocator_dumps_.insert(
|
|
std::make_pair(mad->absolute_name(), std::move(mad)));
|
|
MemoryAllocatorDump* inserted_mad = insertion_result.first->second.get();
|
|
DCHECK(insertion_result.second) << "Duplicate name: "
|
|
<< inserted_mad->absolute_name();
|
|
return inserted_mad;
|
|
}
|
|
|
|
MemoryAllocatorDump* ProcessMemoryDump::GetAllocatorDump(
|
|
const std::string& absolute_name) const {
|
|
auto it = allocator_dumps_.find(absolute_name);
|
|
if (it != allocator_dumps_.end())
|
|
return it->second.get();
|
|
if (black_hole_mad_)
|
|
return black_hole_mad_.get();
|
|
return nullptr;
|
|
}
|
|
|
|
MemoryAllocatorDump* ProcessMemoryDump::GetOrCreateAllocatorDump(
|
|
const std::string& absolute_name) {
|
|
MemoryAllocatorDump* mad = GetAllocatorDump(absolute_name);
|
|
return mad ? mad : CreateAllocatorDump(absolute_name);
|
|
}
|
|
|
|
MemoryAllocatorDump* ProcessMemoryDump::CreateSharedGlobalAllocatorDump(
|
|
const MemoryAllocatorDumpGuid& guid) {
|
|
// A shared allocator dump can be shared within a process and the guid could
|
|
// have been created already.
|
|
MemoryAllocatorDump* mad = GetSharedGlobalAllocatorDump(guid);
|
|
if (mad && mad != black_hole_mad_.get()) {
|
|
// The weak flag is cleared because this method should create a non-weak
|
|
// dump.
|
|
mad->clear_flags(MemoryAllocatorDump::Flags::WEAK);
|
|
return mad;
|
|
}
|
|
return CreateAllocatorDump(GetSharedGlobalAllocatorDumpName(guid), guid);
|
|
}
|
|
|
|
MemoryAllocatorDump* ProcessMemoryDump::CreateWeakSharedGlobalAllocatorDump(
|
|
const MemoryAllocatorDumpGuid& guid) {
|
|
MemoryAllocatorDump* mad = GetSharedGlobalAllocatorDump(guid);
|
|
if (mad && mad != black_hole_mad_.get())
|
|
return mad;
|
|
mad = CreateAllocatorDump(GetSharedGlobalAllocatorDumpName(guid), guid);
|
|
mad->set_flags(MemoryAllocatorDump::Flags::WEAK);
|
|
return mad;
|
|
}
|
|
|
|
MemoryAllocatorDump* ProcessMemoryDump::GetSharedGlobalAllocatorDump(
|
|
const MemoryAllocatorDumpGuid& guid) const {
|
|
return GetAllocatorDump(GetSharedGlobalAllocatorDumpName(guid));
|
|
}
|
|
|
|
void ProcessMemoryDump::DumpHeapUsage(
|
|
const std::unordered_map<base::trace_event::AllocationContext,
|
|
base::trace_event::AllocationMetrics>&
|
|
metrics_by_context,
|
|
base::trace_event::TraceEventMemoryOverhead& overhead,
|
|
const char* allocator_name) {
|
|
// The heap profiler serialization state can be null here if heap profiler was
|
|
// enabled when a process dump is in progress.
|
|
if (heap_profiler_serialization_state() && !metrics_by_context.empty()) {
|
|
DCHECK_EQ(0ul, heap_dumps_.count(allocator_name));
|
|
std::unique_ptr<TracedValue> heap_dump = ExportHeapDump(
|
|
metrics_by_context, *heap_profiler_serialization_state());
|
|
heap_dumps_[allocator_name] = std::move(heap_dump);
|
|
}
|
|
|
|
std::string base_name = base::StringPrintf("tracing/heap_profiler_%s",
|
|
allocator_name);
|
|
overhead.DumpInto(base_name.c_str(), this);
|
|
}
|
|
|
|
void ProcessMemoryDump::SetAllocatorDumpsForSerialization(
|
|
std::vector<std::unique_ptr<MemoryAllocatorDump>> dumps) {
|
|
DCHECK(allocator_dumps_.empty());
|
|
for (std::unique_ptr<MemoryAllocatorDump>& dump : dumps)
|
|
AddAllocatorDumpInternal(std::move(dump));
|
|
}
|
|
|
|
std::vector<ProcessMemoryDump::MemoryAllocatorDumpEdge>
|
|
ProcessMemoryDump::GetAllEdgesForSerialization() const {
|
|
std::vector<MemoryAllocatorDumpEdge> edges;
|
|
edges.reserve(allocator_dumps_edges_.size());
|
|
for (const auto& it : allocator_dumps_edges_)
|
|
edges.push_back(it.second);
|
|
return edges;
|
|
}
|
|
|
|
void ProcessMemoryDump::SetAllEdgesForSerialization(
|
|
const std::vector<ProcessMemoryDump::MemoryAllocatorDumpEdge>& edges) {
|
|
DCHECK(allocator_dumps_edges_.empty());
|
|
for (const MemoryAllocatorDumpEdge& edge : edges) {
|
|
auto it_and_inserted = allocator_dumps_edges_.emplace(edge.source, edge);
|
|
DCHECK(it_and_inserted.second);
|
|
}
|
|
}
|
|
|
|
void ProcessMemoryDump::Clear() {
|
|
allocator_dumps_.clear();
|
|
allocator_dumps_edges_.clear();
|
|
heap_dumps_.clear();
|
|
}
|
|
|
|
void ProcessMemoryDump::TakeAllDumpsFrom(ProcessMemoryDump* other) {
|
|
// Moves the ownership of all MemoryAllocatorDump(s) contained in |other|
|
|
// into this ProcessMemoryDump, checking for duplicates.
