naiveproxy/net/socket/udp_socket_posix.cc
2018-08-14 22:19:20 +00:00

1465 lines
46 KiB
C++

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/socket/udp_socket_posix.h"
#include <errno.h>
#include <fcntl.h>
#include <net/if.h>
#include <netdb.h>
#include <netinet/in.h>
#include <sys/ioctl.h>
#include "base/callback.h"
#include "base/callback_helpers.h"
#include "base/containers/stack_container.h"
#include "base/debug/alias.h"
#include "base/files/file_util.h"
#include "base/logging.h"
#include "base/message_loop/message_loop_current.h"
#include "base/metrics/histogram_functions.h"
#include "base/posix/eintr_wrapper.h"
#include "base/rand_util.h"
#include "base/task/post_task.h"
#include "base/task_runner_util.h"
#include "base/trace_event/trace_event.h"
#include "build/build_config.h"
#include "net/base/io_buffer.h"
#include "net/base/ip_address.h"
#include "net/base/ip_endpoint.h"
#include "net/base/net_errors.h"
#include "net/base/network_activity_monitor.h"
#include "net/base/sockaddr_storage.h"
#include "net/base/trace_constants.h"
#include "net/log/net_log.h"
#include "net/log/net_log_event_type.h"
#include "net/log/net_log_source.h"
#include "net/log/net_log_source_type.h"
#include "net/socket/socket_descriptor.h"
#include "net/socket/socket_options.h"
#include "net/socket/socket_tag.h"
#include "net/socket/udp_net_log_parameters.h"
#include "net/traffic_annotation/network_traffic_annotation.h"
#if defined(OS_ANDROID)
#include <dlfcn.h>
#include "base/android/build_info.h"
#include "base/native_library.h"
#include "base/strings/utf_string_conversions.h"
#endif // defined(OS_ANDROID)
#if defined(OS_MACOSX) && !defined(OS_IOS)
// This was needed to debug crbug.com/640281.
// TODO(zhongyi): Remove once the bug is resolved.
#include <dlfcn.h>
#include <pthread.h>
#endif // defined(OS_MACOSX) && !defined(OS_IOS)
namespace net {
namespace {
const int kBindRetries = 10;
const int kPortStart = 1024;
const int kPortEnd = 65535;
const int kActivityMonitorBytesThreshold = 65535;
const int kActivityMonitorMinimumSamplesForThroughputEstimate = 2;
const base::TimeDelta kActivityMonitorMsThreshold =
base::TimeDelta::FromMilliseconds(100);
#if defined(OS_MACOSX)
// When enabling multicast using setsockopt(IP_MULTICAST_IF) MacOS
// requires passing IPv4 address instead of interface index. This function
// resolves IPv4 address by interface index. The |address| is returned in
// network order.
int GetIPv4AddressFromIndex(int socket, uint32_t index, uint32_t* address) {
if (!index) {
*address = htonl(INADDR_ANY);
return OK;
}
sockaddr_in* result = nullptr;
ifreq ifr;
ifr.ifr_addr.sa_family = AF_INET;
if (!if_indextoname(index, ifr.ifr_name))
return MapSystemError(errno);
int rv = ioctl(socket, SIOCGIFADDR, &ifr);
if (rv == -1)
return MapSystemError(errno);
result = reinterpret_cast<sockaddr_in*>(&ifr.ifr_addr);
if (!result)
return ERR_ADDRESS_INVALID;
*address = result->sin_addr.s_addr;
return OK;
}
#endif // OS_MACOSX
#if defined(OS_MACOSX) && !defined(OS_IOS)
// On OSX the file descriptor is guarded to detect the cause of
// crbug.com/640281. guarded API is supported only on newer versions of OSX,
// so the symbols need to be resolved dynamically.
// TODO(zhongyi): Removed this code once the bug is resolved.
typedef uint64_t guardid_t;
typedef int (*GuardedCloseNpFunction)(int fd, const guardid_t* guard);
typedef int (*ChangeFdguardNpFunction)(int fd,
const guardid_t* guard,
u_int flags,
const guardid_t* nguard,
u_int nflags,
int* fdflagsp);
GuardedCloseNpFunction g_guarded_close_np = nullptr;
ChangeFdguardNpFunction g_change_fdguard_np = nullptr;
pthread_once_t g_guarded_functions_once = PTHREAD_ONCE_INIT;
void InitGuardedFunctions() {
void* libsystem_handle =
dlopen("/usr/lib/libSystem.dylib", RTLD_LAZY | RTLD_LOCAL | RTLD_NOLOAD);
if (libsystem_handle) {
g_guarded_close_np = reinterpret_cast<GuardedCloseNpFunction>(
dlsym(libsystem_handle, "guarded_close_np"));
g_change_fdguard_np = reinterpret_cast<ChangeFdguardNpFunction>(
dlsym(libsystem_handle, "change_fdguard_np"));
// If for any reason only one of the functions is found, set both of them to
// nullptr.
if (!g_guarded_close_np || !g_change_fdguard_np) {
g_guarded_close_np = nullptr;
g_change_fdguard_np = nullptr;
}
}
}
int change_fdguard_np(int fd,
const guardid_t* guard,
u_int flags,
const guardid_t* nguard,
u_int nflags,
int* fdflagsp) {
CHECK_EQ(pthread_once(&g_guarded_functions_once, InitGuardedFunctions), 0);
// Older version of OSX may not support guarded API.
if (!g_change_fdguard_np)
return 0;
return g_change_fdguard_np(fd, guard, flags, nguard, nflags, fdflagsp);
}
int guarded_close_np(int fd, const guardid_t* guard) {
// Older version of OSX may not support guarded API.
