naiveproxy/net/socket/ssl_client_socket_impl.cc
2018-08-14 22:19:20 +00:00

1868 lines
65 KiB
C++

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/socket/ssl_client_socket_impl.h"
#include <errno.h>
#include <string.h>
#include <algorithm>
#include <map>
#include <utility>
#include "base/bind.h"
#include "base/callback_helpers.h"
#include "base/containers/span.h"
#include "base/lazy_instance.h"
#include "base/macros.h"
#include "base/memory/singleton.h"
#include "base/metrics/field_trial.h"
#include "base/metrics/field_trial_params.h"
#include "base/metrics/histogram_functions.h"
#include "base/metrics/histogram_macros.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_piece.h"
#include "base/strings/stringprintf.h"
#include "base/synchronization/lock.h"
#include "base/trace_event/process_memory_dump.h"
#include "base/trace_event/trace_event.h"
#include "base/values.h"
#include "crypto/ec_private_key.h"
#include "crypto/openssl_util.h"
#include "net/base/ip_address.h"
#include "net/base/net_errors.h"
#include "net/base/trace_constants.h"
#include "net/base/url_util.h"
#include "net/cert/cert_verifier.h"
#include "net/cert/ct_policy_enforcer.h"
#include "net/cert/ct_policy_status.h"
#include "net/cert/ct_verifier.h"
#include "net/cert/internal/parse_certificate.h"
#include "net/cert/x509_certificate_net_log_param.h"
#include "net/cert/x509_util.h"
#include "net/der/parse_values.h"
#include "net/http/transport_security_state.h"
#include "net/log/net_log.h"
#include "net/log/net_log_event_type.h"
#include "net/log/net_log_parameters_callback.h"
#include "net/ssl/ssl_cert_request_info.h"
#include "net/ssl/ssl_cipher_suite_names.h"
#include "net/ssl/ssl_client_session_cache.h"
#include "net/ssl/ssl_connection_status_flags.h"
#include "net/ssl/ssl_info.h"
#include "net/ssl/ssl_key_logger.h"
#include "net/ssl/ssl_private_key.h"
#include "net/ssl/token_binding.h"
#include "net/traffic_annotation/network_traffic_annotation.h"
#include "third_party/boringssl/src/include/openssl/bio.h"
#include "third_party/boringssl/src/include/openssl/bytestring.h"
#include "third_party/boringssl/src/include/openssl/err.h"
#include "third_party/boringssl/src/include/openssl/evp.h"
#include "third_party/boringssl/src/include/openssl/mem.h"
#include "third_party/boringssl/src/include/openssl/ssl.h"
#if !defined(NET_DISABLE_BROTLI)
#include "third_party/brotli/include/brotli/decode.h"
#endif
namespace net {
namespace {
// This constant can be any non-negative/non-zero value (eg: it does not
// overlap with any value of the net::Error range, including net::OK).
const int kSSLClientSocketNoPendingResult = 1;
// Default size of the internal BoringSSL buffers.
const int kDefaultOpenSSLBufferSize = 17 * 1024;
const base::Feature kPostQuantumPadding{"PostQuantumPadding",
base::FEATURE_DISABLED_BY_DEFAULT};
std::unique_ptr<base::Value> NetLogPrivateKeyOperationCallback(
uint16_t algorithm,
NetLogCaptureMode mode) {
std::unique_ptr<base::DictionaryValue> value(new base::DictionaryValue);
value->SetString("algorithm", SSL_get_signature_algorithm_name(
algorithm, 0 /* exclude curve */));
return std::move(value);
}
std::unique_ptr<base::Value> NetLogChannelIDLookupCallback(
ChannelIDService* channel_id_service,
NetLogCaptureMode capture_mode) {
ChannelIDStore* store = channel_id_service->GetChannelIDStore();
std::unique_ptr<base::DictionaryValue> dict(new base::DictionaryValue());
dict->SetBoolean("ephemeral", store->IsEphemeral());
dict->SetString("service", base::HexEncode(&channel_id_service,
sizeof(channel_id_service)));
dict->SetString("store", base::HexEncode(&store, sizeof(store)));
return std::move(dict);
}
std::unique_ptr<base::Value> NetLogChannelIDLookupCompleteCallback(