|
|
for (auto& it : other->allocator_dumps_)
|
|
AddAllocatorDumpInternal(std::move(it.second));
|
|
other->allocator_dumps_.clear();
|
|
|
|
// Move all the edges.
|
|
allocator_dumps_edges_.insert(other->allocator_dumps_edges_.begin(),
|
|
other->allocator_dumps_edges_.end());
|
|
other->allocator_dumps_edges_.clear();
|
|
|
|
for (auto& it : other->heap_dumps_) {
|
|
DCHECK_EQ(0ul, heap_dumps_.count(it.first));
|
|
heap_dumps_.insert(std::make_pair(it.first, std::move(it.second)));
|
|
}
|
|
other->heap_dumps_.clear();
|
|
}
|
|
|
|
void ProcessMemoryDump::SerializeAllocatorDumpsInto(TracedValue* value) const {
|
|
if (allocator_dumps_.size() > 0) {
|
|
value->BeginDictionary("allocators");
|
|
for (const auto& allocator_dump_it : allocator_dumps_)
|
|
allocator_dump_it.second->AsValueInto(value);
|
|
value->EndDictionary();
|
|
}
|
|
|
|
value->BeginArray("allocators_graph");
|
|
for (const auto& it : allocator_dumps_edges_) {
|
|
const MemoryAllocatorDumpEdge& edge = it.second;
|
|
value->BeginDictionary();
|
|
value->SetString("source", edge.source.ToString());
|
|
value->SetString("target", edge.target.ToString());
|
|
value->SetInteger("importance", edge.importance);
|
|
value->SetString("type", kEdgeTypeOwnership);
|
|
value->EndDictionary();
|
|
}
|
|
value->EndArray();
|
|
}
|
|
|
|
void ProcessMemoryDump::SerializeHeapProfilerDumpsInto(
|
|
TracedValue* value) const {
|
|
if (heap_dumps_.size() == 0)
|
|
return;
|
|
value->BeginDictionary("heaps");
|
|
for (const auto& name_and_dump : heap_dumps_)
|
|
value->SetValueWithCopiedName(name_and_dump.first, *name_and_dump.second);
|
|
value->EndDictionary(); // "heaps"
|
|
}
|
|
|
|
void ProcessMemoryDump::AddOwnershipEdge(const MemoryAllocatorDumpGuid& source,
|
|
const MemoryAllocatorDumpGuid& target,
|
|
int importance) {
|
|
// This will either override an existing edge or create a new one.
|
|
auto it = allocator_dumps_edges_.find(source);
|
|
int max_importance = importance;
|
|
if (it != allocator_dumps_edges_.end()) {
|
|
DCHECK_EQ(target.ToUint64(), it->second.target.ToUint64());
|
|
max_importance = std::max(importance, it->second.importance);
|
|
}
|
|
allocator_dumps_edges_[source] = {source, target, max_importance,
|
|
false /* overridable */};
|
|
}
|
|
|
|
void ProcessMemoryDump::AddOwnershipEdge(
|
|
const MemoryAllocatorDumpGuid& source,
|
|
const MemoryAllocatorDumpGuid& target) {
|
|
AddOwnershipEdge(source, target, 0 /* importance */);
|
|
}
|
|
|
|
void ProcessMemoryDump::AddOverridableOwnershipEdge(
|
|
const MemoryAllocatorDumpGuid& source,
|
|
const MemoryAllocatorDumpGuid& target,
|
|
int importance) {
|
|
if (allocator_dumps_edges_.count(source) == 0) {
|
|
allocator_dumps_edges_[source] = {source, target, importance,
|
|
true /* overridable */};
|
|
} else {
|
|
// An edge between the source and target already exits. So, do nothing here
|
|
// since the new overridable edge is implicitly overridden by a strong edge
|
|
// which was created earlier.
