mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2025-02-20 17:03:20 +03:00
388 lines
13 KiB
C++
388 lines
13 KiB
C++
// Copyright 2012 The Chromium Authors
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "base/cpu.h"
|
|
|
|
#include <inttypes.h>
|
|
#include <limits.h>
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include <algorithm>
|
|
#include <sstream>
|
|
#include <utility>
|
|
|
|
#include "base/no_destructor.h"
|
|
#include "build/build_config.h"
|
|
|
|
#if defined(ARCH_CPU_ARM_FAMILY) && \
|
|
(BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS))
|
|
#include <asm/hwcap.h>
|
|
#include <sys/auxv.h>
|
|
|
|
#include "base/files/file_util.h"
|
|
#include "base/numerics/checked_math.h"
|
|
#include "base/ranges/algorithm.h"
|
|
#include "base/strings/string_number_conversions.h"
|
|
#include "base/strings/string_split.h"
|
|
#include "base/strings/string_util.h"
|
|
|
|
// Temporary definitions until a new hwcap.h is pulled in everywhere.
|
|
// https://crbug.com/1265965
|
|
#ifndef HWCAP2_MTE
|
|
#define HWCAP2_MTE (1 << 18)
|
|
#define HWCAP2_BTI (1 << 17)
|
|
#endif
|
|
|
|
struct ProcCpuInfo {
|
|
std::string brand;
|
|
uint8_t implementer = 0;
|
|
uint32_t part_number = 0;
|
|
};
|
|
#endif
|
|
|
|
#if defined(ARCH_CPU_X86_FAMILY)
|
|
#if defined(COMPILER_MSVC)
|
|
#include <intrin.h>
|
|
#include <immintrin.h> // For _xgetbv()
|
|
#endif
|
|
#endif
|
|
|
|
namespace base {
|
|
|
|
#if defined(ARCH_CPU_X86_FAMILY)
|
|
namespace internal {
|
|
|
|
X86ModelInfo ComputeX86FamilyAndModel(const std::string& vendor,
|
|
int signature) {
|
|
X86ModelInfo results;
|
|
results.family = (signature >> 8) & 0xf;
|
|
results.model = (signature >> 4) & 0xf;
|
|
results.ext_family = 0;
|
|
results.ext_model = 0;
|
|
|
|
// The "Intel 64 and IA-32 Architectures Developer's Manual: Vol. 2A"
|
|
// specifies the Extended Model is defined only when the Base Family is
|
|
// 06h or 0Fh.
|
|
// The "AMD CPUID Specification" specifies that the Extended Model is
|
|
// defined only when Base Family is 0Fh.
|
|
// Both manuals define the display model as
|
|
// {ExtendedModel[3:0],BaseModel[3:0]} in that case.
|
|
if (results.family == 0xf ||
|
|
(results.family == 0x6 && vendor == "GenuineIntel")) {
|
|
results.ext_model = (signature >> 16) & 0xf;
|
|
results.model += results.ext_model << 4;
|
|
}
|
|
// Both the "Intel 64 and IA-32 Architectures Developer's Manual: Vol. 2A"
|
|
// and the "AMD CPUID Specification" specify that the Extended Family is
|
|
// defined only when the Base Family is 0Fh.
|
|
// Both manuals define the display family as {0000b,BaseFamily[3:0]} +
|
|
// ExtendedFamily[7:0] in that case.
|
|
if (results.family == 0xf) {
|
|
results.ext_family = (signature >> 20) & 0xff;
|
|
results.family += results.ext_family;
|
|
}
|
|
|
|
return results;
|
|
}
|
|
|
|
} // namespace internal
|
|
#endif // defined(ARCH_CPU_X86_FAMILY)
|
|
|
|
CPU::CPU(bool require_branding) {
|
|
Initialize(require_branding);
|
|
}
|
|
CPU::CPU() : CPU(true) {}
|
|
CPU::CPU(CPU&&) = default;
|
|
|
|
namespace {
|
|
|
|
#if defined(ARCH_CPU_X86_FAMILY)
|
|
#if !defined(COMPILER_MSVC)
|
|
|
|
#if defined(__pic__) && defined(__i386__)
|
|
|
|
void __cpuid(int cpu_info[4], int info_type) {
|
|
__asm__ volatile(
|
|
"mov %%ebx, %%edi\n"
|
|
"cpuid\n"
|
|
"xchg %%edi, %%ebx\n"
|
|
: "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]),
|
|
"=d"(cpu_info[3])
|
|
: "a"(info_type), "c"(0));
|
|
}
|
|
|
|
#else
|
|
|
|
void __cpuid(int cpu_info[4], int info_type) {
|
|
__asm__ volatile("cpuid\n"
|
|
: "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]),
|
|
"=d"(cpu_info[3])
|
|
: "a"(info_type), "c"(0));
|
|
}
|
|
|
|
#endif
|
|
#endif // !defined(COMPILER_MSVC)
|
|
|
|
// xgetbv returns the value of an Intel Extended Control Register (XCR).