crypto::ECPrivateKey* key,
int result,
NetLogCaptureMode capture_mode) {
std::unique_ptr<base::DictionaryValue> dict(new base::DictionaryValue());
dict->SetInteger("net_error", result);
std::string raw_key;
if (result == OK && key && key->ExportRawPublicKey(&raw_key)) {
std::string key_to_log = base::HexEncode(raw_key.data(), raw_key.length());
dict->SetString("key", key_to_log);
}
return std::move(dict);
}
std::unique_ptr<base::Value> NetLogSSLInfoCallback(
SSLClientSocketImpl* socket,
NetLogCaptureMode capture_mode) {
SSLInfo ssl_info;
if (!socket->GetSSLInfo(&ssl_info))
return nullptr;
std::unique_ptr<base::DictionaryValue> dict(new base::DictionaryValue());
const char* version_str;
SSLVersionToString(&version_str,
SSLConnectionStatusToVersion(ssl_info.connection_status));
dict->SetString("version", version_str);
dict->SetBoolean("is_resumed",
ssl_info.handshake_type == SSLInfo::HANDSHAKE_RESUME);
dict->SetInteger("cipher_suite", SSLConnectionStatusToCipherSuite(
ssl_info.connection_status));
dict->SetString("next_proto",
NextProtoToString(socket->GetNegotiatedProtocol()));
return std::move(dict);
}
std::unique_ptr<base::Value> NetLogSSLAlertCallback(
const void* bytes,
size_t len,
NetLogCaptureMode capture_mode) {
std::unique_ptr<base::DictionaryValue> dict(new base::DictionaryValue());
dict->SetString("hex_encoded_bytes", base::HexEncode(bytes, len));
return std::move(dict);
}
std::unique_ptr<base::Value> NetLogSSLMessageCallback(
bool is_write,
const void* bytes,
size_t len,
NetLogCaptureMode capture_mode) {
std::unique_ptr<base::DictionaryValue> dict(new base::DictionaryValue());
if (len == 0) {
NOTREACHED();
return std::move(dict);
}
// The handshake message type is the first byte. Include it so elided messages
// still report their type.
uint8_t type = reinterpret_cast<const uint8_t*>(bytes)[0];
dict->SetInteger("type", type);
// Elide client certificate messages unless logging socket bytes. The client
// certificate does not contain information needed to impersonate the user
// (that's the private key which isn't sent over the wire), but it may contain
// information on the user's identity.
if (!is_write || type != SSL3_MT_CERTIFICATE ||
capture_mode.include_socket_bytes()) {
dict->SetString("hex_encoded_bytes", base::HexEncode(bytes, len));
}
return std::move(dict);
}
// This enum is used in histograms, so values may not be reused.
enum class RSAKeyUsage {
// The TLS cipher suite was not RSA or ECDHE_RSA.
kNotRSA = 0,
// The Key Usage extension is not present, which is consistent with TLS usage.
kOKNoExtension = 1,
// The Key Usage extension has both the digitalSignature and keyEncipherment
// bits, which is consistent with TLS usage.
kOKHaveBoth = 2,
// The Key Usage extension contains only the digitalSignature bit, which is
// consistent with TLS usage.
kOKHaveDigitalSignature = 3,
// The Key Usage extension contains only the keyEncipherment bit, which is
// consistent with TLS usage.
kOKHaveKeyEncipherment = 4,
// The Key Usage extension is missing the digitalSignature bit.
kMissingDigitalSignature = 5,
// The Key Usage extension is missing the keyEncipherment bit.
kMissingKeyEncipherment = 6,
// There was an error processing the certificate.
kError = 7,
kLastValue = kError,
};
RSAKeyUsage CheckRSAKeyUsage(const X509Certificate* cert,
const SSL_CIPHER* cipher) {
bool need_key_encipherment = false;
switch (SSL_CIPHER_get_kx_nid(cipher)) {
case NID_kx_rsa:
need_key_encipherment = true;
break;
case NID_kx_ecdhe:
if (SSL_CIPHER_get_auth_nid(cipher) != NID_auth_rsa) {
return RSAKeyUsage::kNotRSA;
}
break;
default:
return RSAKeyUsage::kNotRSA;
}
const CRYPTO_BUFFER* buffer = cert->cert_buffer();
der::Input tbs_certificate_tlv;
der::Input signature_algorithm_tlv;
