naiveproxy/base/third_party/libevent/test/regress.c
2018-12-09 21:59:24 -05:00

1904 lines
38 KiB
C

/*
* Copyright (c) 2003, 2004 Niels Provos <provos@citi.umich.edu>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef WIN32
#include <winsock2.h>
#include <windows.h>
#endif
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <sys/types.h>
#include <sys/stat.h>
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#include <sys/queue.h>
#ifndef WIN32
#include <sys/socket.h>
#include <sys/wait.h>
#include <signal.h>
#include <unistd.h>
#include <netdb.h>
#endif
#include <assert.h>
#include <fcntl.h>
#include <signal.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include "event.h"
#include "evutil.h"
#include "event-internal.h"
#include "log.h"
#include "regress.h"
#ifndef WIN32
#include "regress.gen.h"
#endif
int pair[2];
int test_ok;
static int called;
static char wbuf[4096];
static char rbuf[4096];
static int woff;
static int roff;
static int usepersist;
static struct timeval tset;
static struct timeval tcalled;
static struct event_base *global_base;
#define TEST1 "this is a test"
#define SECONDS 1
#ifndef SHUT_WR
#define SHUT_WR 1
#endif
#ifdef WIN32
#define write(fd,buf,len) send((fd),(buf),(len),0)
#define read(fd,buf,len) recv((fd),(buf),(len),0)
#endif
static void
simple_read_cb(int fd, short event, void *arg)
{
char buf[256];
int len;
if (arg == NULL)
return;
len = read(fd, buf, sizeof(buf));
if (len) {
if (!called) {
if (event_add(arg, NULL) == -1)
exit(1);
}
} else if (called == 1)
test_ok = 1;
called++;
}
static void
simple_write_cb(int fd, short event, void *arg)
{
int len;
if (arg == NULL)
return;
len = write(fd, TEST1, strlen(TEST1) + 1);
if (len == -1)
test_ok = 0;
else
test_ok = 1;
}
static void
multiple_write_cb(int fd, short event, void *arg)
{
struct event *ev = arg;
int len;
len = 128;
if (woff + len >= sizeof(wbuf))
len = sizeof(wbuf) - woff;
len = write(fd, wbuf + woff, len);
if (len == -1) {
fprintf(stderr, "%s: write\n", __func__);
if (usepersist)
event_del(ev);
return;
}
woff += len;
if (woff >= sizeof(wbuf)) {
shutdown(fd, SHUT_WR);
if (usepersist)
event_del(ev);
return;
}
if (!usepersist) {
if (event_add(ev, NULL) == -1)
exit(1);
}
}
static void
multiple_read_cb(int fd, short event, void *arg)
{
struct event *ev = arg;
int len;
len = read(fd, rbuf + roff, sizeof(rbuf) - roff);
if (len == -1)
fprintf(stderr, "%s: read\n", __func__);
if (len <= 0) {
if (usepersist)
event_del(ev);
return;
}
roff += len;
if (!usepersist) {
if (event_add(ev, NULL) == -1)
exit(1);
}
}
static void
timeout_cb(int fd, short event, void *arg)
{
struct timeval tv;
int diff;
evutil_gettimeofday(&tcalled, NULL);
if (evutil_timercmp(&tcalled, &tset, >))
evutil_timersub(&tcalled, &tset, &tv);
else
evutil_timersub(&tset, &tcalled, &tv);
diff = tv.tv_sec*1000 + tv.tv_usec/1000 - SECONDS * 1000;
if (diff < 0)
diff = -diff;
if (diff < 100)
test_ok = 1;
}
#ifndef WIN32
static void
signal_cb_sa(int sig)
{
test_ok = 2;
}
static void
signal_cb(int fd, short event, void *arg)
{
struct event *ev = arg;
signal_del(ev);
test_ok = 1;
}
#endif
struct both {
struct event ev;
int nread;
};
static void
combined_read_cb(int fd, short event, void *arg)
{
struct both *both = arg;
char buf[128];
int len;
len = read(fd, buf, sizeof(buf));
if (len == -1)
fprintf(stderr, "%s: read\n", __func__);
if (len <= 0)
return;
both->nread += len;
if (event_add(&both->ev, NULL) == -1)
exit(1);
}
static void
combined_write_cb(int fd, short event, void *arg)
{
struct both *both = arg;
char buf[128];
int len;
len = sizeof(buf);
if (len > both->nread)
len = both->nread;
len = write(fd, buf, len);
if (len == -1)
fprintf(stderr, "%s: write\n", __func__);
if (len <= 0) {
shutdown(fd, SHUT_WR);
return;
}
both->nread -= len;
if (event_add(&both->ev, NULL) == -1)
exit(1);
}
/* Test infrastructure */
static int
setup_test(const char *name)
{
fprintf(stdout, "%s", name);
if (evutil_socketpair(AF_UNIX, SOCK_STREAM, 0, pair) == -1) {
fprintf(stderr, "%s: socketpair\n", __func__);
exit(1);
}
#ifdef HAVE_FCNTL
if (fcntl(pair[0], F_SETFL, O_NONBLOCK) == -1)
fprintf(stderr, "fcntl(O_NONBLOCK)");
if (fcntl(pair[1], F_SETFL, O_NONBLOCK) == -1)
fprintf(stderr, "fcntl(O_NONBLOCK)");
#endif
test_ok = 0;
called = 0;
return (0);
}
static int
cleanup_test(void)
{
#ifndef WIN32
close(pair[0]);
close(pair[1]);
#else
CloseHandle((HANDLE)pair[0]);
CloseHandle((HANDLE)pair[1]);
#endif
if (test_ok)
fprintf(stdout, "OK\n");
