naiveproxy/base/containers/small_map.h
2018-12-09 21:59:24 -05:00

651 lines
19 KiB
C++

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_CONTAINERS_SMALL_MAP_H_
#define BASE_CONTAINERS_SMALL_MAP_H_
#include <stddef.h>
#include <limits>
#include <map>
#include <new>
#include <string>
#include <utility>
#include "base/containers/hash_tables.h"
#include "base/logging.h"
namespace {
constexpr size_t kUsingFullMapSentinel = std::numeric_limits<size_t>::max();
} // namespace
namespace base {
// small_map is a container with a std::map-like interface. It starts out backed
// by an unsorted array but switches to some other container type if it grows
// beyond this fixed size.
//
// Please see //base/containers/README.md for an overview of which container
// to select.
//
// PROS
//
// - Good memory locality and low overhead for smaller maps.
// - Handles large maps without the degenerate performance of flat_map.
//
// CONS
//
// - Larger code size than the alternatives.
//
// IMPORTANT NOTES
//
// - Iterators are invalidated across mutations.
//
// DETAILS
//
// base::small_map will pick up the comparator from the underlying map type. In
// std::map only a "less" operator is defined, which requires us to do two
// comparisons per element when doing the brute-force search in the simple
// array. std::unordered_map has a key_equal function which will be used.
//
// We define default overrides for the common map types to avoid this
// double-compare, but you should be aware of this if you use your own operator<
// for your map and supply yor own version of == to the small_map. You can use
// regular operator== by just doing:
//
// base::small_map<std::map<MyKey, MyValue>, 4, std::equal_to<KyKey>>
//
//
// USAGE
// -----
//
// NormalMap: The map type to fall back to. This also defines the key and value
// types for the small_map.
// kArraySize: The size of the initial array of results. This will be allocated
// with the small_map object rather than separately on the heap.
// Once the map grows beyond this size, the map type will be used
// instead.
// EqualKey: A functor which tests two keys for equality. If the wrapped map
// type has a "key_equal" member (hash_map does), then that will be
// used by default. If the wrapped map type has a strict weak
// ordering "key_compare" (std::map does), that will be used to
// implement equality by default.
// MapInit: A functor that takes a NormalMap* and uses it to initialize the map.
// This functor will be called at most once per small_map, when the map
// exceeds the threshold of kArraySize and we are about to copy values
// from the array to the map. The functor *must* initialize the
// NormalMap* argument with placement new, since after it runs we
// assume that the NormalMap has been initialized.
//
// Example:
// base::small_map<std::map<string, int>> days;
// days["sunday" ] = 0;
// days["monday" ] = 1;
// days["tuesday" ] = 2;
// days["wednesday"] = 3;
// days["thursday" ] = 4;
// days["friday" ] = 5;
// days["saturday" ] = 6;
namespace internal {
template <typename NormalMap>
class small_map_default_init {
public:
void operator()(NormalMap* map) const { new (map) NormalMap(); }
};
// has_key_equal<M>::value is true iff there exists a type M::key_equal. This is
// used to dispatch to one of the select_equal_key<> metafunctions below.
template <typename M>
struct has_key_equal {
typedef char sml; // "small" is sometimes #defined so we use an abbreviation.
typedef struct { char dummy[2]; } big;
// Two functions, one accepts types that have a key_equal member, and one that
// accepts anything. They each return a value of a different size, so we can
// determine at compile-time which function would have been called.
template <typename U> static big test(typename U::key_equal*);
template <typename> static sml test(...);
// Determines if M::key_equal exists by looking at the size of the return
// type of the compiler-chosen test() function.
static const bool value = (sizeof(test<M>(0)) == sizeof(big));
};
template <typename M> const bool has_key_equal<M>::value;
// Base template used for map types that do NOT have an M::key_equal member,
// e.g., std::map<>. These maps have a strict weak ordering comparator rather
// than an equality functor, so equality will be implemented in terms of that
// comparator.
//
// There's a partial specialization of this template below for map types that do
// have an M::key_equal member.
template <typename M, bool has_key_equal_value>
struct select_equal_key {
struct equal_key {
bool operator()(const typename M::key_type& left,
const typename M::key_type& right) {
// Implements equality in terms of a strict weak ordering comparator.
typename M::key_compare comp;
return !comp(left, right) && !comp(right, left);
}
};
};
// Provide overrides to use operator== for key compare for the "normal" map and
// hash map types. If you override the default comparator or allocator for a
// map or hash_map, or use another type of map, this won't get used.