der::BitString signature_value;
ParsedTbsCertificate tbs;
if (!ParseCertificate(
der::Input(CRYPTO_BUFFER_data(buffer), CRYPTO_BUFFER_len(buffer)),
&tbs_certificate_tlv, &signature_algorithm_tlv, &signature_value,
nullptr) ||
!ParseTbsCertificate(tbs_certificate_tlv,
x509_util::DefaultParseCertificateOptions(), &tbs,
nullptr)) {
return RSAKeyUsage::kError;
}
if (!tbs.has_extensions) {
return RSAKeyUsage::kOKNoExtension;
}
std::map<der::Input, ParsedExtension> extensions;
if (!ParseExtensions(tbs.extensions_tlv, &extensions)) {
return RSAKeyUsage::kError;
}
ParsedExtension key_usage_ext;
if (!ConsumeExtension(KeyUsageOid(), &extensions, &key_usage_ext)) {
return RSAKeyUsage::kOKNoExtension;
}
der::BitString key_usage;
if (!ParseKeyUsage(key_usage_ext.value, &key_usage)) {
return RSAKeyUsage::kError;
}
bool have_digital_signature =
key_usage.AssertsBit(KEY_USAGE_BIT_DIGITAL_SIGNATURE);
bool have_key_encipherment =
key_usage.AssertsBit(KEY_USAGE_BIT_KEY_ENCIPHERMENT);
if (have_digital_signature && have_key_encipherment) {
return RSAKeyUsage::kOKHaveBoth;
}
if (need_key_encipherment) {
return have_key_encipherment ? RSAKeyUsage::kOKHaveKeyEncipherment
: RSAKeyUsage::kMissingKeyEncipherment;
}
return have_digital_signature ? RSAKeyUsage::kOKHaveDigitalSignature
: RSAKeyUsage::kMissingDigitalSignature;
}
#if !defined(NET_DISABLE_BROTLI)
int DecompressBrotliCert(SSL* ssl,
CRYPTO_BUFFER** out,
size_t uncompressed_len,
const uint8_t* in,
size_t in_len) {
uint8_t* data;
bssl::UniquePtr<CRYPTO_BUFFER> decompressed(
CRYPTO_BUFFER_alloc(&data, uncompressed_len));
if (!decompressed) {
return 0;
}
size_t output_size = uncompressed_len;
if (BrotliDecoderDecompress(in_len, in, &output_size, data) !=
BROTLI_DECODER_RESULT_SUCCESS ||
output_size != uncompressed_len) {
return 0;
}
*out = decompressed.release();
return 1;
}
#endif
} // namespace
class SSLClientSocketImpl::SSLContext {
public:
static SSLContext* GetInstance() {
return base::Singleton<SSLContext,
base::LeakySingletonTraits<SSLContext>>::get();
}
SSL_CTX* ssl_ctx() { return ssl_ctx_.get(); }
SSLClientSessionCache* session_cache() { return &session_cache_; }
SSLClientSocketImpl* GetClientSocketFromSSL(const SSL* ssl) {
DCHECK(ssl);
SSLClientSocketImpl* socket = static_cast<SSLClientSocketImpl*>(
SSL_get_ex_data(ssl, ssl_socket_data_index_));
DCHECK(socket);
return socket;
}
bool SetClientSocketForSSL(SSL* ssl, SSLClientSocketImpl* socket) {
return SSL_set_ex_data(ssl, ssl_socket_data_index_, socket) != 0;
}
void SetSSLKeyLogger(std::unique_ptr<SSLKeyLogger> logger) {
DCHECK(!ssl_key_logger_);
ssl_key_logger_ = std::move(logger);
SSL_CTX_set_keylog_callback(ssl_ctx_.get(), KeyLogCallback);
}
static const SSL_PRIVATE_KEY_METHOD kPrivateKeyMethod;
private:
friend struct base::DefaultSingletonTraits<SSLContext>;
SSLContext() : session_cache_(SSLClientSessionCache::Config()) {
crypto::EnsureOpenSSLInit();
ssl_socket_data_index_ = SSL_get_ex_new_index(0, 0, 0, 0, 0);
DCHECK_NE(ssl_socket_data_index_, -1);
ssl_ctx_.reset(SSL_CTX_new(TLS_with_buffers_method()));
SSL_CTX_set_cert_cb(ssl_ctx_.get(), ClientCertRequestCallback, NULL);
// The server certificate is verified after the handshake in DoVerifyCert.
SSL_CTX_set_custom_verify(ssl_ctx_.get(), SSL_VERIFY_PEER,
CertVerifyCallback);
// Disable the internal session cache. Session caching is handled
// externally (i.e. by SSLClientSessionCache).
SSL_CTX_set_session_cache_mode(
ssl_ctx_.get(), SSL_SESS_CACHE_CLIENT | SSL_SESS_CACHE_NO_INTERNAL);
SSL_CTX_sess_set_new_cb(ssl_ctx_.get(), NewSessionCallback);
SSL_CTX_set_timeout(ssl_ctx_.get(), 1 * 60 * 60 /* one hour */);
SSL_CTX_set_grease_enabled(ssl_ctx_.get(), 1);
// Deduplicate all certificates minted from the SSL_CTX in memory.