|
|
// Currently only XCR0 is defined by Intel so |xcr| should always be zero.
|
|
uint64_t xgetbv(uint32_t xcr) {
|
|
#if defined(COMPILER_MSVC)
|
|
return _xgetbv(xcr);
|
|
#else
|
|
uint32_t eax, edx;
|
|
|
|
__asm__ volatile (
|
|
"xgetbv" : "=a"(eax), "=d"(edx) : "c"(xcr));
|
|
return (static_cast<uint64_t>(edx) << 32) | eax;
|
|
#endif // defined(COMPILER_MSVC)
|
|
}
|
|
|
|
#endif // ARCH_CPU_X86_FAMILY
|
|
|
|
#if defined(ARCH_CPU_ARM_FAMILY) && \
|
|
(BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS))
|
|
StringPairs::const_iterator FindFirstProcCpuKey(const StringPairs& pairs,
|
|
StringPiece key) {
|
|
return ranges::find_if(pairs, [key](const StringPairs::value_type& pair) {
|
|
return TrimWhitespaceASCII(pair.first, base::TRIM_ALL) == key;
|
|
});
|
|
}
|
|
|
|
// Parses information about the ARM processor. Note that depending on the CPU
|
|
// package, processor configuration, and/or kernel version, this may only
|
|
// report information about the processor on which this thread is running. This
|
|
// can happen on heterogeneous-processor SoCs like Snapdragon 808, which has 4
|
|
// Cortex-A53 and 2 Cortex-A57. Unfortunately there is not a universally
|
|
// reliable way to examine the CPU part information for all cores.
|
|
const ProcCpuInfo& ParseProcCpu() {
|
|
static const NoDestructor<ProcCpuInfo> info([]() {
|
|
// This function finds the value from /proc/cpuinfo under the key "model
|
|
// name" or "Processor". "model name" is used in Linux 3.8 and later (3.7
|
|
// and later for arm64) and is shown once per CPU. "Processor" is used in
|
|
// earler versions and is shown only once at the top of /proc/cpuinfo
|
|
// regardless of the number CPUs.
|
|
const char kModelNamePrefix[] = "model name";
|
|
const char kProcessorPrefix[] = "Processor";
|
|
|
|
std::string cpuinfo;
|
|
ReadFileToString(FilePath("/proc/cpuinfo"), &cpuinfo);
|
|
DCHECK(!cpuinfo.empty());
|
|
|
|
ProcCpuInfo info;
|
|
|
|
StringPairs pairs;
|
|
if (!SplitStringIntoKeyValuePairs(cpuinfo, ':', '\n', &pairs)) {
|
|
NOTREACHED();
|
|
return info;
|
|
}
|
|
|
|
auto model_name = FindFirstProcCpuKey(pairs, kModelNamePrefix);
|
|
if (model_name == pairs.end())
|
|
model_name = FindFirstProcCpuKey(pairs, kProcessorPrefix);
|
|
if (model_name != pairs.end()) {
|
|
info.brand =
|
|
std::string(TrimWhitespaceASCII(model_name->second, TRIM_ALL));
|
|
}
|
|
|
|
auto implementer_string = FindFirstProcCpuKey(pairs, "CPU implementer");
|
|
if (implementer_string != pairs.end()) {
|
|
// HexStringToUInt() handles the leading whitespace on the value.
|
|
uint32_t implementer;
|
|
HexStringToUInt(implementer_string->second, &implementer);
|
|
if (!CheckedNumeric<uint32_t>(implementer)
|
|
.AssignIfValid(&info.implementer)) {
|
|
info.implementer = 0;
|
|
}
|
|
}
|
|
|
|
auto part_number_string = FindFirstProcCpuKey(pairs, "CPU part");
|
|
if (part_number_string != pairs.end())
|
|
HexStringToUInt(part_number_string->second, &info.part_number);
|
|
|
|
return info;
|
|
}());
|
|
|
|
return *info;
|
|
}
|
|
#endif // defined(ARCH_CPU_ARM_FAMILY) && (BUILDFLAG(IS_ANDROID) ||
|
|
// BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS))
|
|
|
|
} // namespace
|
|
|
|
void CPU::Initialize(bool require_branding) {
|
|
#if defined(ARCH_CPU_X86_FAMILY)
|
|
int cpu_info[4] = {-1};
|
|
// This array is used to temporarily hold the vendor name and then the brand
|
|
// name. Thus it has to be big enough for both use cases. There are
|
|
// static_asserts below for each of the use cases to make sure this array is
|
|
// big enough.