if (!g_guarded_close_np)
return close(fd);
return g_guarded_close_np(fd, guard);
}
const unsigned int GUARD_CLOSE = 1u << 0;
const unsigned int GUARD_DUP = 1u << 1;
const guardid_t kSocketFdGuard = 0xD712BC0BC9A4EAD4;
#endif // defined(OS_MACOSX) && !defined(OS_IOS)
} // namespace
UDPSocketPosix::UDPSocketPosix(DatagramSocket::BindType bind_type,
net::NetLog* net_log,
const net::NetLogSource& source)
: write_async_watcher_(std::make_unique<WriteAsyncWatcher>(this)),
sender_(new UDPSocketPosixSender()),
socket_(kInvalidSocket),
addr_family_(0),
is_connected_(false),
socket_options_(SOCKET_OPTION_MULTICAST_LOOP),
sendto_flags_(0),
multicast_interface_(0),
multicast_time_to_live_(1),
bind_type_(bind_type),
read_socket_watcher_(FROM_HERE),
write_socket_watcher_(FROM_HERE),
read_watcher_(this),
write_watcher_(this),
last_async_result_(0),
write_async_timer_running_(false),
write_async_outstanding_(0),
read_buf_len_(0),
recv_from_address_(NULL),
write_buf_len_(0),
net_log_(NetLogWithSource::Make(net_log, NetLogSourceType::UDP_SOCKET)),
bound_network_(NetworkChangeNotifier::kInvalidNetworkHandle),
experimental_recv_optimization_enabled_(false),
weak_factory_(this) {
net_log_.BeginEvent(NetLogEventType::SOCKET_ALIVE,
source.ToEventParametersCallback());
}
UDPSocketPosix::~UDPSocketPosix() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
Close();
net_log_.EndEvent(NetLogEventType::SOCKET_ALIVE);
}
int UDPSocketPosix::Open(AddressFamily address_family) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK_EQ(socket_, kInvalidSocket);
addr_family_ = ConvertAddressFamily(address_family);
socket_ = CreatePlatformSocket(addr_family_, SOCK_DGRAM, 0);
if (socket_ == kInvalidSocket)
return MapSystemError(errno);
#if defined(OS_MACOSX) && !defined(OS_IOS)
PCHECK(change_fdguard_np(socket_, NULL, 0, &kSocketFdGuard,
GUARD_CLOSE | GUARD_DUP, NULL) == 0);
#endif // defined(OS_MACOSX) && !defined(OS_IOS)
if (!base::SetNonBlocking(socket_)) {
const int err = MapSystemError(errno);
Close();
return err;
}
if (tag_ != SocketTag())
tag_.Apply(socket_);
return OK;
}
void UDPSocketPosix::ActivityMonitor::Increment(uint32_t bytes) {
if (!bytes)
return;
bool timer_running = timer_.IsRunning();
bytes_ += bytes;
increments_++;
// Allow initial updates to make sure throughput estimator has
// enough samples to generate a value. (low water mark)
// Or once the bytes threshold has be met. (high water mark)
if (increments_ < kActivityMonitorMinimumSamplesForThroughputEstimate ||
bytes_ > kActivityMonitorBytesThreshold) {
Update();
if (timer_running)
timer_.Reset();
}
if (!timer_running) {
timer_.Start(FROM_HERE, kActivityMonitorMsThreshold, this,
&UDPSocketPosix::ActivityMonitor::OnTimerFired);
}
}
void UDPSocketPosix::ActivityMonitor::Update() {
if (!bytes_)
return;
NetworkActivityMonitorIncrement(bytes_);
bytes_ = 0;
}
void UDPSocketPosix::ActivityMonitor::OnClose() {
timer_.Stop();
Update();
}
void UDPSocketPosix::ActivityMonitor::OnTimerFired() {
increments_ = 0;
if (!bytes_) {
// Can happen if the socket has been idle and have had no
// increments since the timer previously fired. Don't bother
// keeping the timer running in this case.
timer_.Stop();
return;
}
Update();
}
void UDPSocketPosix::SentActivityMonitor::NetworkActivityMonitorIncrement(
uint32_t bytes) {
NetworkActivityMonitor::GetInstance()->IncrementBytesSent(bytes);
}
void UDPSocketPosix::ReceivedActivityMonitor::NetworkActivityMonitorIncrement(
uint32_t bytes) {
NetworkActivityMonitor::GetInstance()->IncrementBytesReceived(bytes);
}
void UDPSocketPosix::Close() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (socket_ == kInvalidSocket)
return;
// Zero out any pending read/write callback state.
read_buf_ = NULL;
read_buf_len_ = 0;
read_callback_.Reset();
recv_from_address_ = NULL;
write_buf_ = NULL;
write_buf_len_ = 0;
write_callback_.Reset();
send_to_address_.reset();
bool ok = read_socket_watcher_.StopWatchingFileDescriptor();
DCHECK(ok);
ok = write_socket_watcher_.StopWatchingFileDescriptor();
DCHECK(ok);
#if defined(OS_MACOSX) && !defined(OS_IOS)
PCHECK(IGNORE_EINTR(guarded_close_np(socket_, &kSocketFdGuard)) == 0);
#else
PCHECK(IGNORE_EINTR(close(socket_)) == 0);
#endif // defined(OS_MACOSX) && !defined(OS_IOS)
socket_ = kInvalidSocket;
addr_family_ = 0;
is_connected_ = false;
tag_ = SocketTag();
write_async_timer_.Stop();
sent_activity_monitor_.OnClose();
received_activity_monitor_.OnClose();
}
int UDPSocketPosix::GetPeerAddress(IPEndPoint* address) const {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK(address);
if (!is_connected())
return ERR_SOCKET_NOT_CONNECTED;
if (!remote_address_.get()) {
SockaddrStorage storage;
if (getpeername(socket_, storage.addr, &storage.addr_len))
return MapSystemError(errno);
std::unique_ptr<IPEndPoint> address(new IPEndPoint());
if (!address->FromSockAddr(storage.addr, storage.addr_len))
return ERR_ADDRESS_INVALID;
remote_address_ = std::move(address);
}
*address = *remote_address_;
return OK;
}
int UDPSocketPosix::GetLocalAddress(IPEndPoint* address) const {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK(address);
if (!is_connected())
return ERR_SOCKET_NOT_CONNECTED;
if (!local_address_.get()) {
SockaddrStorage storage;
if (getsockname(socket_, storage.addr, &storage.addr_len))
return MapSystemError(errno);
std::unique_ptr<IPEndPoint> address(new IPEndPoint());
if (!address->FromSockAddr(storage.addr, storage.addr_len))
return ERR_ADDRESS_INVALID;
local_address_ = std::move(address);
net_log_.AddEvent(
NetLogEventType::UDP_LOCAL_ADDRESS,
CreateNetLogUDPConnectCallback(local_address_.get(), bound_network_));
}
*address = *local_address_;
return OK;
}
int UDPSocketPosix::Read(IOBuffer* buf,
int buf_len,
CompletionOnceCallback callback) {