SSL_CTX_set0_buffer_pool(ssl_ctx_.get(), x509_util::GetBufferPool());
SSL_CTX_set_info_callback(ssl_ctx_.get(), InfoCallback);
SSL_CTX_set_msg_callback(ssl_ctx_.get(), MessageCallback);
#if !defined(NET_DISABLE_BROTLI)
SSL_CTX_add_cert_compression_alg(
ssl_ctx_.get(), TLSEXT_cert_compression_brotli,
nullptr /* compression not supported */, DecompressBrotliCert);
#endif
}
static int ClientCertRequestCallback(SSL* ssl, void* arg) {
SSLClientSocketImpl* socket = GetInstance()->GetClientSocketFromSSL(ssl);
DCHECK(socket);
return socket->ClientCertRequestCallback(ssl);
}
static ssl_verify_result_t CertVerifyCallback(SSL* ssl, uint8_t* out_alert) {
// The certificate is verified after the handshake in DoVerifyCert.
return ssl_verify_ok;
}
static int NewSessionCallback(SSL* ssl, SSL_SESSION* session) {
SSLClientSocketImpl* socket = GetInstance()->GetClientSocketFromSSL(ssl);
return socket->NewSessionCallback(session);
}
static ssl_private_key_result_t PrivateKeySignCallback(SSL* ssl,
uint8_t* out,
size_t* out_len,
size_t max_out,
uint16_t algorithm,
const uint8_t* in,
size_t in_len) {
SSLClientSocketImpl* socket = GetInstance()->GetClientSocketFromSSL(ssl);
return socket->PrivateKeySignCallback(out, out_len, max_out, algorithm, in,
in_len);
}
static ssl_private_key_result_t PrivateKeyCompleteCallback(SSL* ssl,
uint8_t* out,
size_t* out_len,
size_t max_out) {
SSLClientSocketImpl* socket = GetInstance()->GetClientSocketFromSSL(ssl);
return socket->PrivateKeyCompleteCallback(out, out_len, max_out);
}
static void KeyLogCallback(const SSL* ssl, const char* line) {
GetInstance()->ssl_key_logger_->WriteLine(line);
}
static void InfoCallback(const SSL* ssl, int type, int value) {
SSLClientSocketImpl* socket = GetInstance()->GetClientSocketFromSSL(ssl);
socket->InfoCallback(type, value);
}
static void MessageCallback(int is_write,
int version,
int content_type,
const void* buf,
size_t len,
SSL* ssl,
void* arg) {
SSLClientSocketImpl* socket = GetInstance()->GetClientSocketFromSSL(ssl);
return socket->MessageCallback(is_write, content_type, buf, len);
}
// This is the index used with SSL_get_ex_data to retrieve the owner
// SSLClientSocketImpl object from an SSL instance.
int ssl_socket_data_index_;
bssl::UniquePtr<SSL_CTX> ssl_ctx_;
std::unique_ptr<SSLKeyLogger> ssl_key_logger_;
// TODO(davidben): Use a separate cache per URLRequestContext.
// https://crbug.com/458365
//
// TODO(davidben): Sessions should be invalidated on fatal
// alerts. https://crbug.com/466352
SSLClientSessionCache session_cache_;
};
const SSL_PRIVATE_KEY_METHOD
SSLClientSocketImpl::SSLContext::kPrivateKeyMethod = {
&SSLClientSocketImpl::SSLContext::PrivateKeySignCallback,
nullptr /* decrypt */,
&SSLClientSocketImpl::SSLContext::PrivateKeyCompleteCallback,
};
// static
void SSLClientSocket::ClearSessionCache() {
SSLClientSocketImpl::SSLContext* context =
SSLClientSocketImpl::SSLContext::GetInstance();
context->session_cache()->Flush();
}
SSLClientSocketImpl::SSLClientSocketImpl(
std::unique_ptr<ClientSocketHandle> transport_socket,
const HostPortPair& host_and_port,
const SSLConfig& ssl_config,
const SSLClientSocketContext& context)
: pending_read_error_(kSSLClientSocketNoPendingResult),
pending_read_ssl_error_(SSL_ERROR_NONE),
completed_connect_(false),
was_ever_used_(false),
cert_verifier_(context.cert_verifier),
cert_transparency_verifier_(context.cert_transparency_verifier),
channel_id_service_(context.channel_id_service),
tb_signature_map_(10),
transport_(std::move(transport_socket)),
host_and_port_(host_and_port),
ssl_config_(ssl_config),
ssl_session_cache_shard_(context.ssl_session_cache_shard),
next_handshake_state_(STATE_NONE),
in_confirm_handshake_(false),
disconnected_(false),
negotiated_protocol_(kProtoUnknown),
channel_id_sent_(false),
certificate_verified_(false),
certificate_requested_(false),
signature_result_(kSSLClientSocketNoPendingResult),