else {
fprintf(stdout, "FAILED\n");
exit(1);
}
test_ok = 0;
return (0);
}
static void
test_registerfds(void)
{
int i, j;
int pair[2];
struct event read_evs[512];
struct event write_evs[512];
struct event_base *base = event_base_new();
fprintf(stdout, "Testing register fds: ");
for (i = 0; i < 512; ++i) {
if (evutil_socketpair(AF_UNIX, SOCK_STREAM, 0, pair) == -1) {
/* run up to the limit of file descriptors */
break;
}
event_set(&read_evs[i], pair[0],
EV_READ|EV_PERSIST, simple_read_cb, NULL);
event_base_set(base, &read_evs[i]);
event_add(&read_evs[i], NULL);
event_set(&write_evs[i], pair[1],
EV_WRITE|EV_PERSIST, simple_write_cb, NULL);
event_base_set(base, &write_evs[i]);
event_add(&write_evs[i], NULL);
/* just loop once */
event_base_loop(base, EVLOOP_ONCE);
}
/* now delete everything */
for (j = 0; j < i; ++j) {
event_del(&read_evs[j]);
event_del(&write_evs[j]);
#ifndef WIN32
close(read_evs[j].ev_fd);
close(write_evs[j].ev_fd);
#else
CloseHandle((HANDLE)read_evs[j].ev_fd);
CloseHandle((HANDLE)write_evs[j].ev_fd);
#endif
/* just loop once */
event_base_loop(base, EVLOOP_ONCE);
}
event_base_free(base);
fprintf(stdout, "OK\n");
}
static void
test_simpleread(void)
{
struct event ev;
/* Very simple read test */
setup_test("Simple read: ");
write(pair[0], TEST1, strlen(TEST1)+1);
shutdown(pair[0], SHUT_WR);
event_set(&ev, pair[1], EV_READ, simple_read_cb, &ev);
if (event_add(&ev, NULL) == -1)
exit(1);
event_dispatch();
cleanup_test();
}
static void
test_simplewrite(void)
{
struct event ev;
/* Very simple write test */
setup_test("Simple write: ");
event_set(&ev, pair[0], EV_WRITE, simple_write_cb, &ev);
if (event_add(&ev, NULL) == -1)
exit(1);
event_dispatch();
cleanup_test();
}
static void
test_multiple(void)
{
struct event ev, ev2;
int i;
/* Multiple read and write test */
setup_test("Multiple read/write: ");
memset(rbuf, 0, sizeof(rbuf));
for (i = 0; i < sizeof(wbuf); i++)
wbuf[i] = i;
roff = woff = 0;
usepersist = 0;
event_set(&ev, pair[0], EV_WRITE, multiple_write_cb, &ev);
if (event_add(&ev, NULL) == -1)
exit(1);
event_set(&ev2, pair[1], EV_READ, multiple_read_cb, &ev2);
if (event_add(&ev2, NULL) == -1)
exit(1);
event_dispatch();
if (roff == woff)
test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0;
cleanup_test();
}
static void
test_persistent(void)
{
struct event ev, ev2;
int i;
/* Multiple read and write test with persist */
setup_test("Persist read/write: ");
memset(rbuf, 0, sizeof(rbuf));
for (i = 0; i < sizeof(wbuf); i++)
wbuf[i] = i;
roff = woff = 0;
usepersist = 1;
event_set(&ev, pair[0], EV_WRITE|EV_PERSIST, multiple_write_cb, &ev);
if (event_add(&ev, NULL) == -1)
exit(1);
event_set(&ev2, pair[1], EV_READ|EV_PERSIST, multiple_read_cb, &ev2);
if (event_add(&ev2, NULL) == -1)
exit(1);
event_dispatch();
if (roff == woff)
test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0;
cleanup_test();
}
static void
test_combined(void)
{
struct both r1, r2, w1, w2;
setup_test("Combined read/write: ");
memset(&r1, 0, sizeof(r1));
memset(&r2, 0, sizeof(r2));
memset(&w1, 0, sizeof(w1));
memset(&w2, 0, sizeof(w2));
w1.nread = 4096;
w2.nread = 8192;
event_set(&r1.ev, pair[0], EV_READ, combined_read_cb, &r1);
event_set(&w1.ev, pair[0], EV_WRITE, combined_write_cb, &w1);
event_set(&r2.ev, pair[1], EV_READ, combined_read_cb, &r2);
event_set(&w2.ev, pair[1], EV_WRITE, combined_write_cb, &w2);
if (event_add(&r1.ev, NULL) == -1)
exit(1);
if (event_add(&w1.ev, NULL))
exit(1);
if (event_add(&r2.ev, NULL))
exit(1);
if (event_add(&w2.ev, NULL))
exit(1);
event_dispatch();
if (r1.nread == 8192 && r2.nread == 4096)
test_ok = 1;
cleanup_test();
}
static void
test_simpletimeout(void)
{
struct timeval tv;
struct event ev;
setup_test("Simple timeout: ");
tv.tv_usec = 0;
tv.tv_sec = SECONDS;
evtimer_set(&ev, timeout_cb, NULL);
evtimer_add(&ev, &tv);
evutil_gettimeofday(&tset, NULL);
event_dispatch();
cleanup_test();
}
#ifndef WIN32
extern struct event_base *current_base;
static void
child_signal_cb(int fd, short event, void *arg)
{
struct timeval tv;
int *pint = arg;
*pint = 1;
tv.tv_usec = 500000;
tv.tv_sec = 0;
event_loopexit(&tv);
}
static void
test_fork(void)
{
int status, got_sigchld = 0;
struct event ev, sig_ev;
pid_t pid;
setup_test("After fork: ");
write(pair[0], TEST1, strlen(TEST1)+1);
event_set(&ev, pair[1], EV_READ, simple_read_cb, &ev);
if (event_add(&ev, NULL) == -1)
exit(1);
signal_set(&sig_ev, SIGCHLD, child_signal_cb, &got_sigchld);
signal_add(&sig_ev, NULL);