return RecvFrom(buf, buf_len, NULL, std::move(callback));
}
int UDPSocketPosix::RecvFrom(IOBuffer* buf,
int buf_len,
IPEndPoint* address,
CompletionOnceCallback callback) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK_NE(kInvalidSocket, socket_);
CHECK(read_callback_.is_null());
DCHECK(!recv_from_address_);
DCHECK(!callback.is_null()); // Synchronous operation not supported
DCHECK_GT(buf_len, 0);
int nread = InternalRecvFrom(buf, buf_len, address);
if (nread != ERR_IO_PENDING)
return nread;
if (!base::MessageLoopCurrentForIO::Get()->WatchFileDescriptor(
socket_, true, base::MessagePumpForIO::WATCH_READ,
&read_socket_watcher_, &read_watcher_)) {
PLOG(ERROR) << "WatchFileDescriptor failed on read";
int result = MapSystemError(errno);
LogRead(result, NULL, 0, NULL);
return result;
}
read_buf_ = buf;
read_buf_len_ = buf_len;
recv_from_address_ = address;
read_callback_ = std::move(callback);
return ERR_IO_PENDING;
}
int UDPSocketPosix::Write(
IOBuffer* buf,
int buf_len,
CompletionOnceCallback callback,
const NetworkTrafficAnnotationTag& traffic_annotation) {
return SendToOrWrite(buf, buf_len, NULL, std::move(callback));
}
int UDPSocketPosix::SendTo(IOBuffer* buf,
int buf_len,
const IPEndPoint& address,
CompletionOnceCallback callback) {
return SendToOrWrite(buf, buf_len, &address, std::move(callback));
}
int UDPSocketPosix::SendToOrWrite(IOBuffer* buf,
int buf_len,
const IPEndPoint* address,
CompletionOnceCallback callback) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK_NE(kInvalidSocket, socket_);
CHECK(write_callback_.is_null());
DCHECK(!callback.is_null()); // Synchronous operation not supported
DCHECK_GT(buf_len, 0);
int result = InternalSendTo(buf, buf_len, address);
if (result != ERR_IO_PENDING)
return result;
if (!base::MessageLoopCurrentForIO::Get()->WatchFileDescriptor(
socket_, true, base::MessagePumpForIO::WATCH_WRITE,
&write_socket_watcher_, &write_watcher_)) {
DVLOG(1) << "WatchFileDescriptor failed on write, errno " << errno;
int result = MapSystemError(errno);
LogWrite(result, NULL, NULL);
return result;
}
write_buf_ = buf;
write_buf_len_ = buf_len;
DCHECK(!send_to_address_.get());
if (address) {
send_to_address_.reset(new IPEndPoint(*address));
}
write_callback_ = std::move(callback);
return ERR_IO_PENDING;
}
int UDPSocketPosix::Connect(const IPEndPoint& address) {
DCHECK_NE(socket_, kInvalidSocket);
net_log_.BeginEvent(NetLogEventType::UDP_CONNECT,
CreateNetLogUDPConnectCallback(&address, bound_network_));
int rv = InternalConnect(address);
net_log_.EndEventWithNetErrorCode(NetLogEventType::UDP_CONNECT, rv);
is_connected_ = (rv == OK);
if (rv != OK)
tag_ = SocketTag();
return rv;
}
int UDPSocketPosix::InternalConnect(const IPEndPoint& address) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK(!is_connected());
DCHECK(!remote_address_.get());
int rv = 0;
if (bind_type_ == DatagramSocket::RANDOM_BIND) {
// Construct IPAddress of appropriate size (IPv4 or IPv6) of 0s,
// representing INADDR_ANY or in6addr_any.
size_t addr_size = address.GetSockAddrFamily() == AF_INET
? IPAddress::kIPv4AddressSize
: IPAddress::kIPv6AddressSize;
rv = RandomBind(IPAddress::AllZeros(addr_size));
}
// else connect() does the DatagramSocket::DEFAULT_BIND
if (rv < 0) {
base::UmaHistogramSparse("Net.UdpSocketRandomBindErrorCode", -rv);
return rv;
}
SockaddrStorage storage;
if (!address.ToSockAddr(storage.addr, &storage.addr_len))
return ERR_ADDRESS_INVALID;
rv = HANDLE_EINTR(connect(socket_, storage.addr, storage.addr_len));
if (rv < 0)
return MapSystemError(errno);
remote_address_.reset(new IPEndPoint(address));
return rv;
}
int UDPSocketPosix::Bind(const IPEndPoint& address) {
DCHECK_NE(socket_, kInvalidSocket);
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK(!is_connected());
int rv = SetMulticastOptions();
if (rv < 0)
return rv;
rv = DoBind(address);
if (rv < 0)
return rv;
is_connected_ = true;
local_address_.reset();
return rv;
}
int UDPSocketPosix::BindToNetwork(
NetworkChangeNotifier::NetworkHandle network) {
DCHECK_NE(socket_, kInvalidSocket);
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK(!is_connected());
if (network == NetworkChangeNotifier::kInvalidNetworkHandle)
return ERR_INVALID_ARGUMENT;
#if defined(OS_ANDROID)
// Android prior to Lollipop didn't have support for binding sockets to
// networks.
if (base::android::BuildInfo::GetInstance()->sdk_int() <
base::android::SDK_VERSION_LOLLIPOP) {
return ERR_NOT_IMPLEMENTED;
}
int rv;
// On Android M and newer releases use supported NDK API. On Android L use
// setNetworkForSocket from libnetd_client.so.
if (base::android::BuildInfo::GetInstance()->sdk_int() >=
base::android::SDK_VERSION_MARSHMALLOW) {
// See declaration of android_setsocknetwork() here:
// http://androidxref.com/6.0.0_r1/xref/development/ndk/platforms/android-M/include/android/multinetwork.h#65
// Function cannot be called directly as it will cause app to fail to load
// on pre-marshmallow devices.
typedef int (*MarshmallowSetNetworkForSocket)(int64_t netId, int socketFd);
static MarshmallowSetNetworkForSocket marshmallowSetNetworkForSocket;
// This is racy, but all racers should come out with the same answer so it
// shouldn't matter.
if (!marshmallowSetNetworkForSocket) {
base::FilePath file(base::GetNativeLibraryName("android"));
void* dl = dlopen(file.value().c_str(), RTLD_NOW);
marshmallowSetNetworkForSocket =
reinterpret_cast<MarshmallowSetNetworkForSocket>(
dlsym(dl, "android_setsocknetwork"));
}
if (!marshmallowSetNetworkForSocket)
return ERR_NOT_IMPLEMENTED;
rv = marshmallowSetNetworkForSocket(network, socket_);
if (rv)
rv = errno;
} else {
// NOTE(pauljensen): This does rely on Android implementation details, but
// they won't change because Lollipop is already released.