transport_security_state_(context.transport_security_state),
policy_enforcer_(context.ct_policy_enforcer),
pkp_bypassed_(false),
is_fatal_cert_error_(false),
net_log_(transport_->socket()->NetLog()),
weak_factory_(this) {
CHECK(cert_verifier_);
CHECK(transport_security_state_);
CHECK(cert_transparency_verifier_);
CHECK(policy_enforcer_);
}
SSLClientSocketImpl::~SSLClientSocketImpl() {
Disconnect();
}
void SSLClientSocketImpl::SetSSLKeyLogger(
std::unique_ptr<SSLKeyLogger> logger) {
SSLContext::GetInstance()->SetSSLKeyLogger(std::move(logger));
}
int SSLClientSocketImpl::ExportKeyingMaterial(const base::StringPiece& label,
bool has_context,
const base::StringPiece& context,
unsigned char* out,
unsigned int outlen) {
if (!IsConnected())
return ERR_SOCKET_NOT_CONNECTED;
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
if (!SSL_export_keying_material(
ssl_.get(), out, outlen, label.data(), label.size(),
reinterpret_cast<const unsigned char*>(context.data()),
context.length(), has_context ? 1 : 0)) {
LOG(ERROR) << "Failed to export keying material.";
return ERR_FAILED;
}
return OK;
}
int SSLClientSocketImpl::Connect(CompletionOnceCallback callback) {
// Although StreamSocket does allow calling Connect() after Disconnect(),
// this has never worked for layered sockets. CHECK to detect any consumers
// reconnecting an SSL socket.
//
// TODO(davidben,mmenke): Remove this API feature. See
// https://crbug.com/499289.
CHECK(!disconnected_);
net_log_.BeginEvent(NetLogEventType::SSL_CONNECT);
// Set up new ssl object.
int rv = Init();
if (rv != OK) {
LogConnectEndEvent(rv);
return rv;
}
// Set SSL to client mode. Handshake happens in the loop below.
SSL_set_connect_state(ssl_.get());
next_handshake_state_ = STATE_HANDSHAKE;
rv = DoHandshakeLoop(OK);
if (rv == ERR_IO_PENDING) {
user_connect_callback_ = std::move(callback);
} else {
LogConnectEndEvent(rv);
}
return rv > OK ? OK : rv;
}
void SSLClientSocketImpl::Disconnect() {
disconnected_ = true;
// Shut down anything that may call us back.
cert_verifier_request_.reset();
channel_id_request_.Cancel();
weak_factory_.InvalidateWeakPtrs();
transport_adapter_.reset();
// Release user callbacks.
user_connect_callback_.Reset();
user_read_callback_.Reset();
user_write_callback_.Reset();
user_read_buf_ = NULL;
user_read_buf_len_ = 0;
user_write_buf_ = NULL;
user_write_buf_len_ = 0;
transport_->socket()->Disconnect();
}
// ConfirmHandshake may only be called on a connected socket and, like other
// socket methods, there may only be one ConfirmHandshake operation in progress
// at once.
int SSLClientSocketImpl::ConfirmHandshake(CompletionOnceCallback callback) {
CHECK(completed_connect_);
CHECK(!in_confirm_handshake_);
if (!SSL_in_early_data(ssl_.get())) {
return OK;
}
net_log_.BeginEvent(NetLogEventType::SSL_CONFIRM_HANDSHAKE);
next_handshake_state_ = STATE_HANDSHAKE;
in_confirm_handshake_ = true;
int rv = DoHandshakeLoop(OK);
if (rv == ERR_IO_PENDING) {
user_connect_callback_ = std::move(callback);
} else {
net_log_.EndEvent(NetLogEventType::SSL_CONFIRM_HANDSHAKE);
in_confirm_handshake_ = false;
}
return rv > OK ? OK : rv;
}
bool SSLClientSocketImpl::IsConnected() const {
// If the handshake has not yet completed or the socket has been explicitly
// disconnected.
if (!completed_connect_ || disconnected_)
return false;
// If an asynchronous operation is still pending.
if (user_read_buf_.get() || user_write_buf_.get())
return true;
return transport_->socket()->IsConnected();
}
bool SSLClientSocketImpl::IsConnectedAndIdle() const {
// If the handshake has not yet completed or the socket has been explicitly
// disconnected.
if (!completed_connect_ || disconnected_)
return false;
// If an asynchronous operation is still pending.
if (user_read_buf_.get() || user_write_buf_.get())
return false;
// If there is data read from the network that has not yet been consumed, do
// not treat the connection as idle.