if ((pid = fork()) == 0) {
/* in the child */
if (event_reinit(current_base) == -1) {
fprintf(stderr, "FAILED (reinit)\n");
exit(1);
}
signal_del(&sig_ev);
called = 0;
event_dispatch();
/* we do not send an EOF; simple_read_cb requires an EOF
* to set test_ok. we just verify that the callback was
* called. */
exit(test_ok != 0 || called != 2 ? -2 : 76);
}
/* wait for the child to read the data */
sleep(1);
write(pair[0], TEST1, strlen(TEST1)+1);
if (waitpid(pid, &status, 0) == -1) {
fprintf(stderr, "FAILED (fork)\n");
exit(1);
}
if (WEXITSTATUS(status) != 76) {
fprintf(stderr, "FAILED (exit): %d\n", WEXITSTATUS(status));
exit(1);
}
/* test that the current event loop still works */
write(pair[0], TEST1, strlen(TEST1)+1);
shutdown(pair[0], SHUT_WR);
event_dispatch();
if (!got_sigchld) {
fprintf(stdout, "FAILED (sigchld)\n");
exit(1);
}
signal_del(&sig_ev);
cleanup_test();
}
static void
test_simplesignal(void)
{
struct event ev;
struct itimerval itv;
setup_test("Simple signal: ");
signal_set(&ev, SIGALRM, signal_cb, &ev);
signal_add(&ev, NULL);
/* find bugs in which operations are re-ordered */
signal_del(&ev);
signal_add(&ev, NULL);
memset(&itv, 0, sizeof(itv));
itv.it_value.tv_sec = 1;
if (setitimer(ITIMER_REAL, &itv, NULL) == -1)
goto skip_simplesignal;
event_dispatch();
skip_simplesignal:
if (signal_del(&ev) == -1)
test_ok = 0;
cleanup_test();
}
static void
test_multiplesignal(void)
{
struct event ev_one, ev_two;
struct itimerval itv;
setup_test("Multiple signal: ");
signal_set(&ev_one, SIGALRM, signal_cb, &ev_one);
signal_add(&ev_one, NULL);
signal_set(&ev_two, SIGALRM, signal_cb, &ev_two);
signal_add(&ev_two, NULL);
memset(&itv, 0, sizeof(itv));
itv.it_value.tv_sec = 1;
if (setitimer(ITIMER_REAL, &itv, NULL) == -1)
goto skip_simplesignal;
event_dispatch();
skip_simplesignal:
if (signal_del(&ev_one) == -1)
test_ok = 0;
if (signal_del(&ev_two) == -1)
test_ok = 0;
cleanup_test();
}
static void
test_immediatesignal(void)
{
struct event ev;
test_ok = 0;
printf("Immediate signal: ");
signal_set(&ev, SIGUSR1, signal_cb, &ev);
signal_add(&ev, NULL);
raise(SIGUSR1);
event_loop(EVLOOP_NONBLOCK);
signal_del(&ev);
cleanup_test();
}
static void
test_signal_dealloc(void)
{
/* make sure that signal_event is event_del'ed and pipe closed */
struct event ev;
struct event_base *base = event_init();
printf("Signal dealloc: ");
signal_set(&ev, SIGUSR1, signal_cb, &ev);
signal_add(&ev, NULL);
signal_del(&ev);
event_base_free(base);
/* If we got here without asserting, we're fine. */
test_ok = 1;
cleanup_test();
}
static void
test_signal_pipeloss(void)
{
/* make sure that the base1 pipe is closed correctly. */
struct event_base *base1, *base2;
int pipe1;
test_ok = 0;
printf("Signal pipeloss: ");
base1 = event_init();
pipe1 = base1->sig.ev_signal_pair[0];
base2 = event_init();
event_base_free(base2);
event_base_free(base1);
if (close(pipe1) != -1 || errno!=EBADF) {
/* fd must be closed, so second close gives -1, EBADF */
printf("signal pipe not closed. ");
test_ok = 0;
} else {
test_ok = 1;
}
cleanup_test();
}
/*
* make two bases to catch signals, use both of them. this only works
* for event mechanisms that use our signal pipe trick. kqueue handles
* signals internally, and all interested kqueues get all the signals.
*/
static void
test_signal_switchbase(void)
{
struct event ev1, ev2;
struct event_base *base1, *base2;
int is_kqueue;
test_ok = 0;
printf("Signal switchbase: ");
base1 = event_init();
base2 = event_init();
is_kqueue = !strcmp(event_get_method(),"kqueue");
signal_set(&ev1, SIGUSR1, signal_cb, &ev1);
signal_set(&ev2, SIGUSR1, signal_cb, &ev2);
if (event_base_set(base1, &ev1) ||
event_base_set(base2, &ev2) ||
event_add(&ev1, NULL) ||
event_add(&ev2, NULL)) {
fprintf(stderr, "%s: cannot set base, add\n", __func__);
exit(1);
}
test_ok = 0;
/* can handle signal before loop is called */
raise(SIGUSR1);
event_base_loop(base2, EVLOOP_NONBLOCK);
if (is_kqueue) {
if (!test_ok)
goto done;
test_ok = 0;
}
event_base_loop(base1, EVLOOP_NONBLOCK);
if (test_ok && !is_kqueue) {
test_ok = 0;
/* set base1 to handle signals */
event_base_loop(base1, EVLOOP_NONBLOCK);
raise(SIGUSR1);
event_base_loop(base1, EVLOOP_NONBLOCK);
event_base_loop(base2, EVLOOP_NONBLOCK);
}
done:
event_base_free(base1);
event_base_free(base2);
cleanup_test();
}
/*
* assert that a signal event removed from the event queue really is
* removed - with no possibility of it's parent handler being fired.
