mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-24 14:26:09 +03:00
334 lines
11 KiB
C++
334 lines
11 KiB
C++
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "base/message_loop/message_pump_android.h"
|
|
|
|
#include <android/looper.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <jni.h>
|
|
#include <sys/eventfd.h>
|
|
#include <sys/syscall.h>
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
#include <utility>
|
|
|
|
#include "base/android/jni_android.h"
|
|
#include "base/android/scoped_java_ref.h"
|
|
#include "base/callback_helpers.h"
|
|
#include "base/lazy_instance.h"
|
|
#include "base/logging.h"
|
|
#include "base/run_loop.h"
|
|
#include "build/build_config.h"
|
|
|
|
// Android stripped sys/timerfd.h out of their platform headers, so we have to
|
|
// use syscall to make use of timerfd. Once the min API level is 20, we can
|
|
// directly use timerfd.h.
|
|
#ifndef __NR_timerfd_create
|
|
#error "Unable to find syscall for __NR_timerfd_create"
|
|
#endif
|
|
|
|
#ifndef TFD_TIMER_ABSTIME
|
|
#define TFD_TIMER_ABSTIME (1 << 0)
|
|
#endif
|
|
|
|
using base::android::JavaParamRef;
|
|
using base::android::ScopedJavaLocalRef;
|
|
|
|
namespace base {
|
|
|
|
namespace {
|
|
|
|
// See sys/timerfd.h
|
|
int timerfd_create(int clockid, int flags) {
|
|
return syscall(__NR_timerfd_create, clockid, flags);
|
|
}
|
|
|
|
// See sys/timerfd.h
|
|
int timerfd_settime(int ufc,
|
|
int flags,
|
|
const struct itimerspec* utmr,
|
|
struct itimerspec* otmr) {
|
|
return syscall(__NR_timerfd_settime, ufc, flags, utmr, otmr);
|
|
}
|
|
|
|
// https://crbug.com/873588. The stack may not be aligned when the ALooper calls
|
|
// into our code due to the inconsistent ABI on older Android OS versions.
|
|
#if defined(ARCH_CPU_X86)
|
|
#define STACK_ALIGN __attribute__((force_align_arg_pointer))
|
|
#else
|
|
#define STACK_ALIGN
|
|
#endif
|
|
|
|
STACK_ALIGN int NonDelayedLooperCallback(int fd, int events, void* data) {
|
|
if (events & ALOOPER_EVENT_HANGUP)
|
|
return 0;
|
|
|
|
DCHECK(events & ALOOPER_EVENT_INPUT);
|
|
MessagePumpForUI* pump = reinterpret_cast<MessagePumpForUI*>(data);
|
|
pump->OnNonDelayedLooperCallback();
|
|
return 1; // continue listening for events
|
|
}
|
|
|
|
STACK_ALIGN int DelayedLooperCallback(int fd, int events, void* data) {
|
|
if (events & ALOOPER_EVENT_HANGUP)
|
|
return 0;
|
|
|
|
DCHECK(events & ALOOPER_EVENT_INPUT);
|
|
MessagePumpForUI* pump = reinterpret_cast<MessagePumpForUI*>(data);
|
|
pump->OnDelayedLooperCallback();
|
|
return 1; // continue listening for events
|
|
}
|
|
|
|
} // namespace
|
|
|
|
MessagePumpForUI::MessagePumpForUI() {
|
|
// The Android native ALooper uses epoll to poll our file descriptors and wake
|
|
// us up. We use a simple level-triggered eventfd to signal that non-delayed
|
|
// work is available, and a timerfd to signal when delayed work is ready to
|
|
// be run.
|
|
non_delayed_fd_ = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
|
|
CHECK_NE(non_delayed_fd_, -1);
|
|
DCHECK_EQ(TimeTicks::GetClock(), TimeTicks::Clock::LINUX_CLOCK_MONOTONIC);
|
|
|
|
// We can't create the timerfd with TFD_NONBLOCK | TFD_CLOEXEC as we can't
|
|
// include timerfd.h. See comments above on __NR_timerfd_create. It looks like
|
|
// they're just aliases to O_NONBLOCK and O_CLOEXEC anyways, so this should be
|
|
// fine.
|
|
delayed_fd_ = timerfd_create(CLOCK_MONOTONIC, O_NONBLOCK | O_CLOEXEC);
|
|
CHECK_NE(delayed_fd_, -1);
|
|
|
|
looper_ = ALooper_prepare(0);
|
|
DCHECK(looper_);
|
|
// Add a reference to the looper so it isn't deleted on us.
