mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-24 14:26:09 +03:00
437 lines
15 KiB
C++
437 lines
15 KiB
C++
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <vector>
|
|
|
|
#include "base/debug/activity_tracker.h"
|
|
#include "base/logging.h"
|
|
#include "base/synchronization/condition_variable.h"
|
|
#include "base/synchronization/lock.h"
|
|
#include "base/synchronization/waitable_event.h"
|
|
#include "base/threading/scoped_blocking_call.h"
|
|
#include "base/threading/thread_restrictions.h"
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
|
|
// support cross-process events (where one process can signal an event which
|
|
// others are waiting on). Because of this, we can avoid having one thread per
|
|
// listener in several cases.
|
|
//
|
|
// The WaitableEvent maintains a list of waiters, protected by a lock. Each
|
|
// waiter is either an async wait, in which case we have a Task and the
|
|
// MessageLoop to run it on, or a blocking wait, in which case we have the
|
|
// condition variable to signal.
|
|
//
|
|
// Waiting involves grabbing the lock and adding oneself to the wait list. Async
|
|
// waits can be canceled, which means grabbing the lock and removing oneself
|
|
// from the list.
|
|
//
|
|
// Waiting on multiple events is handled by adding a single, synchronous wait to
|
|
// the wait-list of many events. An event passes a pointer to itself when
|
|
// firing a waiter and so we can store that pointer to find out which event
|
|
// triggered.
|
|
// -----------------------------------------------------------------------------
|
|
|
|
namespace base {
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// This is just an abstract base class for waking the two types of waiters
|
|
// -----------------------------------------------------------------------------
|
|
WaitableEvent::WaitableEvent(ResetPolicy reset_policy,
|
|
InitialState initial_state)
|
|
: kernel_(new WaitableEventKernel(reset_policy, initial_state)) {}
|
|
|
|
WaitableEvent::~WaitableEvent() = default;
|
|
|
|
void WaitableEvent::Reset() {
|
|
base::AutoLock locked(kernel_->lock_);
|
|
kernel_->signaled_ = false;
|
|
}
|
|
|
|
void WaitableEvent::Signal() {
|
|
base::AutoLock locked(kernel_->lock_);
|
|
|
|
if (kernel_->signaled_)
|
|
return;
|
|
|
|
if (kernel_->manual_reset_) {
|
|
SignalAll();
|
|
kernel_->signaled_ = true;
|
|
} else {
|
|
// In the case of auto reset, if no waiters were woken, we remain
|
|
// signaled.
|
|
if (!SignalOne())
|
|
kernel_->signaled_ = true;
|
|
}
|
|
}
|
|
|
|
bool WaitableEvent::IsSignaled() {
|
|
base::AutoLock locked(kernel_->lock_);
|
|
|
|
const bool result = kernel_->signaled_;
|
|
if (result && !kernel_->manual_reset_)
|
|
kernel_->signaled_ = false;
|
|
return result;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Synchronous waits
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// This is a synchronous waiter. The thread is waiting on the given condition
|
|
// variable and the fired flag in this object.
|
|
// -----------------------------------------------------------------------------
|
|
class SyncWaiter : public WaitableEvent::Waiter {
|
|
public:
|
|
SyncWaiter()
|
|
: fired_(false), signaling_event_(nullptr), lock_(), cv_(&lock_) {}
|
|
|
|
bool Fire(WaitableEvent* signaling_event) override {
|
|
base::AutoLock locked(lock_);
|
|
|
|
if (fired_)
|
|
return false;
|
|
|
|
fired_ = true;
|
|
signaling_event_ = signaling_event;
|
|
|
|
cv_.Broadcast();
|
|
|
|
// Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
|
|
// the blocking thread's stack. There is no |delete this;| in Fire. The
|
|
// SyncWaiter object is destroyed when it goes out of scope.
|
|
|
|
return true;
|
|
}
|
|
|
|
WaitableEvent* signaling_event() const {
|
|
return signaling_event_;
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// These waiters are always stack allocated and don't delete themselves. Thus
|
|
// there's no problem and the ABA tag is the same as the object pointer.