*/
static void
test_signal_assert(void)
{
struct event ev;
struct event_base *base = event_init();
test_ok = 0;
printf("Signal handler assert: ");
/* use SIGCONT so we don't kill ourselves when we signal to nowhere */
signal_set(&ev, SIGCONT, signal_cb, &ev);
signal_add(&ev, NULL);
/*
* if signal_del() fails to reset the handler, it's current handler
* will still point to evsignal_handler().
*/
signal_del(&ev);
raise(SIGCONT);
/* only way to verify we were in evsignal_handler() */
if (base->sig.evsignal_caught)
test_ok = 0;
else
test_ok = 1;
event_base_free(base);
cleanup_test();
return;
}
/*
* assert that we restore our previous signal handler properly.
*/
static void
test_signal_restore(void)
{
struct event ev;
struct event_base *base = event_init();
#ifdef HAVE_SIGACTION
struct sigaction sa;
#endif
test_ok = 0;
printf("Signal handler restore: ");
#ifdef HAVE_SIGACTION
sa.sa_handler = signal_cb_sa;
sa.sa_flags = 0x0;
sigemptyset(&sa.sa_mask);
if (sigaction(SIGUSR1, &sa, NULL) == -1)
goto out;
#else
if (signal(SIGUSR1, signal_cb_sa) == SIG_ERR)
goto out;
#endif
signal_set(&ev, SIGUSR1, signal_cb, &ev);
signal_add(&ev, NULL);
signal_del(&ev);
raise(SIGUSR1);
/* 1 == signal_cb, 2 == signal_cb_sa, we want our previous handler */
if (test_ok != 2)
test_ok = 0;
out:
event_base_free(base);
cleanup_test();
return;
}
static void
signal_cb_swp(int sig, short event, void *arg)
{
called++;
if (called < 5)
raise(sig);
else
event_loopexit(NULL);
}
static void
timeout_cb_swp(int fd, short event, void *arg)
{
if (called == -1) {
struct timeval tv = {5, 0};
called = 0;
evtimer_add((struct event *)arg, &tv);
raise(SIGUSR1);
return;
}
test_ok = 0;
event_loopexit(NULL);
}
static void
test_signal_while_processing(void)
{
struct event_base *base = event_init();
struct event ev, ev_timer;
struct timeval tv = {0, 0};
setup_test("Receiving a signal while processing other signal: ");
called = -1;
test_ok = 1;
signal_set(&ev, SIGUSR1, signal_cb_swp, NULL);
signal_add(&ev, NULL);
evtimer_set(&ev_timer, timeout_cb_swp, &ev_timer);
evtimer_add(&ev_timer, &tv);
event_dispatch();
event_base_free(base);
cleanup_test();
return;
}
#endif
static void
test_free_active_base(void)
{
struct event_base *base1;
struct event ev1;
setup_test("Free active base: ");
base1 = event_init();
event_set(&ev1, pair[1], EV_READ, simple_read_cb, &ev1);
event_base_set(base1, &ev1);
event_add(&ev1, NULL);
/* event_del(&ev1); */
event_base_free(base1);
test_ok = 1;
cleanup_test();
}
static void
test_event_base_new(void)
{
struct event_base *base;
struct event ev1;
setup_test("Event base new: ");
write(pair[0], TEST1, strlen(TEST1)+1);
shutdown(pair[0], SHUT_WR);
base = event_base_new();
event_set(&ev1, pair[1], EV_READ, simple_read_cb, &ev1);
event_base_set(base, &ev1);
event_add(&ev1, NULL);
event_base_dispatch(base);
event_base_free(base);
test_ok = 1;
cleanup_test();
}
static void
test_loopexit(void)
{
struct timeval tv, tv_start, tv_end;
struct event ev;
setup_test("Loop exit: ");
tv.tv_usec = 0;
tv.tv_sec = 60*60*24;
evtimer_set(&ev, timeout_cb, NULL);
evtimer_add(&ev, &tv);
tv.tv_usec = 0;
tv.tv_sec = 1;
event_loopexit(&tv);
evutil_gettimeofday(&tv_start, NULL);
event_dispatch();
evutil_gettimeofday(&tv_end, NULL);
evutil_timersub(&tv_end, &tv_start, &tv_end);
evtimer_del(&ev);
if (tv.tv_sec < 2)
test_ok = 1;
cleanup_test();
}
static void
test_loopexit_multiple(void)
{
struct timeval tv;
struct event_base *base;
setup_test("Loop Multiple exit: ");
base = event_base_new();
tv.tv_usec = 0;
tv.tv_sec = 1;
event_base_loopexit(base, &tv);
tv.tv_usec = 0;
tv.tv_sec = 2;
event_base_loopexit(base, &tv);
event_base_dispatch(base);
event_base_free(base);
test_ok = 1;
cleanup_test();
}
static void
break_cb(int fd, short events, void *arg)
{
test_ok = 1;
event_loopbreak();
}
static void
fail_cb(int fd, short events, void *arg)
{
test_ok = 0;
}
static void
test_loopbreak(void)
{
struct event ev1, ev2;
struct timeval tv;
setup_test("Loop break: ");
tv.tv_sec = 0;
tv.tv_usec = 0;
evtimer_set(&ev1, break_cb, NULL);
evtimer_add(&ev1, &tv);
evtimer_set(&ev2, fail_cb, NULL);
evtimer_add(&ev2, &tv);
event_dispatch();
evtimer_del(&ev1);
evtimer_del(&ev2);
cleanup_test();
}
static void
test_evbuffer(void) {
struct evbuffer *evb = evbuffer_new();
setup_test("Testing Evbuffer: ");
evbuffer_add_printf(evb, "%s/%d", "hello", 1);
if (EVBUFFER_LENGTH(evb) == 7 &&
strcmp((char*)EVBUFFER_DATA(evb), "hello/1") == 0)
test_ok = 1;
evbuffer_free(evb);
cleanup_test();
}
static void
test_evbuffer_readln(void)
{
struct evbuffer *evb = evbuffer_new();
struct evbuffer *evb_tmp = evbuffer_new();
const char *s;
char *cp = NULL;
size_t sz;
#define tt_line_eq(content) \
if (!cp || sz != strlen(content) || strcmp(cp, content)) { \
fprintf(stdout, "FAILED\n"); \
exit(1); \
}
#define tt_assert(expression) \
if (!(expression)) { \
fprintf(stdout, "FAILED\n"); \
exit(1); \
} \
/* Test EOL_ANY. */
fprintf(stdout, "Testing evbuffer_readln EOL_ANY: ");
s = "complex silly newline\r\n\n\r\n\n\rmore\0\n";
evbuffer_add(evb, s, strlen(s)+2);
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_ANY);
tt_line_eq("complex silly newline");
free(cp);