|
|
ALooper_acquire(looper_);
|
|
ALooper_addFd(looper_, non_delayed_fd_, 0, ALOOPER_EVENT_INPUT,
|
|
&NonDelayedLooperCallback, reinterpret_cast<void*>(this));
|
|
ALooper_addFd(looper_, delayed_fd_, 0, ALOOPER_EVENT_INPUT,
|
|
&DelayedLooperCallback, reinterpret_cast<void*>(this));
|
|
}
|
|
|
|
MessagePumpForUI::~MessagePumpForUI() {
|
|
DCHECK_EQ(ALooper_forThread(), looper_);
|
|
ALooper_removeFd(looper_, non_delayed_fd_);
|
|
ALooper_removeFd(looper_, delayed_fd_);
|
|
ALooper_release(looper_);
|
|
looper_ = nullptr;
|
|
|
|
close(non_delayed_fd_);
|
|
close(delayed_fd_);
|
|
}
|
|
|
|
void MessagePumpForUI::OnDelayedLooperCallback() {
|
|
if (ShouldQuit())
|
|
return;
|
|
|
|
// Clear the fd.
|
|
uint64_t value;
|
|
int ret = read(delayed_fd_, &value, sizeof(value));
|
|
|
|
// TODO(mthiesse): Figure out how it's possible to hit EAGAIN here.
|
|
// According to http://man7.org/linux/man-pages/man2/timerfd_create.2.html
|
|
// EAGAIN only happens if no timer has expired. Also according to the man page
|
|
// poll only returns readable when a timer has expired. So this function will
|
|
// only be called when a timer has expired, but reading reveals no timer has
|
|
// expired...
|
|
// Quit() and ScheduleDelayedWork() are the only other functions that touch
|
|
// the timerfd, and they both run on the same thread as this callback, so
|
|
// there are no obvious timing or multi-threading related issues.
|
|
DPCHECK(ret >= 0 || errno == EAGAIN);
|
|
|
|
delayed_scheduled_time_ = base::TimeTicks();
|
|
|
|
base::TimeTicks next_delayed_work_time;
|
|
delegate_->DoDelayedWork(&next_delayed_work_time);
|
|
if (!next_delayed_work_time.is_null()) {
|
|
ScheduleDelayedWork(next_delayed_work_time);
|
|
}
|
|
if (ShouldQuit())
|
|
return;
|
|
// We may be idle now, so pump the loop to find out.
|
|
ScheduleWork();
|
|
}
|
|
|
|
void MessagePumpForUI::OnNonDelayedLooperCallback() {
|
|
base::TimeTicks next_delayed_work_time;
|
|
bool did_any_work = false;
|
|
|
|
// Runs all native tasks scheduled to run, scheduling delayed work if
|
|
// necessary.
|
|
while (true) {
|
|
bool did_work_this_loop = false;
|
|
if (ShouldQuit())
|
|
return;
|
|
did_work_this_loop = delegate_->DoWork();
|
|
if (ShouldQuit())
|
|
return;
|
|
|
|
did_work_this_loop |= delegate_->DoDelayedWork(&next_delayed_work_time);
|
|
|
|
did_any_work |= did_work_this_loop;
|
|
|
|
// If we didn't do any work, we're out of native tasks to run, and we should
|
|
// return control to the looper to run Java tasks.
|
|
if (!did_work_this_loop)
|
|
break;
|
|
}
|
|
// If we did any work, return control to the looper to run java tasks before
|
|
// we call DoIdleWork(). We haven't cleared the fd yet, so we'll get woken up
|
|
// again soon to check for idle-ness.
|
|
if (did_any_work)
|
|
return;
|
|
if (ShouldQuit())
|
|
return;
|
|
|
|
// Read the file descriptor, resetting its contents to 0 and reading back the
|
|
// stored value.
|
|
// See http://man7.org/linux/man-pages/man2/eventfd.2.html
|
|
uint64_t value = 0;
|
|
int ret = read(non_delayed_fd_, &value, sizeof(value));
|
|
DPCHECK(ret >= 0);
|
|
|
|
// If we read a value > 1, it means we lost the race to clear the fd before a
|
|
// new task was posted. This is okay, we can just re-schedule work.
|
|
if (value > 1) {
|
|
ScheduleWork();
|
|
} else {
|
|
// At this point, the java looper might not be idle - it's impossible to
|
|
// know pre-Android-M, so we may end up doing Idle work while java tasks are
|
|
// still queued up. Note that this won't cause us to fail to run java tasks
|
|
// using QuitWhenIdle, as the JavaHandlerThread will finish running all
|
|
// currently scheduled tasks before it quits. Also note that we can't just
|
|
// add an idle callback to the java looper, as that will fire even if native
|
|
// tasks are still queued up.
|
|
DoIdleWork();
|
|
if (!next_delayed_work_time.is_null()) {
|
|
ScheduleDelayedWork(next_delayed_work_time);
|
|
}
|
|
}
|
|
}
|
|
|
|
void MessagePumpForUI::DoIdleWork() {
|
|
if (delegate_->DoIdleWork()) {
|
|
// If DoIdleWork() resulted in any work, we're not idle yet. We need to pump
|
|
// the loop here because we may in fact be idle after doing idle work
|
|
// without any new tasks being queued.