//
// Note that this does not check whether there is ciphertext that has not yet
// been flushed to the network. |Write| returns early, so this can cause race
// conditions which cause a socket to not be treated reusable when it should
// be. See https://crbug.com/466147.
if (transport_adapter_->HasPendingReadData())
return false;
return transport_->socket()->IsConnectedAndIdle();
}
int SSLClientSocketImpl::GetPeerAddress(IPEndPoint* addressList) const {
return transport_->socket()->GetPeerAddress(addressList);
}
int SSLClientSocketImpl::GetLocalAddress(IPEndPoint* addressList) const {
return transport_->socket()->GetLocalAddress(addressList);
}
const NetLogWithSource& SSLClientSocketImpl::NetLog() const {
return net_log_;
}
bool SSLClientSocketImpl::WasEverUsed() const {
return was_ever_used_;
}
bool SSLClientSocketImpl::WasAlpnNegotiated() const {
return negotiated_protocol_ != kProtoUnknown;
}
NextProto SSLClientSocketImpl::GetNegotiatedProtocol() const {
return negotiated_protocol_;
}
bool SSLClientSocketImpl::GetSSLInfo(SSLInfo* ssl_info) {
ssl_info->Reset();
if (!server_cert_)
return false;
ssl_info->cert = server_cert_verify_result_.verified_cert;
ssl_info->unverified_cert = server_cert_;
ssl_info->cert_status = server_cert_verify_result_.cert_status;
ssl_info->is_issued_by_known_root =
server_cert_verify_result_.is_issued_by_known_root;
ssl_info->pkp_bypassed = pkp_bypassed_;
ssl_info->public_key_hashes = server_cert_verify_result_.public_key_hashes;
ssl_info->client_cert_sent =
ssl_config_.send_client_cert && ssl_config_.client_cert.get();
ssl_info->channel_id_sent = channel_id_sent_;
ssl_info->token_binding_negotiated =
SSL_is_token_binding_negotiated(ssl_.get());
ssl_info->token_binding_key_param = static_cast<net::TokenBindingParam>(
SSL_get_negotiated_token_binding_param(ssl_.get()));
ssl_info->dummy_pq_padding_received = SSL_dummy_pq_padding_used(ssl_.get());
ssl_info->pinning_failure_log = pinning_failure_log_;
ssl_info->ocsp_result = server_cert_verify_result_.ocsp_result;
ssl_info->is_fatal_cert_error = is_fatal_cert_error_;
AddCTInfoToSSLInfo(ssl_info);
const SSL_CIPHER* cipher = SSL_get_current_cipher(ssl_.get());
CHECK(cipher);
ssl_info->security_bits = SSL_CIPHER_get_bits(cipher, NULL);
// Historically, the "group" was known as "curve".
ssl_info->key_exchange_group = SSL_get_curve_id(ssl_.get());
SSLConnectionStatusSetCipherSuite(
static_cast<uint16_t>(SSL_CIPHER_get_id(cipher)),
&ssl_info->connection_status);
SSLConnectionStatusSetVersion(GetNetSSLVersion(ssl_.get()),
&ssl_info->connection_status);
ssl_info->handshake_type = SSL_session_reused(ssl_.get())
? SSLInfo::HANDSHAKE_RESUME
: SSLInfo::HANDSHAKE_FULL;
return true;
}
void SSLClientSocketImpl::GetConnectionAttempts(ConnectionAttempts* out) const {
out->clear();
}
int64_t SSLClientSocketImpl::GetTotalReceivedBytes() const {
return transport_->socket()->GetTotalReceivedBytes();
}
void SSLClientSocketImpl::DumpMemoryStats(SocketMemoryStats* stats) const {
if (transport_adapter_)
stats->buffer_size = transport_adapter_->GetAllocationSize();
const STACK_OF(CRYPTO_BUFFER)* server_cert_chain =
SSL_get0_peer_certificates(ssl_.get());
if (server_cert_chain) {
for (const CRYPTO_BUFFER* cert : server_cert_chain) {
stats->cert_size += CRYPTO_BUFFER_len(cert);
}
stats->cert_count = sk_CRYPTO_BUFFER_num(server_cert_chain);
}
stats->total_size = stats->buffer_size + stats->cert_size;
}
void SSLClientSocketImpl::GetSSLCertRequestInfo(
SSLCertRequestInfo* cert_request_info) const {
if (!ssl_) {
NOTREACHED();
return;
}
cert_request_info->host_and_port = host_and_port_;
cert_request_info->cert_authorities.clear();
const STACK_OF(CRYPTO_BUFFER)* authorities =
SSL_get0_server_requested_CAs(ssl_.get());
for (const CRYPTO_BUFFER* ca_name : authorities) {
cert_request_info->cert_authorities.push_back(
std::string(reinterpret_cast<const char*>(CRYPTO_BUFFER_data(ca_name)),
CRYPTO_BUFFER_len(ca_name)));
}
cert_request_info->cert_key_types.clear();
const uint8_t* client_cert_types;
size_t num_client_cert_types =
SSL_get0_certificate_types(ssl_.get(), &client_cert_types);
for (size_t i = 0; i < num_client_cert_types; i++) {
cert_request_info->cert_key_types.push_back(
static_cast<SSLClientCertType>(client_cert_types[i]));
}
}
ChannelIDService* SSLClientSocketImpl::GetChannelIDService() const {
return channel_id_service_;
}
Error SSLClientSocketImpl::GetTokenBindingSignature(crypto::ECPrivateKey* key,
TokenBindingType tb_type,
std::vector<uint8_t>* out) {
// The same key will be used across multiple requests to sign the same value,
// so the signature is cached.