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_ANY);
if (!cp || sz != 5 || memcmp(cp, "more\0\0", 6)) {
fprintf(stdout, "FAILED\n");
exit(1);
}
if (evb->totallen == 0) {
fprintf(stdout, "FAILED\n");
exit(1);
}
s = "\nno newline";
evbuffer_add(evb, s, strlen(s));
free(cp);
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_ANY);
tt_line_eq("");
free(cp);
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_ANY);
tt_assert(!cp);
evbuffer_drain(evb, EVBUFFER_LENGTH(evb));
tt_assert(EVBUFFER_LENGTH(evb) == 0);
fprintf(stdout, "OK\n");
/* Test EOL_CRLF */
fprintf(stdout, "Testing evbuffer_readln EOL_CRLF: ");
s = "Line with\rin the middle\nLine with good crlf\r\n\nfinal\n";
evbuffer_add(evb, s, strlen(s));
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_CRLF);
tt_line_eq("Line with\rin the middle");
free(cp);
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_CRLF);
tt_line_eq("Line with good crlf");
free(cp);
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_CRLF);
tt_line_eq("");
free(cp);
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_CRLF);
tt_line_eq("final");
s = "x";
evbuffer_add(evb, s, 1);
free(cp);
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_CRLF);
tt_assert(!cp);
fprintf(stdout, "OK\n");
/* Test CRLF_STRICT */
fprintf(stdout, "Testing evbuffer_readln CRLF_STRICT: ");
s = " and a bad crlf\nand a good one\r\n\r\nMore\r";
evbuffer_add(evb, s, strlen(s));
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_CRLF_STRICT);
tt_line_eq("x and a bad crlf\nand a good one");
free(cp);
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_CRLF_STRICT);
tt_line_eq("");
free(cp);
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_CRLF_STRICT);
tt_assert(!cp);
evbuffer_add(evb, "\n", 1);
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_CRLF_STRICT);
tt_line_eq("More");
free(cp);
tt_assert(EVBUFFER_LENGTH(evb) == 0);
s = "An internal CR\r is not an eol\r\nNor is a lack of one";
evbuffer_add(evb, s, strlen(s));
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_CRLF_STRICT);
tt_line_eq("An internal CR\r is not an eol");
free(cp);
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_CRLF_STRICT);
tt_assert(!cp);
evbuffer_add(evb, "\r\n", 2);
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_CRLF_STRICT);
tt_line_eq("Nor is a lack of one");
free(cp);
tt_assert(EVBUFFER_LENGTH(evb) == 0);
fprintf(stdout, "OK\n");
/* Test LF */
fprintf(stdout, "Testing evbuffer_readln LF: ");
s = "An\rand a nl\n\nText";
evbuffer_add(evb, s, strlen(s));
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_LF);
tt_line_eq("An\rand a nl");
free(cp);
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_LF);
tt_line_eq("");
free(cp);
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_LF);
tt_assert(!cp);
free(cp);
evbuffer_add(evb, "\n", 1);
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_LF);
tt_line_eq("Text");
free(cp);
fprintf(stdout, "OK\n");
/* Test CRLF_STRICT - across boundaries */
fprintf(stdout,
"Testing evbuffer_readln CRLF_STRICT across boundaries: ");
s = " and a bad crlf\nand a good one\r";
evbuffer_add(evb_tmp, s, strlen(s));
evbuffer_add_buffer(evb, evb_tmp);
s = "\n\r";
evbuffer_add(evb_tmp, s, strlen(s));
evbuffer_add_buffer(evb, evb_tmp);
s = "\nMore\r";
evbuffer_add(evb_tmp, s, strlen(s));
evbuffer_add_buffer(evb, evb_tmp);
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_CRLF_STRICT);
tt_line_eq(" and a bad crlf\nand a good one");
free(cp);
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_CRLF_STRICT);
tt_line_eq("");
free(cp);
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_CRLF_STRICT);
tt_assert(!cp);
free(cp);
evbuffer_add(evb, "\n", 1);
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_CRLF_STRICT);
tt_line_eq("More");
free(cp); cp = NULL;
if (EVBUFFER_LENGTH(evb) != 0) {
fprintf(stdout, "FAILED\n");
exit(1);
}
fprintf(stdout, "OK\n");
/* Test memory problem */
fprintf(stdout, "Testing evbuffer_readln memory problem: ");
s = "one line\ntwo line\nblue line";
evbuffer_add(evb_tmp, s, strlen(s));
evbuffer_add_buffer(evb, evb_tmp);
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_LF);
tt_line_eq("one line");
free(cp); cp = NULL;
cp = evbuffer_readln(evb, &sz, EVBUFFER_EOL_LF);
tt_line_eq("two line");
free(cp); cp = NULL;
fprintf(stdout, "OK\n");
test_ok = 1;
evbuffer_free(evb);
evbuffer_free(evb_tmp);
if (cp) free(cp);
}
static void
test_evbuffer_find(void)
{
u_char* p;
const char* test1 = "1234567890\r\n";
const char* test2 = "1234567890\r";
#define EVBUFFER_INITIAL_LENGTH 256
char test3[EVBUFFER_INITIAL_LENGTH];
unsigned int i;
struct evbuffer * buf = evbuffer_new();
/* make sure evbuffer_find doesn't match past the end of the buffer */
fprintf(stdout, "Testing evbuffer_find 1: ");
evbuffer_add(buf, (u_char*)test1, strlen(test1));
evbuffer_drain(buf, strlen(test1));
evbuffer_add(buf, (u_char*)test2, strlen(test2));
p = evbuffer_find(buf, (u_char*)"\r\n", 2);
if (p == NULL) {
fprintf(stdout, "OK\n");
} else {
fprintf(stdout, "FAILED\n");
exit(1);
}
/*
* drain the buffer and do another find; in r309 this would
* read past the allocated buffer causing a valgrind error.