|
|
ScheduleWork();
|
|
}
|
|
}
|
|
|
|
void MessagePumpForUI::Run(Delegate* delegate) {
|
|
DCHECK(IsTestImplementation());
|
|
// This function is only called in tests. We manually pump the native looper
|
|
// which won't run any java tasks.
|
|
quit_ = false;
|
|
|
|
SetDelegate(delegate);
|
|
|
|
// Pump the loop once in case we're starting off idle as ALooper_pollOnce will
|
|
// never return in that case.
|
|
ScheduleWork();
|
|
while (true) {
|
|
// Waits for either the delayed, or non-delayed fds to be signalled, calling
|
|
// either OnDelayedLooperCallback, or OnNonDelayedLooperCallback,
|
|
// respectively. This uses Android's Looper implementation, which is based
|
|
// off of epoll.
|
|
ALooper_pollOnce(-1, nullptr, nullptr, nullptr);
|
|
if (quit_)
|
|
break;
|
|
}
|
|
}
|
|
|
|
void MessagePumpForUI::Attach(Delegate* delegate) {
|
|
DCHECK(!quit_);
|
|
|
|
// Since the Looper is controlled by the UI thread or JavaHandlerThread, we
|
|
// can't use Run() like we do on other platforms or we would prevent Java
|
|
// tasks from running. Instead we create and initialize a run loop here, then
|
|
// return control back to the Looper.
|
|
|
|
SetDelegate(delegate);
|
|
run_loop_ = std::make_unique<RunLoop>();
|
|
// Since the RunLoop was just created above, BeforeRun should be guaranteed to
|
|
// return true (it only returns false if the RunLoop has been Quit already).
|
|
if (!run_loop_->BeforeRun())
|
|
NOTREACHED();
|
|
}
|
|
|
|
void MessagePumpForUI::Quit() {
|
|
if (quit_)
|
|
return;
|
|
|
|
quit_ = true;
|
|
|
|
int64_t value;
|
|
// Clear any pending timer.
|
|
read(delayed_fd_, &value, sizeof(value));
|
|
// Clear the eventfd.
|
|
read(non_delayed_fd_, &value, sizeof(value));
|
|
|
|
if (run_loop_) {
|
|
run_loop_->AfterRun();
|
|
run_loop_ = nullptr;
|
|
}
|
|
if (on_quit_callback_) {
|
|
std::move(on_quit_callback_).Run();
|
|
}
|
|
}
|
|
|
|
void MessagePumpForUI::ScheduleWork() {
|
|
if (ShouldQuit())
|
|
return;
|
|
|
|
// Write (add) 1 to the eventfd. This tells the Looper to wake up and call our
|
|
// callback, allowing us to run tasks. This also allows us to detect, when we
|
|
// clear the fd, whether additional work was scheduled after we finished
|
|
// performing work, but before we cleared the fd, as we'll read back >=2
|
|
// instead of 1 in that case.
|
|
// See the eventfd man pages
|
|
// (http://man7.org/linux/man-pages/man2/eventfd.2.html) for details on how
|
|
// the read and write APIs for this file descriptor work, specifically without
|
|
// EFD_SEMAPHORE.
|
|
uint64_t value = 1;
|
|
int ret = write(non_delayed_fd_, &value, sizeof(value));
|
|
DPCHECK(ret >= 0);
|
|
}
|
|
|
|
void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
|
|
if (ShouldQuit())
|
|
return;
|
|
|
|
if (!delayed_scheduled_time_.is_null() &&
|
|
delayed_work_time >= delayed_scheduled_time_) {
|
|
return;
|
|
}
|
|
|
|
DCHECK(!delayed_work_time.is_null());
|
|
delayed_scheduled_time_ = delayed_work_time;
|
|
int64_t nanos = delayed_work_time.since_origin().InNanoseconds();
|
|
struct itimerspec ts;
|
|
ts.it_interval.tv_sec = 0; // Don't repeat.
|
|
ts.it_interval.tv_nsec = 0;
|
|
ts.it_value.tv_sec = nanos / TimeTicks::kNanosecondsPerSecond;
|
|
ts.it_value.tv_nsec = nanos % TimeTicks::kNanosecondsPerSecond;
|
|
|
|
int ret = timerfd_settime(delayed_fd_, TFD_TIMER_ABSTIME, &ts, nullptr);
|
|
DPCHECK(ret >= 0);
|
|
}
|
|
|
|
void MessagePumpForUI::QuitWhenIdle(base::OnceClosure callback) {
|
|
DCHECK(!on_quit_callback_);
|
|
DCHECK(run_loop_);
|
|
on_quit_callback_ = std::move(callback);
|
|
run_loop_->QuitWhenIdle();
|
|
// Pump the loop in case we're already idle.
|
|
ScheduleWork();
|
|
}
|
|
|
|
bool MessagePumpForUI::IsTestImplementation() const {
|
|
return false;
|
|
}
|
|
|
|
} // namespace base
|