//
// If we switch to using std::unordered_map for base::hash_map, then the
// hash_map specialization can be removed.
template <typename KeyType, typename ValueType>
struct select_equal_key<std::map<KeyType, ValueType>, false> {
struct equal_key {
bool operator()(const KeyType& left, const KeyType& right) {
return left == right;
}
};
};
template <typename KeyType, typename ValueType>
struct select_equal_key<base::hash_map<KeyType, ValueType>, false> {
struct equal_key {
bool operator()(const KeyType& left, const KeyType& right) {
return left == right;
}
};
};
// Partial template specialization handles case where M::key_equal exists, e.g.,
// hash_map<>.
template <typename M>
struct select_equal_key<M, true> {
typedef typename M::key_equal equal_key;
};
} // namespace internal
template <typename NormalMap,
size_t kArraySize = 4,
typename EqualKey = typename internal::select_equal_key<
NormalMap,
internal::has_key_equal<NormalMap>::value>::equal_key,
typename MapInit = internal::small_map_default_init<NormalMap>>
class small_map {
static_assert(kArraySize > 0, "Initial size must be greater than 0");
static_assert(kArraySize != kUsingFullMapSentinel,
"Initial size out of range");
public:
typedef typename NormalMap::key_type key_type;
typedef typename NormalMap::mapped_type data_type;
typedef typename NormalMap::mapped_type mapped_type;
typedef typename NormalMap::value_type value_type;
typedef EqualKey key_equal;
small_map() : size_(0), functor_(MapInit()) {}
explicit small_map(const MapInit& functor) : size_(0), functor_(functor) {}
// Allow copy-constructor and assignment, since STL allows them too.
small_map(const small_map& src) {
// size_ and functor_ are initted in InitFrom()
InitFrom(src);
}
void operator=(const small_map& src) {
if (&src == this) return;
// This is not optimal. If src and dest are both using the small array, we
// could skip the teardown and reconstruct. One problem to be resolved is
// that the value_type itself is pair<const K, V>, and const K is not
// assignable.
Destroy();
InitFrom(src);
}
~small_map() { Destroy(); }
class const_iterator;
class iterator {
public:
typedef typename NormalMap::iterator::iterator_category iterator_category;
typedef typename NormalMap::iterator::value_type value_type;
typedef typename NormalMap::iterator::difference_type difference_type;
typedef typename NormalMap::iterator::pointer pointer;
typedef typename NormalMap::iterator::reference reference;
inline iterator() : array_iter_(nullptr) {}
inline iterator& operator++() {
if (array_iter_ != nullptr) {
++array_iter_;
} else {
++map_iter_;
}
return *this;
}
inline iterator operator++(int /*unused*/) {
iterator result(*this);
++(*this);
return result;
}
inline iterator& operator--() {
if (array_iter_ != nullptr) {
--array_iter_;
} else {
--map_iter_;
}
return *this;
}
inline iterator operator--(int /*unused*/) {
iterator result(*this);
--(*this);
return result;
}
inline value_type* operator->() const {
return array_iter_ ? array_iter_ : map_iter_.operator->();
}
inline value_type& operator*() const {
return array_iter_ ? *array_iter_ : *map_iter_;
}
inline bool operator==(const iterator& other) const {
if (array_iter_ != nullptr) {
return array_iter_ == other.array_iter_;
} else {
return other.array_iter_ == nullptr && map_iter_ == other.map_iter_;
}
}
inline bool operator!=(const iterator& other) const {
return !(*this == other);
}
bool operator==(const const_iterator& other) const;
bool operator!=(const const_iterator& other) const;
private:
friend class small_map;
friend class const_iterator;
inline explicit iterator(value_type* init) : array_iter_(init) {}
inline explicit iterator(const typename NormalMap::iterator& init)
: array_iter_(nullptr), map_iter_(init) {}
value_type* array_iter_;
typename NormalMap::iterator map_iter_;
};
class const_iterator {
public:
typedef typename NormalMap::const_iterator::iterator_category
iterator_category;
typedef typename NormalMap::const_iterator::value_type value_type;
typedef typename NormalMap::const_iterator::difference_type difference_type;
typedef typename NormalMap::const_iterator::pointer pointer;
typedef typename NormalMap::const_iterator::reference reference;
inline const_iterator() : array_iter_(nullptr) {}
// Non-explicit constructor lets us convert regular iterators to const
// iterators.