*/
fprintf(stdout, "Testing evbuffer_find 2: ");
evbuffer_drain(buf, strlen(test2));
for (i = 0; i < EVBUFFER_INITIAL_LENGTH; ++i)
test3[i] = 'a';
test3[EVBUFFER_INITIAL_LENGTH - 1] = 'x';
evbuffer_add(buf, (u_char *)test3, EVBUFFER_INITIAL_LENGTH);
p = evbuffer_find(buf, (u_char *)"xy", 2);
if (p == NULL) {
printf("OK\n");
} else {
fprintf(stdout, "FAILED\n");
exit(1);
}
/* simple test for match at end of allocated buffer */
fprintf(stdout, "Testing evbuffer_find 3: ");
p = evbuffer_find(buf, (u_char *)"ax", 2);
if (p != NULL && strncmp((char*)p, "ax", 2) == 0) {
printf("OK\n");
} else {
fprintf(stdout, "FAILED\n");
exit(1);
}
evbuffer_free(buf);
}
/*
* simple bufferevent test
*/
static void
readcb(struct bufferevent *bev, void *arg)
{
if (EVBUFFER_LENGTH(bev->input) == 8333) {
bufferevent_disable(bev, EV_READ);
test_ok++;
}
}
static void
writecb(struct bufferevent *bev, void *arg)
{
if (EVBUFFER_LENGTH(bev->output) == 0)
test_ok++;
}
static void
errorcb(struct bufferevent *bev, short what, void *arg)
{
test_ok = -2;
}
static void
test_bufferevent(void)
{
struct bufferevent *bev1, *bev2;
char buffer[8333];
int i;
setup_test("Bufferevent: ");
bev1 = bufferevent_new(pair[0], readcb, writecb, errorcb, NULL);
bev2 = bufferevent_new(pair[1], readcb, writecb, errorcb, NULL);
bufferevent_disable(bev1, EV_READ);
bufferevent_enable(bev2, EV_READ);
for (i = 0; i < sizeof(buffer); i++)
buffer[i] = i;
bufferevent_write(bev1, buffer, sizeof(buffer));
event_dispatch();
bufferevent_free(bev1);
bufferevent_free(bev2);
if (test_ok != 2)
test_ok = 0;
cleanup_test();
}
/*
* test watermarks and bufferevent
*/
static void
wm_readcb(struct bufferevent *bev, void *arg)
{
int len = EVBUFFER_LENGTH(bev->input);
static int nread;
assert(len >= 10 && len <= 20);
evbuffer_drain(bev->input, len);
nread += len;
if (nread == 65000) {
bufferevent_disable(bev, EV_READ);
test_ok++;
}
}
static void
wm_writecb(struct bufferevent *bev, void *arg)
{
if (EVBUFFER_LENGTH(bev->output) == 0)
test_ok++;
}
static void
wm_errorcb(struct bufferevent *bev, short what, void *arg)
{
test_ok = -2;
}
static void
test_bufferevent_watermarks(void)
{
struct bufferevent *bev1, *bev2;
char buffer[65000];
int i;
setup_test("Bufferevent Watermarks: ");
bev1 = bufferevent_new(pair[0], NULL, wm_writecb, wm_errorcb, NULL);
bev2 = bufferevent_new(pair[1], wm_readcb, NULL, wm_errorcb, NULL);
bufferevent_disable(bev1, EV_READ);
bufferevent_enable(bev2, EV_READ);
for (i = 0; i < sizeof(buffer); i++)
buffer[i] = i;
bufferevent_write(bev1, buffer, sizeof(buffer));
/* limit the reading on the receiving bufferevent */
bufferevent_setwatermark(bev2, EV_READ, 10, 20);
event_dispatch();
bufferevent_free(bev1);
bufferevent_free(bev2);
if (test_ok != 2)
test_ok = 0;
cleanup_test();
}
struct test_pri_event {
struct event ev;
int count;
};
static void
test_priorities_cb(int fd, short what, void *arg)
{
struct test_pri_event *pri = arg;
struct timeval tv;
if (pri->count == 3) {
event_loopexit(NULL);
return;
}
pri->count++;
evutil_timerclear(&tv);
event_add(&pri->ev, &tv);
}
static void
test_priorities(int npriorities)
{
char buf[32];
struct test_pri_event one, two;
struct timeval tv;
evutil_snprintf(buf, sizeof(buf), "Testing Priorities %d: ", npriorities);
setup_test(buf);
event_base_priority_init(global_base, npriorities);
memset(&one, 0, sizeof(one));
memset(&two, 0, sizeof(two));
timeout_set(&one.ev, test_priorities_cb, &one);
if (event_priority_set(&one.ev, 0) == -1) {
fprintf(stderr, "%s: failed to set priority", __func__);
exit(1);
}
timeout_set(&two.ev, test_priorities_cb, &two);
if (event_priority_set(&two.ev, npriorities - 1) == -1) {
fprintf(stderr, "%s: failed to set priority", __func__);
exit(1);
}
evutil_timerclear(&tv);
if (event_add(&one.ev, &tv) == -1)
exit(1);
if (event_add(&two.ev, &tv) == -1)
exit(1);
event_dispatch();
event_del(&one.ev);
event_del(&two.ev);
if (npriorities == 1) {
if (one.count == 3 && two.count == 3)
test_ok = 1;
} else if (npriorities == 2) {