|
|
char cpu_string[sizeof(cpu_info) * 3 + 1];
|
|
|
|
// __cpuid with an InfoType argument of 0 returns the number of
|
|
// valid Ids in CPUInfo[0] and the CPU identification string in
|
|
// the other three array elements. The CPU identification string is
|
|
// not in linear order. The code below arranges the information
|
|
// in a human readable form. The human readable order is CPUInfo[1] |
|
|
// CPUInfo[3] | CPUInfo[2]. CPUInfo[2] and CPUInfo[3] are swapped
|
|
// before using memcpy() to copy these three array elements to |cpu_string|.
|
|
__cpuid(cpu_info, 0);
|
|
int num_ids = cpu_info[0];
|
|
std::swap(cpu_info[2], cpu_info[3]);
|
|
static constexpr size_t kVendorNameSize = 3 * sizeof(cpu_info[1]);
|
|
static_assert(kVendorNameSize < std::size(cpu_string),
|
|
"cpu_string too small");
|
|
memcpy(cpu_string, &cpu_info[1], kVendorNameSize);
|
|
cpu_string[kVendorNameSize] = '\0';
|
|
cpu_vendor_ = cpu_string;
|
|
|
|
// Interpret CPU feature information.
|
|
if (num_ids > 0) {
|
|
int cpu_info7[4] = {0};
|
|
__cpuid(cpu_info, 1);
|
|
if (num_ids >= 7) {
|
|
__cpuid(cpu_info7, 7);
|
|
}
|
|
signature_ = cpu_info[0];
|
|
stepping_ = cpu_info[0] & 0xf;
|
|
type_ = (cpu_info[0] >> 12) & 0x3;
|
|
internal::X86ModelInfo results =
|
|
internal::ComputeX86FamilyAndModel(cpu_vendor_, signature_);
|
|
family_ = results.family;
|
|
model_ = results.model;
|
|
ext_family_ = results.ext_family;
|
|
ext_model_ = results.ext_model;
|
|
has_mmx_ = (cpu_info[3] & 0x00800000) != 0;
|
|
has_sse_ = (cpu_info[3] & 0x02000000) != 0;
|
|
has_sse2_ = (cpu_info[3] & 0x04000000) != 0;
|
|
has_sse3_ = (cpu_info[2] & 0x00000001) != 0;
|
|
has_ssse3_ = (cpu_info[2] & 0x00000200) != 0;
|
|
has_sse41_ = (cpu_info[2] & 0x00080000) != 0;
|
|
has_sse42_ = (cpu_info[2] & 0x00100000) != 0;
|
|
has_popcnt_ = (cpu_info[2] & 0x00800000) != 0;
|
|
|
|
// "Hypervisor Present Bit: Bit 31 of ECX of CPUID leaf 0x1."
|
|
// See https://lwn.net/Articles/301888/
|
|
// This is checking for any hypervisor. Hypervisors may choose not to
|
|
// announce themselves. Hypervisors trap CPUID and sometimes return
|
|
// different results to underlying hardware.
|
|
is_running_in_vm_ = (static_cast<uint32_t>(cpu_info[2]) & 0x80000000) != 0;
|
|
|
|
// AVX instructions will generate an illegal instruction exception unless
|
|
// a) they are supported by the CPU,
|
|
// b) XSAVE is supported by the CPU and
|
|
// c) XSAVE is enabled by the kernel.
|
|
// See http://software.intel.com/en-us/blogs/2011/04/14/is-avx-enabled
|
|
//
|
|
// In addition, we have observed some crashes with the xgetbv instruction
|
|
// even after following Intel's example code. (See crbug.com/375968.)
|
|
// Because of that, we also test the XSAVE bit because its description in
|
|
// the CPUID documentation suggests that it signals xgetbv support.
|
|
has_avx_ =
|
|
(cpu_info[2] & 0x10000000) != 0 &&
|
|
(cpu_info[2] & 0x04000000) != 0 /* XSAVE */ &&
|
|
(cpu_info[2] & 0x08000000) != 0 /* OSXSAVE */ &&
|
|
(xgetbv(0) & 6) == 6 /* XSAVE enabled by kernel */;
|
|
has_aesni_ = (cpu_info[2] & 0x02000000) != 0;
|
|
has_fma3_ = (cpu_info[2] & 0x00001000) != 0;
|
|
has_avx2_ = has_avx_ && (cpu_info7[1] & 0x00000020) != 0;
|
|
|
|
has_pku_ = (cpu_info7[2] & 0x00000010) != 0;
|
|
}
|
|
|
|
// Get the brand string of the cpu.