|
|
// ---------------------------------------------------------------------------
|
|
bool Compare(void* tag) override { return this == tag; }
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Called with lock held.
|
|
// ---------------------------------------------------------------------------
|
|
bool fired() const {
|
|
return fired_;
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// During a TimedWait, we need a way to make sure that an auto-reset
|
|
// WaitableEvent doesn't think that this event has been signaled between
|
|
// unlocking it and removing it from the wait-list. Called with lock held.
|
|
// ---------------------------------------------------------------------------
|
|
void Disable() {
|
|
fired_ = true;
|
|
}
|
|
|
|
base::Lock* lock() {
|
|
return &lock_;
|
|
}
|
|
|
|
base::ConditionVariable* cv() {
|
|
return &cv_;
|
|
}
|
|
|
|
private:
|
|
bool fired_;
|
|
WaitableEvent* signaling_event_; // The WaitableEvent which woke us
|
|
base::Lock lock_;
|
|
base::ConditionVariable cv_;
|
|
};
|
|
|
|
void WaitableEvent::Wait() {
|
|
bool result = TimedWaitUntil(TimeTicks::Max());
|
|
DCHECK(result) << "TimedWait() should never fail with infinite timeout";
|
|
}
|
|
|
|
bool WaitableEvent::TimedWait(const TimeDelta& wait_delta) {
|
|
// TimeTicks takes care of overflow including the cases when wait_delta
|
|
// is a maximum value.
|
|
return TimedWaitUntil(TimeTicks::Now() + wait_delta);
|
|
}
|
|
|
|
bool WaitableEvent::TimedWaitUntil(const TimeTicks& end_time) {
|
|
internal::AssertBaseSyncPrimitivesAllowed();
|
|
ScopedBlockingCall scoped_blocking_call(BlockingType::MAY_BLOCK);
|
|
// Record the event that this thread is blocking upon (for hang diagnosis).
|
|
base::debug::ScopedEventWaitActivity event_activity(this);
|
|
|
|
const bool finite_time = !end_time.is_max();
|
|
|
|
kernel_->lock_.Acquire();
|
|
if (kernel_->signaled_) {
|
|
if (!kernel_->manual_reset_) {
|
|
// In this case we were signaled when we had no waiters. Now that
|
|
// someone has waited upon us, we can automatically reset.
|
|
kernel_->signaled_ = false;
|
|
}
|
|
|
|
kernel_->lock_.Release();
|
|
return true;
|
|
}
|
|
|
|
SyncWaiter sw;
|
|
sw.lock()->Acquire();
|
|
|
|
Enqueue(&sw);
|
|
kernel_->lock_.Release();
|
|
// We are violating locking order here by holding the SyncWaiter lock but not
|
|
// the WaitableEvent lock. However, this is safe because we don't lock @lock_
|
|
// again before unlocking it.
|
|
|
|
for (;;) {
|
|
const TimeTicks current_time(TimeTicks::Now());
|
|
|
|
if (sw.fired() || (finite_time && current_time >= end_time)) {
|
|
const bool return_value = sw.fired();
|
|
|
|
// We can't acquire @lock_ before releasing the SyncWaiter lock (because
|
|
// of locking order), however, in between the two a signal could be fired
|
|
// and @sw would accept it, however we will still return false, so the
|
|
// signal would be lost on an auto-reset WaitableEvent. Thus we call
|
|
// Disable which makes sw::Fire return false.
|
|
sw.Disable();
|
|
sw.lock()->Release();
|
|
|
|
// This is a bug that has been enshrined in the interface of
|
|
// WaitableEvent now: |Dequeue| is called even when |sw.fired()| is true,
|
|
// even though it'll always return false in that case. However, taking
|
|
// the lock ensures that |Signal| has completed before we return and
|
|
// means that a WaitableEvent can synchronise its own destruction.