typedef int (*LollipopSetNetworkForSocket)(unsigned netId, int socketFd);
static LollipopSetNetworkForSocket lollipopSetNetworkForSocket;
// This is racy, but all racers should come out with the same answer so it
// shouldn't matter.
if (!lollipopSetNetworkForSocket) {
// Android's netd client library should always be loaded in our address
// space as it shims socket() which was used to create |socket_|.
base::FilePath file(base::GetNativeLibraryName("netd_client"));
// Use RTLD_NOW to match Android's prior loading of the library:
// http://androidxref.com/6.0.0_r5/xref/bionic/libc/bionic/NetdClient.cpp#37
// Use RTLD_NOLOAD to assert that the library is already loaded and
// avoid doing any disk IO.
void* dl = dlopen(file.value().c_str(), RTLD_NOW | RTLD_NOLOAD);
lollipopSetNetworkForSocket =
reinterpret_cast<LollipopSetNetworkForSocket>(
dlsym(dl, "setNetworkForSocket"));
}
if (!lollipopSetNetworkForSocket)
return ERR_NOT_IMPLEMENTED;
rv = -lollipopSetNetworkForSocket(network, socket_);
}
// If |network| has since disconnected, |rv| will be ENONET. Surface this as
// ERR_NETWORK_CHANGED, rather than MapSystemError(ENONET) which gives back
// the less descriptive ERR_FAILED.
if (rv == ENONET)
return ERR_NETWORK_CHANGED;
if (rv == 0)
bound_network_ = network;
return MapSystemError(rv);
#else
NOTIMPLEMENTED();
return ERR_NOT_IMPLEMENTED;
#endif
}
int UDPSocketPosix::SetReceiveBufferSize(int32_t size) {
DCHECK_NE(socket_, kInvalidSocket);
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
return SetSocketReceiveBufferSize(socket_, size);
}
int UDPSocketPosix::SetSendBufferSize(int32_t size) {
DCHECK_NE(socket_, kInvalidSocket);
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
return SetSocketSendBufferSize(socket_, size);
}
int UDPSocketPosix::SetDoNotFragment() {
DCHECK_NE(socket_, kInvalidSocket);
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
#if !defined(IP_PMTUDISC_DO)
return ERR_NOT_IMPLEMENTED;
#else
if (addr_family_ == AF_INET6) {
int val = IPV6_PMTUDISC_DO;
if (setsockopt(socket_, IPPROTO_IPV6, IPV6_MTU_DISCOVER, &val,
sizeof(val)) != 0) {
return MapSystemError(errno);
}
int v6_only = false;
socklen_t v6_only_len = sizeof(v6_only);
if (getsockopt(socket_, IPPROTO_IPV6, IPV6_V6ONLY, &v6_only,
&v6_only_len) != 0) {
return MapSystemError(errno);
}
if (v6_only)
return OK;
}
int val = IP_PMTUDISC_DO;
int rv = setsockopt(socket_, IPPROTO_IP, IP_MTU_DISCOVER, &val, sizeof(val));
return rv == 0 ? OK : MapSystemError(errno);
#endif
}
void UDPSocketPosix::SetMsgConfirm(bool confirm) {
#if !defined(OS_MACOSX) && !defined(OS_IOS)
if (confirm) {
sendto_flags_ |= MSG_CONFIRM;
} else {
sendto_flags_ &= ~MSG_CONFIRM;
}
#endif // !defined(OS_MACOSX) && !defined(OS_IOS)
}
int UDPSocketPosix::AllowAddressReuse() {
DCHECK_NE(socket_, kInvalidSocket);
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK(!is_connected());
return SetReuseAddr(socket_, true);
}
int UDPSocketPosix::SetBroadcast(bool broadcast) {
DCHECK_NE(socket_, kInvalidSocket);
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
int value = broadcast ? 1 : 0;
int rv;
#if defined(OS_MACOSX)
// SO_REUSEPORT on OSX permits multiple processes to each receive
// UDP multicast or broadcast datagrams destined for the bound
// port.
// This is only being set on OSX because its behavior is platform dependent
// and we are playing it safe by only setting it on platforms where things
// break.
rv = setsockopt(socket_, SOL_SOCKET, SO_REUSEPORT, &value, sizeof(value));
if (rv != 0)
return MapSystemError(errno);
#endif // defined(OS_MACOSX)
rv = setsockopt(socket_, SOL_SOCKET, SO_BROADCAST, &value, sizeof(value));
return rv == 0 ? OK : MapSystemError(errno);
}
void UDPSocketPosix::ReadWatcher::OnFileCanReadWithoutBlocking(int) {
TRACE_EVENT0(kNetTracingCategory,
"UDPSocketPosix::ReadWatcher::OnFileCanReadWithoutBlocking");
if (!socket_->read_callback_.is_null())
socket_->DidCompleteRead();
}
void UDPSocketPosix::WriteWatcher::OnFileCanWriteWithoutBlocking(int) {
if (!socket_->write_callback_.is_null())
socket_->DidCompleteWrite();
}
void UDPSocketPosix::DoReadCallback(int rv) {
DCHECK_NE(rv, ERR_IO_PENDING);
DCHECK(!read_callback_.is_null());
// Since Run() may result in Read() being called,
// clear |read_callback_| up front.
std::move(read_callback_).Run(rv);
}
void UDPSocketPosix::DoWriteCallback(int rv) {
DCHECK_NE(rv, ERR_IO_PENDING);
DCHECK(!write_callback_.is_null());
// Since Run() may result in Write() being called,
// clear |write_callback_| up front.