inline const_iterator(const iterator& other)
: array_iter_(other.array_iter_), map_iter_(other.map_iter_) {}
inline const_iterator& operator++() {
if (array_iter_ != nullptr) {
++array_iter_;
} else {
++map_iter_;
}
return *this;
}
inline const_iterator operator++(int /*unused*/) {
const_iterator result(*this);
++(*this);
return result;
}
inline const_iterator& operator--() {
if (array_iter_ != nullptr) {
--array_iter_;
} else {
--map_iter_;
}
return *this;
}
inline const_iterator operator--(int /*unused*/) {
const_iterator result(*this);
--(*this);
return result;
}
inline const value_type* operator->() const {
return array_iter_ ? array_iter_ : map_iter_.operator->();
}
inline const value_type& operator*() const {
return array_iter_ ? *array_iter_ : *map_iter_;
}
inline bool operator==(const const_iterator& other) const {
if (array_iter_ != nullptr) {
return array_iter_ == other.array_iter_;
}
return other.array_iter_ == nullptr && map_iter_ == other.map_iter_;
}
inline bool operator!=(const const_iterator& other) const {
return !(*this == other);
}
private:
friend class small_map;
inline explicit const_iterator(const value_type* init)
: array_iter_(init) {}
inline explicit const_iterator(
const typename NormalMap::const_iterator& init)
: array_iter_(nullptr), map_iter_(init) {}
const value_type* array_iter_;
typename NormalMap::const_iterator map_iter_;
};
iterator find(const key_type& key) {
key_equal compare;
if (UsingFullMap()) {
return iterator(map()->find(key));
}
for (size_t i = 0; i < size_; ++i) {
if (compare(array_[i].first, key)) {
return iterator(array_ + i);
}
}
return iterator(array_ + size_);
}
const_iterator find(const key_type& key) const {
key_equal compare;
if (UsingFullMap()) {
return const_iterator(map()->find(key));
}
for (size_t i = 0; i < size_; ++i) {
if (compare(array_[i].first, key)) {
return const_iterator(array_ + i);
}
}
return const_iterator(array_ + size_);
}
// Invalidates iterators.
data_type& operator[](const key_type& key) {
key_equal compare;
if (UsingFullMap()) {
return map_[key];
}
// Search backwards to favor recently-added elements.
for (size_t i = size_; i > 0; --i) {
const size_t index = i - 1;
if (compare(array_[index].first, key)) {
return array_[index].second;
}
}
if (size_ == kArraySize) {
ConvertToRealMap();
return map_[key];
}
DCHECK(size_ < kArraySize);
new (&array_[size_]) value_type(key, data_type());
return array_[size_++].second;
}
// Invalidates iterators.
std::pair<iterator, bool> insert(const value_type& x) {
key_equal compare;
if (UsingFullMap()) {
std::pair<typename NormalMap::iterator, bool> ret = map_.insert(x);
return std::make_pair(iterator(ret.first), ret.second);
}
for (size_t i = 0; i < size_; ++i) {
if (compare(array_[i].first, x.first)) {
return std::make_pair(iterator(array_ + i), false);
}
}
if (size_ == kArraySize) {
ConvertToRealMap(); // Invalidates all iterators!
std::pair<typename NormalMap::iterator, bool> ret = map_.insert(x);
return std::make_pair(iterator(ret.first), ret.second);
}
DCHECK(size_ < kArraySize);
new (&array_[size_]) value_type(x);
return std::make_pair(iterator(array_ + size_++), true);
}
// Invalidates iterators.
template <class InputIterator>
void insert(InputIterator f, InputIterator l) {
while (f != l) {
insert(*f);
++f;
}
}
// Invalidates iterators.
template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args) {
key_equal compare;
if (UsingFullMap()) {
std::pair<typename NormalMap::iterator, bool> ret =
map_.emplace(std::forward<Args>(args)...);
return std::make_pair(iterator(ret.first), ret.second);
}
value_type x(std::forward<Args>(args)...);
for (size_t i = 0; i < size_; ++i) {
if (compare(array_[i].first, x.first)) {
return std::make_pair(iterator(array_ + i), false);
}
}
if (size_ == kArraySize) {
ConvertToRealMap(); // Invalidates all iterators!