|
|
DCHECK(!allocator_dumps_edges_[source].overridable);
|
|
}
|
|
}
|
|
|
|
void ProcessMemoryDump::CreateSharedMemoryOwnershipEdge(
|
|
const MemoryAllocatorDumpGuid& client_local_dump_guid,
|
|
const UnguessableToken& shared_memory_guid,
|
|
int importance) {
|
|
CreateSharedMemoryOwnershipEdgeInternal(client_local_dump_guid,
|
|
shared_memory_guid, importance,
|
|
false /*is_weak*/);
|
|
}
|
|
|
|
void ProcessMemoryDump::CreateWeakSharedMemoryOwnershipEdge(
|
|
const MemoryAllocatorDumpGuid& client_local_dump_guid,
|
|
const UnguessableToken& shared_memory_guid,
|
|
int importance) {
|
|
CreateSharedMemoryOwnershipEdgeInternal(
|
|
client_local_dump_guid, shared_memory_guid, importance, true /*is_weak*/);
|
|
}
|
|
|
|
void ProcessMemoryDump::CreateSharedMemoryOwnershipEdgeInternal(
|
|
const MemoryAllocatorDumpGuid& client_local_dump_guid,
|
|
const UnguessableToken& shared_memory_guid,
|
|
int importance,
|
|
bool is_weak) {
|
|
DCHECK(!shared_memory_guid.is_empty());
|
|
// New model where the global dumps created by SharedMemoryTracker are used
|
|
// for the clients.
|
|
|
|
// The guid of the local dump created by SharedMemoryTracker for the memory
|
|
// segment.
|
|
auto local_shm_guid =
|
|
GetDumpId(SharedMemoryTracker::GetDumpNameForTracing(shared_memory_guid));
|
|
|
|
// The dump guid of the global dump created by the tracker for the memory
|
|
// segment.
|
|
auto global_shm_guid =
|
|
SharedMemoryTracker::GetGlobalDumpIdForTracing(shared_memory_guid);
|
|
|
|
// Create an edge between local dump of the client and the local dump of the
|
|
// SharedMemoryTracker. Do not need to create the dumps here since the tracker
|
|
// would create them. The importance is also required here for the case of
|
|
// single process mode.
|
|
AddOwnershipEdge(client_local_dump_guid, local_shm_guid, importance);
|
|
|
|
// TODO(ssid): Handle the case of weak dumps here. This needs a new function
|
|
// GetOrCreaetGlobalDump() in PMD since we need to change the behavior of the
|
|
// created global dump.
|
|
// Create an edge that overrides the edge created by SharedMemoryTracker.
|
|
AddOwnershipEdge(local_shm_guid, global_shm_guid, importance);
|
|
}
|
|
|
|
void ProcessMemoryDump::AddSuballocation(const MemoryAllocatorDumpGuid& source,
|
|
const std::string& target_node_name) {
|
|
// Do not create new dumps for suballocations in background mode.
|
|
if (dump_args_.level_of_detail == MemoryDumpLevelOfDetail::BACKGROUND)
|
|
return;
|
|
|
|
std::string child_mad_name = target_node_name + "/__" + source.ToString();
|
|
MemoryAllocatorDump* target_child_mad = CreateAllocatorDump(child_mad_name);
|
|
AddOwnershipEdge(source, target_child_mad->guid());
|
|
}
|
|
|
|
MemoryAllocatorDump* ProcessMemoryDump::GetBlackHoleMad() {
|
|
DCHECK(is_black_hole_non_fatal_for_testing_);
|
|
if (!black_hole_mad_) {
|
|
std::string name = "discarded";
|
|
black_hole_mad_.reset(new MemoryAllocatorDump(
|
|
name, dump_args_.level_of_detail, GetDumpId(name)));
|
|
}
|
|
return black_hole_mad_.get();
|
|
}
|
|
|
|
MemoryAllocatorDumpGuid ProcessMemoryDump::GetDumpId(
|
|
const std::string& absolute_name) {
|
|
return MemoryAllocatorDumpGuid(StringPrintf(
|
|
"%s:%s", process_token().ToString().c_str(), absolute_name.c_str()));
|
|
}
|
|
|
|
bool ProcessMemoryDump::MemoryAllocatorDumpEdge::operator==(
|
|
const MemoryAllocatorDumpEdge& other) const {
|
|
return source == other.source && target == other.target &&
|
|
importance == other.importance && overridable == other.overridable;
|
|
}
|
|
|
|
bool ProcessMemoryDump::MemoryAllocatorDumpEdge::operator!=(
|
|
const MemoryAllocatorDumpEdge& other) const {
|
|
return !(*this == other);
|
|
}
|
|
|
|
} // namespace trace_event
|
|
} // namespace base
|