std::move(write_callback_).Run(rv);
}
void UDPSocketPosix::DidCompleteRead() {
int result =
InternalRecvFrom(read_buf_.get(), read_buf_len_, recv_from_address_);
if (result != ERR_IO_PENDING) {
read_buf_ = NULL;
read_buf_len_ = 0;
recv_from_address_ = NULL;
bool ok = read_socket_watcher_.StopWatchingFileDescriptor();
DCHECK(ok);
DoReadCallback(result);
}
}
void UDPSocketPosix::LogRead(int result,
const char* bytes,
socklen_t addr_len,
const sockaddr* addr) {
if (result < 0) {
net_log_.AddEventWithNetErrorCode(NetLogEventType::UDP_RECEIVE_ERROR,
result);
return;
}
if (net_log_.IsCapturing()) {
DCHECK(addr_len > 0);
DCHECK(addr);
IPEndPoint address;
bool is_address_valid = address.FromSockAddr(addr, addr_len);
net_log_.AddEvent(NetLogEventType::UDP_BYTES_RECEIVED,
CreateNetLogUDPDataTranferCallback(
result, bytes, is_address_valid ? &address : NULL));
}
received_activity_monitor_.Increment(result);
}
void UDPSocketPosix::DidCompleteWrite() {
int result =
InternalSendTo(write_buf_.get(), write_buf_len_, send_to_address_.get());
if (result != ERR_IO_PENDING) {
write_buf_ = NULL;
write_buf_len_ = 0;
send_to_address_.reset();
write_socket_watcher_.StopWatchingFileDescriptor();
DoWriteCallback(result);
}
}
void UDPSocketPosix::LogWrite(int result,
const char* bytes,
const IPEndPoint* address) {
if (result < 0) {
net_log_.AddEventWithNetErrorCode(NetLogEventType::UDP_SEND_ERROR, result);
return;
}
if (net_log_.IsCapturing()) {
net_log_.AddEvent(
NetLogEventType::UDP_BYTES_SENT,
CreateNetLogUDPDataTranferCallback(result, bytes, address));
}
sent_activity_monitor_.Increment(result);
}
int UDPSocketPosix::InternalRecvFrom(IOBuffer* buf,
int buf_len,
IPEndPoint* address) {
// If the socket is connected and the remote address is known
// use the more efficient method that uses read() instead of recvmsg().
if (experimental_recv_optimization_enabled_ && is_connected_ &&
remote_address_) {
return InternalRecvFromConnectedSocket(buf, buf_len, address);
}
return InternalRecvFromNonConnectedSocket(buf, buf_len, address);
}
int UDPSocketPosix::InternalRecvFromConnectedSocket(IOBuffer* buf,
int buf_len,
IPEndPoint* address) {
DCHECK(is_connected_);
DCHECK(remote_address_);
int bytes_transferred;
bytes_transferred = HANDLE_EINTR(read(socket_, buf->data(), buf_len));
int result;
if (bytes_transferred < 0) {
result = MapSystemError(errno);
} else if (bytes_transferred == buf_len) {
result = ERR_MSG_TOO_BIG;
} else {
result = bytes_transferred;
if (address)
*address = *remote_address_.get();
}
if (result != ERR_IO_PENDING) {
SockaddrStorage sock_addr;
bool success =
remote_address_->ToSockAddr(sock_addr.addr, &sock_addr.addr_len);
DCHECK(success);
LogRead(result, buf->data(), sock_addr.addr_len, sock_addr.addr);
}
return result;
}
int UDPSocketPosix::InternalRecvFromNonConnectedSocket(IOBuffer* buf,
int buf_len,
IPEndPoint* address) {
int bytes_transferred;
struct iovec iov = {};
iov.iov_base = buf->data();
iov.iov_len = buf_len;
struct msghdr msg = {};
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
SockaddrStorage storage;
msg.msg_name = storage.addr;
msg.msg_namelen = storage.addr_len;
bytes_transferred = HANDLE_EINTR(recvmsg(socket_, &msg, 0));
storage.addr_len = msg.msg_namelen;
int result;
if (bytes_transferred >= 0) {
if (msg.msg_flags & MSG_TRUNC) {
result = ERR_MSG_TOO_BIG;
} else {
result = bytes_transferred;
if (address && !address->FromSockAddr(storage.addr, storage.addr_len))
result = ERR_ADDRESS_INVALID;
}
} else {
result = MapSystemError(errno);
}
if (result != ERR_IO_PENDING)
LogRead(result, buf->data(), storage.addr_len, storage.addr);
return result;
}
int UDPSocketPosix::InternalSendTo(IOBuffer* buf,
int buf_len,
const IPEndPoint* address) {
SockaddrStorage storage;
struct sockaddr* addr = storage.addr;
if (!address) {
addr = NULL;
storage.addr_len = 0;
} else {
if (!address->ToSockAddr(storage.addr, &storage.addr_len)) {
int result = ERR_ADDRESS_INVALID;
LogWrite(result, NULL, NULL);
return result;
}
}
int result = HANDLE_EINTR(sendto(socket_, buf->data(), buf_len, sendto_flags_,
addr, storage.addr_len));
if (result < 0)
result = MapSystemError(errno);
if (result != ERR_IO_PENDING)
LogWrite(result, buf->data(), address);
return result;
}
int UDPSocketPosix::SetMulticastOptions() {
if (!(socket_options_ & SOCKET_OPTION_MULTICAST_LOOP)) {
int rv;
if (addr_family_ == AF_INET) {
u_char loop = 0;
rv = setsockopt(socket_, IPPROTO_IP, IP_MULTICAST_LOOP,
&loop, sizeof(loop));
} else {
u_int loop = 0;
rv = setsockopt(socket_, IPPROTO_IPV6, IPV6_MULTICAST_LOOP,
&loop, sizeof(loop));
}
if (rv < 0)
return MapSystemError(errno);
}
if (multicast_time_to_live_ != IP_DEFAULT_MULTICAST_TTL) {
int rv;
if (addr_family_ == AF_INET) {
u_char ttl = multicast_time_to_live_;
rv = setsockopt(socket_, IPPROTO_IP, IP_MULTICAST_TTL,
&ttl, sizeof(ttl));
} else {
// Signed integer. -1 to use route default.