|
|
kernel_->lock_.Acquire();
|
|
kernel_->Dequeue(&sw, &sw);
|
|
kernel_->lock_.Release();
|
|
|
|
return return_value;
|
|
}
|
|
|
|
if (finite_time) {
|
|
const TimeDelta max_wait(end_time - current_time);
|
|
sw.cv()->TimedWait(max_wait);
|
|
} else {
|
|
sw.cv()->Wait();
|
|
}
|
|
}
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Synchronous waiting on multiple objects.
|
|
|
|
static bool // StrictWeakOrdering
|
|
cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
|
|
const std::pair<WaitableEvent*, unsigned> &b) {
|
|
return a.first < b.first;
|
|
}
|
|
|
|
// static
|
|
size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
|
|
size_t count) {
|
|
internal::AssertBaseSyncPrimitivesAllowed();
|
|
DCHECK(count) << "Cannot wait on no events";
|
|
ScopedBlockingCall scoped_blocking_call(BlockingType::MAY_BLOCK);
|
|
// Record an event (the first) that this thread is blocking upon.
|
|
base::debug::ScopedEventWaitActivity event_activity(raw_waitables[0]);
|
|
|
|
// We need to acquire the locks in a globally consistent order. Thus we sort
|
|
// the array of waitables by address. We actually sort a pairs so that we can
|
|
// map back to the original index values later.
|
|
std::vector<std::pair<WaitableEvent*, size_t> > waitables;
|
|
waitables.reserve(count);
|
|
for (size_t i = 0; i < count; ++i)
|
|
waitables.push_back(std::make_pair(raw_waitables[i], i));
|
|
|
|
DCHECK_EQ(count, waitables.size());
|
|
|
|
sort(waitables.begin(), waitables.end(), cmp_fst_addr);
|
|
|
|
// The set of waitables must be distinct. Since we have just sorted by
|
|
// address, we can check this cheaply by comparing pairs of consecutive
|
|
// elements.
|
|
for (size_t i = 0; i < waitables.size() - 1; ++i) {
|
|
DCHECK(waitables[i].first != waitables[i+1].first);
|
|
}
|
|
|
|
SyncWaiter sw;
|
|
|
|
const size_t r = EnqueueMany(&waitables[0], count, &sw);
|
|
if (r < count) {
|
|
// One of the events is already signaled. The SyncWaiter has not been
|
|
// enqueued anywhere.
|
|
return waitables[r].second;
|
|
}
|
|
|
|
// At this point, we hold the locks on all the WaitableEvents and we have
|
|
// enqueued our waiter in them all.
|
|
sw.lock()->Acquire();
|
|
// Release the WaitableEvent locks in the reverse order
|
|
for (size_t i = 0; i < count; ++i) {
|
|
waitables[count - (1 + i)].first->kernel_->lock_.Release();
|
|
}
|
|
|
|
for (;;) {
|
|
if (sw.fired())
|
|
break;
|
|
|
|
sw.cv()->Wait();
|
|
}
|
|
sw.lock()->Release();
|
|
|
|
// The address of the WaitableEvent which fired is stored in the SyncWaiter.
|
|
WaitableEvent *const signaled_event = sw.signaling_event();
|
|
// This will store the index of the raw_waitables which fired.
|
|
size_t signaled_index = 0;
|
|
|
|
// Take the locks of each WaitableEvent in turn (except the signaled one) and
|
|
// remove our SyncWaiter from the wait-list
|
|
for (size_t i = 0; i < count; ++i) {
|
|
if (raw_waitables[i] != signaled_event) {
|
|
raw_waitables[i]->kernel_->lock_.Acquire();
|
|
// There's no possible ABA issue with the address of the SyncWaiter here
|
|
// because it lives on the stack. Thus the tag value is just the pointer
|
|
// value again.
|
|
raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
|
|
raw_waitables[i]->kernel_->lock_.Release();
|
|
} else {
|
|
// By taking this lock here we ensure that |Signal| has completed by the
|
|
// time we return, because |Signal| holds this lock. This matches the
|
|
// behaviour of |Wait| and |TimedWait|.