std::pair<typename NormalMap::iterator, bool> ret =
map_.emplace(std::move(x));
return std::make_pair(iterator(ret.first), ret.second);
}
DCHECK(size_ < kArraySize);
new (&array_[size_]) value_type(std::move(x));
return std::make_pair(iterator(array_ + size_++), true);
}
iterator begin() {
return UsingFullMap() ? iterator(map_.begin()) : iterator(array_);
}
const_iterator begin() const {
return UsingFullMap() ? const_iterator(map_.begin())
: const_iterator(array_);
}
iterator end() {
return UsingFullMap() ? iterator(map_.end()) : iterator(array_ + size_);
}
const_iterator end() const {
return UsingFullMap() ? const_iterator(map_.end())
: const_iterator(array_ + size_);
}
void clear() {
if (UsingFullMap()) {
map_.~NormalMap();
} else {
for (size_t i = 0; i < size_; ++i) {
array_[i].~value_type();
}
}
size_ = 0;
}
// Invalidates iterators. Returns iterator following the last removed element.
iterator erase(const iterator& position) {
if (UsingFullMap()) {
return iterator(map_.erase(position.map_iter_));
}
size_t i = position.array_iter_ - array_;
// TODO(crbug.com/817982): When we have a checked iterator, this CHECK might
// not be necessary.
CHECK_LE(i, size_);
array_[i].~value_type();
--size_;
if (i != size_) {
new (&array_[i]) value_type(std::move(array_[size_]));
array_[size_].~value_type();
return iterator(array_ + i);
}
return end();
}
size_t erase(const key_type& key) {
iterator iter = find(key);
if (iter == end()) {
return 0;
}
erase(iter);
return 1;
}
size_t count(const key_type& key) const {
return (find(key) == end()) ? 0 : 1;
}
size_t size() const { return UsingFullMap() ? map_.size() : size_; }
bool empty() const { return UsingFullMap() ? map_.empty() : size_ == 0; }
// Returns true if we have fallen back to using the underlying map
// representation.
bool UsingFullMap() const { return size_ == kUsingFullMapSentinel; }
inline NormalMap* map() {
CHECK(UsingFullMap());
return &map_;
}
inline const NormalMap* map() const {
CHECK(UsingFullMap());
return &map_;
}
private:
// When `size_ == kUsingFullMapSentinel`, we have switched storage strategies
// from `array_[kArraySize] to `NormalMap map_`. See ConvertToRealMap and
// UsingFullMap.
size_t size_;
MapInit functor_;
// We want to call constructors and destructors manually, but we don't want
// to allocate and deallocate the memory used for them separately. Since
// array_ and map_ are mutually exclusive, we'll put them in a union.
union {
value_type array_[kArraySize];
NormalMap map_;
};
void ConvertToRealMap() {
// Storage for the elements in the temporary array. This is intentionally
// declared as a union to avoid having to default-construct |kArraySize|
// elements, only to move construct over them in the initial loop.
union Storage {
Storage() {}
~Storage() {}
value_type array[kArraySize];
} temp;
// Move the current elements into a temporary array.
for (size_t i = 0; i < kArraySize; ++i) {
new (&temp.array[i]) value_type(std::move(array_[i]));
array_[i].~value_type();
}
// Initialize the map.
size_ = kUsingFullMapSentinel;
functor_(&map_);
// Insert elements into it.
for (size_t i = 0; i < kArraySize; ++i) {
map_.insert(std::move(temp.array[i]));
temp.array[i].~value_type();
}
}
// Helpers for constructors and destructors.
void InitFrom(const small_map& src) {
functor_ = src.functor_;
size_ = src.size_;
if (src.UsingFullMap()) {
functor_(&map_);
map_ = src.map_;
} else {
for (size_t i = 0; i < size_; ++i) {
new (&array_[i]) value_type(src.array_[i]);
}
}
}
void Destroy() {
if (UsingFullMap()) {
map_.~NormalMap();
} else {
for (size_t i = 0; i < size_; ++i) {
array_[i].~value_type();
}
}
}
};
template <typename NormalMap,
size_t kArraySize,
typename EqualKey,
typename Functor>
inline bool small_map<NormalMap, kArraySize, EqualKey, Functor>::iterator::
operator==(const const_iterator& other) const {
return other == *this;
}
template <typename NormalMap,
size_t kArraySize,
typename EqualKey,
typename Functor>
inline bool small_map<NormalMap, kArraySize, EqualKey, Functor>::iterator::
operator!=(const const_iterator& other) const {
return other != *this;
}
} // namespace base
#endif // BASE_CONTAINERS_SMALL_MAP_H_