int ttl = multicast_time_to_live_;
rv = setsockopt(socket_, IPPROTO_IPV6, IPV6_MULTICAST_HOPS,
&ttl, sizeof(ttl));
}
if (rv < 0)
return MapSystemError(errno);
}
if (multicast_interface_ != 0) {
switch (addr_family_) {
case AF_INET: {
#if defined(OS_MACOSX)
ip_mreq mreq = {};
int error = GetIPv4AddressFromIndex(socket_, multicast_interface_,
&mreq.imr_interface.s_addr);
if (error != OK)
return error;
#else // defined(OS_MACOSX)
ip_mreqn mreq = {};
mreq.imr_ifindex = multicast_interface_;
mreq.imr_address.s_addr = htonl(INADDR_ANY);
#endif // !defined(OS_MACOSX)
int rv = setsockopt(socket_, IPPROTO_IP, IP_MULTICAST_IF,
reinterpret_cast<const char*>(&mreq), sizeof(mreq));
if (rv)
return MapSystemError(errno);
break;
}
case AF_INET6: {
uint32_t interface_index = multicast_interface_;
int rv = setsockopt(socket_, IPPROTO_IPV6, IPV6_MULTICAST_IF,
reinterpret_cast<const char*>(&interface_index),
sizeof(interface_index));
if (rv)
return MapSystemError(errno);
break;
}
default:
NOTREACHED() << "Invalid address family";
return ERR_ADDRESS_INVALID;
}
}
return OK;
}
int UDPSocketPosix::DoBind(const IPEndPoint& address) {
SockaddrStorage storage;
if (!address.ToSockAddr(storage.addr, &storage.addr_len))
return ERR_ADDRESS_INVALID;
int rv = bind(socket_, storage.addr, storage.addr_len);
if (rv == 0)
return OK;
int last_error = errno;
#if defined(OS_CHROMEOS)
if (last_error == EINVAL)
return ERR_ADDRESS_IN_USE;
#elif defined(OS_MACOSX)
if (last_error == EADDRNOTAVAIL)
return ERR_ADDRESS_IN_USE;
#endif
return MapSystemError(last_error);
}
int UDPSocketPosix::RandomBind(const IPAddress& address) {
DCHECK_EQ(bind_type_, DatagramSocket::RANDOM_BIND);
for (int i = 0; i < kBindRetries; ++i) {
int rv = DoBind(IPEndPoint(address, base::RandInt(kPortStart, kPortEnd)));
if (rv != ERR_ADDRESS_IN_USE)
return rv;
}
return DoBind(IPEndPoint(address, 0));
}
int UDPSocketPosix::JoinGroup(const IPAddress& group_address) const {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (!is_connected())
return ERR_SOCKET_NOT_CONNECTED;
switch (group_address.size()) {
case IPAddress::kIPv4AddressSize: {
if (addr_family_ != AF_INET)
return ERR_ADDRESS_INVALID;
#if defined(OS_MACOSX)
ip_mreq mreq = {};
int error = GetIPv4AddressFromIndex(socket_, multicast_interface_,
&mreq.imr_interface.s_addr);
if (error != OK)
return error;
#else
ip_mreqn mreq = {};
mreq.imr_ifindex = multicast_interface_;
mreq.imr_address.s_addr = htonl(INADDR_ANY);
#endif
memcpy(&mreq.imr_multiaddr, group_address.bytes().data(),
IPAddress::kIPv4AddressSize);
int rv = setsockopt(socket_, IPPROTO_IP, IP_ADD_MEMBERSHIP,
&mreq, sizeof(mreq));
if (rv < 0)
return MapSystemError(errno);
return OK;
}
case IPAddress::kIPv6AddressSize: {
if (addr_family_ != AF_INET6)
return ERR_ADDRESS_INVALID;
ipv6_mreq mreq;
mreq.ipv6mr_interface = multicast_interface_;
memcpy(&mreq.ipv6mr_multiaddr, group_address.bytes().data(),
IPAddress::kIPv6AddressSize);
int rv = setsockopt(socket_, IPPROTO_IPV6, IPV6_JOIN_GROUP,
&mreq, sizeof(mreq));
if (rv < 0)
return MapSystemError(errno);
return OK;
}
default:
NOTREACHED() << "Invalid address family";
return ERR_ADDRESS_INVALID;
}
}
int UDPSocketPosix::LeaveGroup(const IPAddress& group_address) const {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (!is_connected())
return ERR_SOCKET_NOT_CONNECTED;
switch (group_address.size()) {
case IPAddress::kIPv4AddressSize: {
if (addr_family_ != AF_INET)
return ERR_ADDRESS_INVALID;
ip_mreqn mreq = {};
mreq.imr_ifindex = multicast_interface_;
mreq.imr_address.s_addr = INADDR_ANY;
memcpy(&mreq.imr_multiaddr, group_address.bytes().data(),
IPAddress::kIPv4AddressSize);
int rv = setsockopt(socket_, IPPROTO_IP, IP_DROP_MEMBERSHIP,
&mreq, sizeof(mreq));
if (rv < 0)
return MapSystemError(errno);
return OK;
}
case IPAddress::kIPv6AddressSize: {
if (addr_family_ != AF_INET6)
return ERR_ADDRESS_INVALID;
ipv6_mreq mreq;
#if defined(OS_FUCHSIA)
mreq.ipv6mr_interface = multicast_interface_;
#else // defined(OS_FUCHSIA)
mreq.ipv6mr_interface = 0; // 0 indicates default multicast interface.
#endif // !defined(OS_FUCHSIA)
memcpy(&mreq.ipv6mr_multiaddr, group_address.bytes().data(),
IPAddress::kIPv6AddressSize);
int rv = setsockopt(socket_, IPPROTO_IPV6, IPV6_LEAVE_GROUP,
&mreq, sizeof(mreq));
if (rv < 0)
return MapSystemError(errno);
return OK;
}
default:
NOTREACHED() << "Invalid address family";
return ERR_ADDRESS_INVALID;
}
}
int UDPSocketPosix::SetMulticastInterface(uint32_t interface_index) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (is_connected())
return ERR_SOCKET_IS_CONNECTED;
multicast_interface_ = interface_index;
return OK;
}
int UDPSocketPosix::SetMulticastTimeToLive(int time_to_live) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (is_connected())
return ERR_SOCKET_IS_CONNECTED;
if (time_to_live < 0 || time_to_live > 255)
return ERR_INVALID_ARGUMENT;
multicast_time_to_live_ = time_to_live;
return OK;
}
int UDPSocketPosix::SetMulticastLoopbackMode(bool loopback) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (is_connected())
return ERR_SOCKET_IS_CONNECTED;
if (loopback)
socket_options_ |= SOCKET_OPTION_MULTICAST_LOOP;
else
socket_options_ &= ~SOCKET_OPTION_MULTICAST_LOOP;
return OK;
}
int UDPSocketPosix::SetDiffServCodePoint(DiffServCodePoint dscp) {
if (dscp == DSCP_NO_CHANGE) {
return OK;
}
int dscp_and_ecn = dscp << 2;
// Set the IPv4 option in all cases to support dual-stack sockets.
int rv = setsockopt(socket_, IPPROTO_IP, IP_TOS, &dscp_and_ecn,
sizeof(dscp_and_ecn));
if (addr_family_ == AF_INET6) {
// In the IPv6 case, the previous socksetopt may fail because of a lack of
// dual-stack support. Therefore ignore the previous return value.