std::string raw_public_key;
if (!key->ExportRawPublicKey(&raw_public_key))
return ERR_FAILED;
auto it = tb_signature_map_.Get(std::make_pair(tb_type, raw_public_key));
if (it != tb_signature_map_.end()) {
*out = it->second;
return OK;
}
uint8_t tb_ekm_buf[32];
static const char kTokenBindingExporterLabel[] = "EXPORTER-Token-Binding";
if (!SSL_export_keying_material(ssl_.get(), tb_ekm_buf, sizeof(tb_ekm_buf),
kTokenBindingExporterLabel,
strlen(kTokenBindingExporterLabel), nullptr,
0, false /* no context */)) {
return ERR_FAILED;
}
if (!CreateTokenBindingSignature(
base::StringPiece(reinterpret_cast<char*>(tb_ekm_buf),
sizeof(tb_ekm_buf)),
tb_type, key, out))
return ERR_FAILED;
tb_signature_map_.Put(std::make_pair(tb_type, raw_public_key), *out);
return OK;
}
crypto::ECPrivateKey* SSLClientSocketImpl::GetChannelIDKey() const {
return channel_id_key_.get();
}
void SSLClientSocketImpl::ApplySocketTag(const SocketTag& tag) {
return transport_->socket()->ApplySocketTag(tag);
}
// static
void SSLClientSocketImpl::DumpSSLClientSessionMemoryStats(
base::trace_event::ProcessMemoryDump* pmd) {
SSLContext::GetInstance()->session_cache()->DumpMemoryStats(pmd);
}
int SSLClientSocketImpl::Read(IOBuffer* buf,
int buf_len,
CompletionOnceCallback callback) {
int rv = ReadIfReady(buf, buf_len, std::move(callback));
if (rv == ERR_IO_PENDING) {
user_read_buf_ = buf;
user_read_buf_len_ = buf_len;
}
return rv;
}
int SSLClientSocketImpl::ReadIfReady(IOBuffer* buf,
int buf_len,
CompletionOnceCallback callback) {
int rv = DoPayloadRead(buf, buf_len);
if (rv == ERR_IO_PENDING) {
user_read_callback_ = std::move(callback);
} else {
if (rv > 0)
was_ever_used_ = true;
}
return rv;
}
int SSLClientSocketImpl::CancelReadIfReady() {
int result = transport_->socket()->CancelReadIfReady();
// Cancel |user_read_callback_|, because caller does not expect the callback
// to be invoked after they have canceled the ReadIfReady.
user_read_callback_.Reset();
return result;
}
int SSLClientSocketImpl::Write(
IOBuffer* buf,
int buf_len,
CompletionOnceCallback callback,
const NetworkTrafficAnnotationTag& traffic_annotation) {
user_write_buf_ = buf;
user_write_buf_len_ = buf_len;
int rv = DoPayloadWrite();
if (rv == ERR_IO_PENDING) {
user_write_callback_ = std::move(callback);
} else {
if (rv > 0)
was_ever_used_ = true;
user_write_buf_ = NULL;
user_write_buf_len_ = 0;
}
return rv;
}
int SSLClientSocketImpl::SetReceiveBufferSize(int32_t size) {
return transport_->socket()->SetReceiveBufferSize(size);
}
int SSLClientSocketImpl::SetSendBufferSize(int32_t size) {
return transport_->socket()->SetSendBufferSize(size);
}
void SSLClientSocketImpl::OnReadReady() {
// During a renegotiation, either Read or Write calls may be blocked on a
// transport read.