|
|
__cpuid(cpu_info, static_cast<int>(0x80000000));
|
|
const uint32_t max_parameter = static_cast<uint32_t>(cpu_info[0]);
|
|
|
|
static constexpr uint32_t kParameterStart = 0x80000002;
|
|
static constexpr uint32_t kParameterEnd = 0x80000004;
|
|
static constexpr uint32_t kParameterSize =
|
|
kParameterEnd - kParameterStart + 1;
|
|
static_assert(kParameterSize * sizeof(cpu_info) + 1 == std::size(cpu_string),
|
|
"cpu_string has wrong size");
|
|
|
|
if (max_parameter >= kParameterEnd) {
|
|
size_t i = 0;
|
|
for (uint32_t parameter = kParameterStart; parameter <= kParameterEnd;
|
|
++parameter) {
|
|
__cpuid(cpu_info, static_cast<int>(parameter));
|
|
memcpy(&cpu_string[i], cpu_info, sizeof(cpu_info));
|
|
i += sizeof(cpu_info);
|
|
}
|
|
cpu_string[i] = '\0';
|
|
cpu_brand_ = cpu_string;
|
|
}
|
|
|
|
static constexpr uint32_t kParameterContainingNonStopTimeStampCounter =
|
|
0x80000007;
|
|
if (max_parameter >= kParameterContainingNonStopTimeStampCounter) {
|
|
__cpuid(cpu_info,
|
|
static_cast<int>(kParameterContainingNonStopTimeStampCounter));
|
|
has_non_stop_time_stamp_counter_ = (cpu_info[3] & (1 << 8)) != 0;
|
|
}
|
|
|
|
if (!has_non_stop_time_stamp_counter_ && is_running_in_vm_) {
|
|
int cpu_info_hv[4] = {};
|
|
__cpuid(cpu_info_hv, 0x40000000);
|
|
if (cpu_info_hv[1] == 0x7263694D && // Micr
|
|
cpu_info_hv[2] == 0x666F736F && // osof
|
|
cpu_info_hv[3] == 0x76482074) { // t Hv
|
|
// If CPUID says we have a variant TSC and a hypervisor has identified
|
|
// itself and the hypervisor says it is Microsoft Hyper-V, then treat
|
|
// TSC as invariant.
|
|
//
|
|
// Microsoft Hyper-V hypervisor reports variant TSC as there are some
|
|
// scenarios (eg. VM live migration) where the TSC is variant, but for
|
|
// our purposes we can treat it as invariant.
|
|
has_non_stop_time_stamp_counter_ = true;
|
|
}
|
|
}
|
|
#elif defined(ARCH_CPU_ARM_FAMILY)
|
|
#if BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
|
|
if (require_branding) {
|
|
const ProcCpuInfo& info = ParseProcCpu();
|
|
cpu_brand_ = info.brand;
|
|
implementer_ = info.implementer;
|
|
part_number_ = info.part_number;
|
|
}
|
|
|
|
#if defined(ARCH_CPU_ARM64)
|
|
// Check for Armv8.5-A BTI/MTE support, exposed via HWCAP2
|
|
unsigned long hwcap2 = getauxval(AT_HWCAP2);
|
|
has_mte_ = hwcap2 & HWCAP2_MTE;
|
|
has_bti_ = hwcap2 & HWCAP2_BTI;
|
|
#endif
|
|
|
|
#elif BUILDFLAG(IS_WIN)
|
|
// Windows makes high-resolution thread timing information available in
|
|
// user-space.
|
|
has_non_stop_time_stamp_counter_ = true;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#if defined(ARCH_CPU_X86_FAMILY)
|
|
CPU::IntelMicroArchitecture CPU::GetIntelMicroArchitecture() const {
|
|
if (has_avx2()) return AVX2;
|
|
if (has_fma3()) return FMA3;
|
|
if (has_avx()) return AVX;
|
|
if (has_sse42()) return SSE42;
|
|
if (has_sse41()) return SSE41;
|
|
if (has_ssse3()) return SSSE3;
|
|
if (has_sse3()) return SSE3;
|
|
if (has_sse2()) return SSE2;
|
|
if (has_sse()) return SSE;
|
|
return PENTIUM;
|
|
}
|
|
#endif
|
|
|
|
const CPU& CPU::GetInstanceNoAllocation() {
|
|
static const base::NoDestructor<const CPU> cpu(CPU(false));
|
|
|
|
return *cpu;
|
|
}
|
|
|
|
} // namespace base
|