/* Two is called once because event_loopexit is priority 1 */
if (one.count == 3 && two.count == 1)
test_ok = 1;
} else {
if (one.count == 3 && two.count == 0)
test_ok = 1;
}
cleanup_test();
}
static void
test_multiple_cb(int fd, short event, void *arg)
{
if (event & EV_READ)
test_ok |= 1;
else if (event & EV_WRITE)
test_ok |= 2;
}
static void
test_multiple_events_for_same_fd(void)
{
struct event e1, e2;
setup_test("Multiple events for same fd: ");
event_set(&e1, pair[0], EV_READ, test_multiple_cb, NULL);
event_add(&e1, NULL);
event_set(&e2, pair[0], EV_WRITE, test_multiple_cb, NULL);
event_add(&e2, NULL);
event_loop(EVLOOP_ONCE);
event_del(&e2);
write(pair[1], TEST1, strlen(TEST1)+1);
event_loop(EVLOOP_ONCE);
event_del(&e1);
if (test_ok != 3)
test_ok = 0;
cleanup_test();
}
int evtag_decode_int(uint32_t *pnumber, struct evbuffer *evbuf);
int evtag_encode_tag(struct evbuffer *evbuf, uint32_t number);
int evtag_decode_tag(uint32_t *pnumber, struct evbuffer *evbuf);
static void
read_once_cb(int fd, short event, void *arg)
{
char buf[256];
int len;
len = read(fd, buf, sizeof(buf));
if (called) {
test_ok = 0;
} else if (len) {
/* Assumes global pair[0] can be used for writing */
write(pair[0], TEST1, strlen(TEST1)+1);
test_ok = 1;
}
called++;
}
static void
test_want_only_once(void)
{
struct event ev;
struct timeval tv;
/* Very simple read test */
setup_test("Want read only once: ");
write(pair[0], TEST1, strlen(TEST1)+1);
/* Setup the loop termination */
evutil_timerclear(&tv);
tv.tv_sec = 1;
event_loopexit(&tv);
event_set(&ev, pair[1], EV_READ, read_once_cb, &ev);
if (event_add(&ev, NULL) == -1)
exit(1);
event_dispatch();
cleanup_test();
}
#define TEST_MAX_INT 6
static void
evtag_int_test(void)
{
struct evbuffer *tmp = evbuffer_new();
uint32_t integers[TEST_MAX_INT] = {
0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000
};
uint32_t integer;
int i;
for (i = 0; i < TEST_MAX_INT; i++) {
int oldlen, newlen;
oldlen = EVBUFFER_LENGTH(tmp);
encode_int(tmp, integers[i]);
newlen = EVBUFFER_LENGTH(tmp);
fprintf(stdout, "\t\tencoded 0x%08x with %d bytes\n",
integers[i], newlen - oldlen);
}
for (i = 0; i < TEST_MAX_INT; i++) {
if (evtag_decode_int(&integer, tmp) == -1) {
fprintf(stderr, "decode %d failed", i);
exit(1);
}
if (integer != integers[i]) {
fprintf(stderr, "got %x, wanted %x",
integer, integers[i]);
exit(1);
}
}
if (EVBUFFER_LENGTH(tmp) != 0) {
fprintf(stderr, "trailing data");
exit(1);
}
evbuffer_free(tmp);
fprintf(stdout, "\t%s: OK\n", __func__);
}
static void
evtag_fuzz(void)
{
u_char buffer[4096];
struct evbuffer *tmp = evbuffer_new();
struct timeval tv;
int i, j;
int not_failed = 0;
for (j = 0; j < 100; j++) {
for (i = 0; i < sizeof(buffer); i++)
buffer[i] = rand();
evbuffer_drain(tmp, -1);
evbuffer_add(tmp, buffer, sizeof(buffer));
if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1)
not_failed++;
}
/* The majority of decodes should fail */
if (not_failed >= 10) {
fprintf(stderr, "evtag_unmarshal should have failed");
exit(1);
}
/* Now insert some corruption into the tag length field */
evbuffer_drain(tmp, -1);
evutil_timerclear(&tv);
tv.tv_sec = 1;
evtag_marshal_timeval(tmp, 0, &tv);
evbuffer_add(tmp, buffer, sizeof(buffer));
EVBUFFER_DATA(tmp)[1] = 0xff;
if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1) {
fprintf(stderr, "evtag_unmarshal_timeval should have failed");
exit(1);
}
evbuffer_free(tmp);
fprintf(stdout, "\t%s: OK\n", __func__);
}
static void
evtag_tag_encoding(void)
{
struct evbuffer *tmp = evbuffer_new();
uint32_t integers[TEST_MAX_INT] = {
0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000
};
uint32_t integer;
int i;
for (i = 0; i < TEST_MAX_INT; i++) {
int oldlen, newlen;
oldlen = EVBUFFER_LENGTH(tmp);
evtag_encode_tag(tmp, integers[i]);
newlen = EVBUFFER_LENGTH(tmp);
fprintf(stdout, "\t\tencoded 0x%08x with %d bytes\n",
integers[i], newlen - oldlen);
}
for (i = 0; i < TEST_MAX_INT; i++) {
if (evtag_decode_tag(&integer, tmp) == -1) {
fprintf(stderr, "decode %d failed", i);
exit(1);
}