rv = setsockopt(socket_, IPPROTO_IPV6, IPV6_TCLASS,
&dscp_and_ecn, sizeof(dscp_and_ecn));
}
if (rv < 0)
return MapSystemError(errno);
return OK;
}
void UDPSocketPosix::DetachFromThread() {
DETACH_FROM_THREAD(thread_checker_);
}
void UDPSocketPosix::ApplySocketTag(const SocketTag& tag) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (socket_ != kInvalidSocket && tag != tag_) {
tag.Apply(socket_);
}
tag_ = tag;
}
UDPSocketPosixSender::UDPSocketPosixSender() : sendmmsg_enabled_(false) {}
UDPSocketPosixSender::~UDPSocketPosixSender() {}
SendResult::SendResult() : rv(0), write_count(0) {}
SendResult::~SendResult() {}
SendResult::SendResult(int _rv, int _write_count, DatagramBuffers _buffers)
: rv(_rv), write_count(_write_count), buffers(std::move(_buffers)) {}
SendResult::SendResult(SendResult&& other) = default;
SendResult UDPSocketPosixSender::InternalSendBuffers(
int fd,
DatagramBuffers buffers) const {
int rv = 0;
int write_count = 0;
for (auto& buffer : buffers) {
int result = HANDLE_EINTR(Send(fd, buffer->data(), buffer->length(), 0));
if (result < 0) {
rv = MapSystemError(errno);
break;
}
write_count++;
}
return SendResult(rv, write_count, std::move(buffers));
}
#if HAVE_SENDMMSG
SendResult UDPSocketPosixSender::InternalSendmmsgBuffers(
int fd,
DatagramBuffers buffers) const {
base::StackVector<struct iovec, kWriteAsyncMaxBuffersThreshold + 1> msg_iov;
base::StackVector<struct mmsghdr, kWriteAsyncMaxBuffersThreshold + 1> msgvec;
int i = 0;
for (auto& buffer : buffers) {
msg_iov[i].iov_base = const_cast<char*>(buffer->data());
msg_iov[i].iov_len = buffer->length();
i++;
}
for (size_t j = 0; j < buffers.size(); j++) {
std::memset(&msgvec[j], 0, sizeof(msgvec[j]));
msgvec[j].msg_hdr.msg_iov = &msg_iov[j];
msgvec[j].msg_hdr.msg_iovlen = 1;
}
int result = HANDLE_EINTR(Sendmmsg(fd, &msgvec[0], buffers.size(), 0));
SendResult send_result(0, 0, std::move(buffers));
if (result < 0) {
send_result.rv = MapSystemError(errno);
} else {
send_result.write_count = result;
}
return send_result;
}
#endif
SendResult UDPSocketPosixSender::SendBuffers(int fd, DatagramBuffers buffers) {
#if HAVE_SENDMMSG
if (sendmmsg_enabled_) {
auto result = InternalSendmmsgBuffers(fd, std::move(buffers));
if (LIKELY(result.rv != ERR_NOT_IMPLEMENTED)) {
return result;
}
DLOG(WARNING) << "senddmsg() not implemented, falling back to send()";
sendmmsg_enabled_ = false;
buffers = std::move(result.buffers);
}
#endif
return InternalSendBuffers(fd, std::move(buffers));
}
ssize_t UDPSocketPosixSender::Send(int sockfd,
const void* buf,
size_t len,
int flags) const {
return send(sockfd, buf, len, flags);
}
#if HAVE_SENDMMSG
int UDPSocketPosixSender::Sendmmsg(int sockfd,
struct mmsghdr* msgvec,
unsigned int vlen,
unsigned int flags) const {
return sendmmsg(sockfd, msgvec, vlen, flags);
}
#endif
int UDPSocketPosix::WriteAsync(
const char* buffer,
size_t buf_len,
CompletionOnceCallback callback,
const NetworkTrafficAnnotationTag& traffic_annotation) {
DCHECK(datagram_buffer_pool_ != nullptr);
IncreaseWriteAsyncOutstanding(1);
datagram_buffer_pool_->Enqueue(buffer, buf_len, &pending_writes_);
return InternalWriteAsync(std::move(callback), traffic_annotation);
}
int UDPSocketPosix::WriteAsync(
DatagramBuffers buffers,
CompletionOnceCallback callback,
const NetworkTrafficAnnotationTag& traffic_annotation) {
IncreaseWriteAsyncOutstanding(buffers.size());
pending_writes_.splice(pending_writes_.end(), std::move(buffers));
return InternalWriteAsync(std::move(callback), traffic_annotation);
}
int UDPSocketPosix::InternalWriteAsync(
CompletionOnceCallback callback,
const NetworkTrafficAnnotationTag& traffic_annotation) {
CHECK(write_callback_.is_null());
// Surface error immediately if one is pending.
if (last_async_result_ < 0) {
return ResetLastAsyncResult();
}
size_t flush_threshold =
write_batching_active_ ? kWriteAsyncPostBuffersThreshold : 1;
if (pending_writes_.size() >= flush_threshold) {
FlushPending();
// Surface error immediately if one is pending.
if (last_async_result_ < 0) {
return ResetLastAsyncResult();
}
}
if (!write_async_timer_running_) {
write_async_timer_running_ = true;
write_async_timer_.Start(FROM_HERE, kWriteAsyncMsThreshold, this,
&UDPSocketPosix::OnWriteAsyncTimerFired);
}
int blocking_threshold =
write_batching_active_ ? kWriteAsyncMaxBuffersThreshold : 1;
if (write_async_outstanding_ >= blocking_threshold) {
write_callback_ = std::move(callback);
return ERR_IO_PENDING;
}
DVLOG(2) << __func__ << " pending " << pending_writes_.size()
<< " outstanding " << write_async_outstanding_;
return ResetWrittenBytes();
}
DatagramBuffers UDPSocketPosix::GetUnwrittenBuffers() {
write_async_outstanding_ -= pending_writes_.size();
return std::move(pending_writes_);
}
void UDPSocketPosix::FlushPending() {
// Nothing to do if socket is blocked.
if (write_async_watcher_->watching())
return;
if (pending_writes_.empty())
return;
if (write_async_timer_running_)
write_async_timer_.Reset();
int num_pending_writes = static_cast<int>(pending_writes_.size());
if (!write_multi_core_enabled_ ||
// Don't bother with post if not enough buffers
(num_pending_writes <= kWriteAsyncMinBuffersThreshold &&
// but not if there is a previous post
// outstanding, to prevent out of order transmission.