|
|
raw_waitables[i]->kernel_->lock_.Acquire();
|
|
raw_waitables[i]->kernel_->lock_.Release();
|
|
signaled_index = i;
|
|
}
|
|
}
|
|
|
|
return signaled_index;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// If return value == count:
|
|
// The locks of the WaitableEvents have been taken in order and the Waiter has
|
|
// been enqueued in the wait-list of each. None of the WaitableEvents are
|
|
// currently signaled
|
|
// else:
|
|
// None of the WaitableEvent locks are held. The Waiter has not been enqueued
|
|
// in any of them and the return value is the index of the WaitableEvent which
|
|
// was signaled with the lowest input index from the original WaitMany call.
|
|
// -----------------------------------------------------------------------------
|
|
// static
|
|
size_t WaitableEvent::EnqueueMany(std::pair<WaitableEvent*, size_t>* waitables,
|
|
size_t count,
|
|
Waiter* waiter) {
|
|
size_t winner = count;
|
|
size_t winner_index = count;
|
|
for (size_t i = 0; i < count; ++i) {
|
|
auto& kernel = waitables[i].first->kernel_;
|
|
kernel->lock_.Acquire();
|
|
if (kernel->signaled_ && waitables[i].second < winner) {
|
|
winner = waitables[i].second;
|
|
winner_index = i;
|
|
}
|
|
}
|
|
|
|
// No events signaled. All locks acquired. Enqueue the Waiter on all of them
|
|
// and return.
|
|
if (winner == count) {
|
|
for (size_t i = 0; i < count; ++i)
|
|
waitables[i].first->Enqueue(waiter);
|
|
return count;
|
|
}
|
|
|
|
// Unlock in reverse order and possibly clear the chosen winner's signal
|
|
// before returning its index.
|
|
for (auto* w = waitables + count - 1; w >= waitables; --w) {
|
|
auto& kernel = w->first->kernel_;
|
|
if (w->second == winner) {
|
|
if (!kernel->manual_reset_)
|
|
kernel->signaled_ = false;
|
|
}
|
|
kernel->lock_.Release();
|
|
}
|
|
|
|
return winner_index;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Private functions...
|
|
|
|
WaitableEvent::WaitableEventKernel::WaitableEventKernel(
|
|
ResetPolicy reset_policy,
|
|
InitialState initial_state)
|
|
: manual_reset_(reset_policy == ResetPolicy::MANUAL),
|
|
signaled_(initial_state == InitialState::SIGNALED) {}
|
|
|
|
WaitableEvent::WaitableEventKernel::~WaitableEventKernel() = default;
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Wake all waiting waiters. Called with lock held.
|
|
// -----------------------------------------------------------------------------
|
|
bool WaitableEvent::SignalAll() {
|
|
bool signaled_at_least_one = false;
|
|
|
|
for (std::list<Waiter*>::iterator
|
|
i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) {
|
|
if ((*i)->Fire(this))
|
|
signaled_at_least_one = true;
|
|
}
|
|
|
|
kernel_->waiters_.clear();
|
|
return signaled_at_least_one;
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Try to wake a single waiter. Return true if one was woken. Called with lock
|
|
// held.
|
|
// ---------------------------------------------------------------------------
|
|
bool WaitableEvent::SignalOne() {
|
|
for (;;) {
|
|
if (kernel_->waiters_.empty())
|
|
return false;
|
|
|
|
const bool r = (*kernel_->waiters_.begin())->Fire(this);
|
|
kernel_->waiters_.pop_front();
|
|
if (r)
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Add a waiter to the list of those waiting. Called with lock held.
|
|
// -----------------------------------------------------------------------------
|
|
void WaitableEvent::Enqueue(Waiter* waiter) {
|
|
kernel_->waiters_.push_back(waiter);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Remove a waiter from the list of those waiting. Return true if the waiter was
|
|
// actually removed. Called with lock held.
|
|
// -----------------------------------------------------------------------------
|
|
bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
|
|
for (std::list<Waiter*>::iterator
|
|
i = waiters_.begin(); i != waiters_.end(); ++i) {
|
|
if (*i == waiter && (*i)->Compare(tag)) {
|
|
waiters_.erase(i);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
} // namespace base
|