if (integer != integers[i]) {
fprintf(stderr, "got %x, wanted %x",
integer, integers[i]);
exit(1);
}
}
if (EVBUFFER_LENGTH(tmp) != 0) {
fprintf(stderr, "trailing data");
exit(1);
}
evbuffer_free(tmp);
fprintf(stdout, "\t%s: OK\n", __func__);
}
static void
evtag_test(void)
{
fprintf(stdout, "Testing Tagging:\n");
evtag_init();
evtag_int_test();
evtag_fuzz();
evtag_tag_encoding();
fprintf(stdout, "OK\n");
}
#ifndef WIN32
static void
rpc_test(void)
{
struct msg *msg, *msg2;
struct kill *attack;
struct run *run;
struct evbuffer *tmp = evbuffer_new();
struct timeval tv_start, tv_end;
uint32_t tag;
int i;
fprintf(stdout, "Testing RPC: ");
msg = msg_new();
EVTAG_ASSIGN(msg, from_name, "niels");
EVTAG_ASSIGN(msg, to_name, "phoenix");
if (EVTAG_GET(msg, attack, &attack) == -1) {
fprintf(stderr, "Failed to set kill message.\n");
exit(1);
}
EVTAG_ASSIGN(attack, weapon, "feather");
EVTAG_ASSIGN(attack, action, "tickle");
evutil_gettimeofday(&tv_start, NULL);
for (i = 0; i < 1000; ++i) {
run = EVTAG_ADD(msg, run);
if (run == NULL) {
fprintf(stderr, "Failed to add run message.\n");
exit(1);
}
EVTAG_ASSIGN(run, how, "very fast but with some data in it");
EVTAG_ASSIGN(run, fixed_bytes,
(unsigned char*)"012345678901234567890123");
}
if (msg_complete(msg) == -1) {
fprintf(stderr, "Failed to make complete message.\n");
exit(1);
}
evtag_marshal_msg(tmp, 0xdeaf, msg);
if (evtag_peek(tmp, &tag) == -1) {
fprintf(stderr, "Failed to peak tag.\n");
exit (1);
}
if (tag != 0xdeaf) {
fprintf(stderr, "Got incorrect tag: %0x.\n", tag);
exit (1);
}
msg2 = msg_new();
if (evtag_unmarshal_msg(tmp, 0xdeaf, msg2) == -1) {
fprintf(stderr, "Failed to unmarshal message.\n");
exit(1);
}
evutil_gettimeofday(&tv_end, NULL);
evutil_timersub(&tv_end, &tv_start, &tv_end);
fprintf(stderr, "(%.1f us/add) ",
(float)tv_end.tv_sec/(float)i * 1000000.0 +
tv_end.tv_usec / (float)i);
if (!EVTAG_HAS(msg2, from_name) ||
!EVTAG_HAS(msg2, to_name) ||
!EVTAG_HAS(msg2, attack)) {
fprintf(stderr, "Missing data structures.\n");
exit(1);
}
if (EVTAG_LEN(msg2, run) != i) {
fprintf(stderr, "Wrong number of run messages.\n");
exit(1);
}
msg_free(msg);
msg_free(msg2);
evbuffer_free(tmp);
fprintf(stdout, "OK\n");
}
#endif
static void
test_evutil_strtoll(void)
{
const char *s;
char *endptr;
setup_test("evutil_stroll: ");
test_ok = 0;
if (evutil_strtoll("5000000000", NULL, 10) != ((ev_int64_t)5000000)*1000)
goto err;
if (evutil_strtoll("-5000000000", NULL, 10) != ((ev_int64_t)5000000)*-1000)
goto err;
s = " 99999stuff";
if (evutil_strtoll(s, &endptr, 10) != (ev_int64_t)99999)
goto err;
if (endptr != s+6)
goto err;
if (evutil_strtoll("foo", NULL, 10) != 0)
goto err;
test_ok = 1;
err:
cleanup_test();
}
int
main (int argc, char **argv)
{
#ifdef WIN32
WORD wVersionRequested;
WSADATA wsaData;
int err;
wVersionRequested = MAKEWORD( 2, 2 );
err = WSAStartup( wVersionRequested, &wsaData );
#endif
#ifndef WIN32
if (signal(SIGPIPE, SIG_IGN) == SIG_ERR)
return (1);
#endif
setvbuf(stdout, NULL, _IONBF, 0);
/* Initalize the event library */
global_base = event_init();
test_registerfds();
test_evutil_strtoll();
/* use the global event base and need to be called first */
test_priorities(1);
test_priorities(2);
test_priorities(3);
test_evbuffer();
test_evbuffer_find();
test_evbuffer_readln();
test_bufferevent();
test_bufferevent_watermarks();
test_free_active_base();
test_event_base_new();
http_suite();
#ifndef WIN32
rpc_suite();
#endif
dns_suite();
#ifndef WIN32
test_fork();
#endif
test_simpleread();
test_simplewrite();
test_multiple();
test_persistent();
test_combined();
test_simpletimeout();
#ifndef WIN32
test_simplesignal();
test_multiplesignal();
test_immediatesignal();
#endif
test_loopexit();
test_loopbreak();
test_loopexit_multiple();
test_multiple_events_for_same_fd();
test_want_only_once();
evtag_test();
#ifndef WIN32
rpc_test();
test_signal_dealloc();
test_signal_pipeloss();
test_signal_switchbase();
test_signal_restore();
test_signal_assert();
test_signal_while_processing();
#endif
return (0);
}