(num_pending_writes == write_async_outstanding_))) {
LocalSendBuffers();
} else {
PostSendBuffers();
}
}
// TODO(ckrasic) Sad face. Do this lazily because many tests exploded
// otherwise. |threading_and_tasks.md| advises to instantiate a
// |base::test::ScopedTaskEnvironment| in the test, implementing that
// for all tests that might exercise QUIC is too daunting. Also, in
// some tests it seemed like following the advice just broke in other
// ways.
base::SequencedTaskRunner* UDPSocketPosix::GetTaskRunner() {
if (task_runner_ == nullptr) {
task_runner_ = CreateSequencedTaskRunnerWithTraits(base::TaskTraits());
}
return task_runner_.get();
}
void UDPSocketPosix::OnWriteAsyncTimerFired() {
DVLOG(2) << __func__ << " pending writes " << pending_writes_.size();
if (pending_writes_.empty()) {
write_async_timer_.Stop();
write_async_timer_running_ = false;
return;
}
if (last_async_result_ < 0) {
DVLOG(1) << __func__ << " socket not writeable";
return;
}
FlushPending();
}
void UDPSocketPosix::LocalSendBuffers() {
DVLOG(1) << __func__ << " queue " << pending_writes_.size() << " out of "
<< write_async_outstanding_ << " total";
DidSendBuffers(sender_->SendBuffers(socket_, std::move(pending_writes_)));
}
void UDPSocketPosix::PostSendBuffers() {
DVLOG(1) << __func__ << " queue " << pending_writes_.size() << " out of "
<< write_async_outstanding_ << " total";
base::PostTaskAndReplyWithResult(
GetTaskRunner(), FROM_HERE,
base::BindOnce(&UDPSocketPosixSender::SendBuffers, sender_, socket_,
std::move(pending_writes_)),
base::BindOnce(&UDPSocketPosix::DidSendBuffers,
weak_factory_.GetWeakPtr()));
}
void UDPSocketPosix::DidSendBuffers(SendResult send_result) {
DVLOG(3) << __func__;
int write_count = send_result.write_count;
DatagramBuffers& buffers = send_result.buffers;
DCHECK(!buffers.empty());
int num_buffers = buffers.size();
// Dequeue buffers that have been written.
if (write_count > 0) {
write_async_outstanding_ -= write_count;
DatagramBuffers::const_iterator it;
// Generate logs for written buffers
it = buffers.cbegin();
for (int i = 0; i < write_count; i++, it++) {
auto& buffer = *it;
LogWrite(buffer->length(), buffer->data(), NULL);
written_bytes_ += buffer->length();
}
// Return written buffers to pool
DatagramBuffers written_buffers;
if (write_count == num_buffers) {
it = buffers.cend();
} else {
it = buffers.cbegin();
for (int i = 0; i < write_count; i++) {
it++;
}
}
written_buffers.splice(written_buffers.cend(), buffers, buffers.cbegin(),
it);
DCHECK(datagram_buffer_pool_ != nullptr);
datagram_buffer_pool_->Dequeue(&written_buffers);
}
// Requeue left-over (unwritten) buffers.
if (!buffers.empty()) {
DVLOG(2) << __func__ << " requeue " << buffers.size() << " buffers";
pending_writes_.splice(pending_writes_.begin(), std::move(buffers));
}
last_async_result_ = send_result.rv;
if (last_async_result_ == ERR_IO_PENDING) {
DVLOG(2) << __func__ << " WatchFileDescriptor start";
if (!WatchFileDescriptor()) {
DVLOG(1) << "WatchFileDescriptor failed on write, errno " << errno;
last_async_result_ = MapSystemError(errno);
LogWrite(last_async_result_, NULL, NULL);
} else {
last_async_result_ = 0;
}
} else if (last_async_result_ < 0 || pending_writes_.empty()) {
DVLOG(2) << __func__ << " WatchFileDescriptor stop: result "
<< ErrorToShortString(last_async_result_) << " pending_writes "
<< pending_writes_.size();
StopWatchingFileDescriptor();
}
DCHECK(last_async_result_ != ERR_IO_PENDING);
if (write_callback_.is_null())
return;
if (last_async_result_ < 0) {
DVLOG(1) << last_async_result_;
// Update the writer with the latest result.
DoWriteCallback(ResetLastAsyncResult());
} else if (write_async_outstanding_ < kWriteAsyncCallbackBuffersThreshold) {
DVLOG(1) << write_async_outstanding_ << " < "
<< kWriteAsyncCallbackBuffersThreshold;
DoWriteCallback(ResetWrittenBytes());
}
}
void UDPSocketPosix::WriteAsyncWatcher::OnFileCanWriteWithoutBlocking(int) {
DVLOG(1) << __func__ << " queue " << socket_->pending_writes_.size()
<< " out of " << socket_->write_async_outstanding_ << " total";
socket_->StopWatchingFileDescriptor();
socket_->FlushPending();
}
bool UDPSocketPosix::WatchFileDescriptor() {
if (write_async_watcher_->watching())
return true;
bool result = InternalWatchFileDescriptor();
if (result) {
write_async_watcher_->set_watching(true);
}
return result;
}
void UDPSocketPosix::StopWatchingFileDescriptor() {
if (!write_async_watcher_->watching())
return;
InternalStopWatchingFileDescriptor();
write_async_watcher_->set_watching(false);
}
bool UDPSocketPosix::InternalWatchFileDescriptor() {
return base::MessageLoopCurrentForIO::Get()->WatchFileDescriptor(
socket_, true, base::MessagePumpForIO::WATCH_WRITE,
&write_socket_watcher_, write_async_watcher_.get());
}
void UDPSocketPosix::InternalStopWatchingFileDescriptor() {
bool ok = write_socket_watcher_.StopWatchingFileDescriptor();
DCHECK(ok);
}
void UDPSocketPosix::SetMaxPacketSize(size_t max_packet_size) {
datagram_buffer_pool_ = std::make_unique<DatagramBufferPool>(max_packet_size);
}
int UDPSocketPosix::ResetLastAsyncResult() {
int result = last_async_result_;
last_async_result_ = 0;
return result;
}
int UDPSocketPosix::ResetWrittenBytes() {
int bytes = written_bytes_;
written_bytes_ = 0;
return bytes;
}
} // namespace net