RetryAllOperations();
}
void SSLClientSocketImpl::OnWriteReady() {
// During a renegotiation, either Read or Write calls may be blocked on a
// transport read.
RetryAllOperations();
}
int SSLClientSocketImpl::Init() {
DCHECK(!ssl_);
SSLContext* context = SSLContext::GetInstance();
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
ssl_.reset(SSL_new(context->ssl_ctx()));
if (!ssl_ || !context->SetClientSocketForSSL(ssl_.get(), this))
return ERR_UNEXPECTED;
// SNI should only contain valid DNS hostnames, not IP addresses (see RFC
// 6066, Section 3).
//
// TODO(rsleevi): Should this code allow hostnames that violate the LDH rule?
// See https://crbug.com/496472 and https://crbug.com/496468 for discussion.
IPAddress unused;
if (!unused.AssignFromIPLiteral(host_and_port_.host()) &&
!SSL_set_tlsext_host_name(ssl_.get(), host_and_port_.host().c_str())) {
return ERR_UNEXPECTED;
}
if (!ssl_session_cache_shard_.empty()) {
bssl::UniquePtr<SSL_SESSION> session =
context->session_cache()->Lookup(GetSessionCacheKey());
if (session)
SSL_set_session(ssl_.get(), session.get());
}
transport_adapter_.reset(
new SocketBIOAdapter(transport_->socket(), kDefaultOpenSSLBufferSize,
kDefaultOpenSSLBufferSize, this));
BIO* transport_bio = transport_adapter_->bio();
BIO_up_ref(transport_bio); // SSL_set0_rbio takes ownership.
SSL_set0_rbio(ssl_.get(), transport_bio);
BIO_up_ref(transport_bio); // SSL_set0_wbio takes ownership.
SSL_set0_wbio(ssl_.get(), transport_bio);
DCHECK_LT(SSL3_VERSION, ssl_config_.version_min);
DCHECK_LT(SSL3_VERSION, ssl_config_.version_max);
if (!SSL_set_min_proto_version(ssl_.get(), ssl_config_.version_min) ||
!SSL_set_max_proto_version(ssl_.get(), ssl_config_.version_max)) {
return ERR_UNEXPECTED;
}
SSL_set_early_data_enabled(ssl_.get(), ssl_config_.early_data_enabled);
switch (ssl_config_.tls13_variant) {
case kTLS13VariantDraft23:
SSL_set_tls13_variant(ssl_.get(), tls13_draft23);
break;
case kTLS13VariantDraft28:
SSL_set_tls13_variant(ssl_.get(), tls13_draft28);
break;
}
const int dummy_pq_padding_len = base::GetFieldTrialParamByFeatureAsInt(
kPostQuantumPadding, "length", 0 /* default value */);
if (dummy_pq_padding_len > 0 && dummy_pq_padding_len < 15000) {
SSL_set_dummy_pq_padding_size(ssl_.get(), dummy_pq_padding_len);
}
// OpenSSL defaults some options to on, others to off. To avoid ambiguity,
// set everything we care about to an absolute value.
SslSetClearMask options;
options.ConfigureFlag(SSL_OP_NO_COMPRESSION, true);
// TODO(joth): Set this conditionally, see http://crbug.com/55410
options.ConfigureFlag(SSL_OP_LEGACY_SERVER_CONNECT, true);
SSL_set_options(ssl_.get(), options.set_mask);
SSL_clear_options(ssl_.get(), options.clear_mask);
// Same as above, this time for the SSL mode.
SslSetClearMask mode;
mode.ConfigureFlag(SSL_MODE_RELEASE_BUFFERS, true);
mode.ConfigureFlag(SSL_MODE_CBC_RECORD_SPLITTING, true);
mode.ConfigureFlag(SSL_MODE_ENABLE_FALSE_START,
ssl_config_.false_start_enabled);
SSL_set_mode(ssl_.get(), mode.set_mask);
SSL_clear_mode(ssl_.get(), mode.clear_mask);
// Use BoringSSL defaults, but disable HMAC-SHA1 ciphers in ECDSA. These are
// the remaining CBC-mode ECDSA ciphers.
std::string command("ALL::!aPSK:!ECDSA+SHA1");
if (ssl_config_.require_ecdhe)
command.append(":!kRSA");
// Remove any disabled ciphers.
for (uint16_t id : ssl_config_.disabled_cipher_suites) {
const SSL_CIPHER* cipher = SSL_get_cipher_by_value(id);
if (cipher) {
command.append(":!");
command.append(SSL_CIPHER_get_name(cipher));
}
}
if (!SSL_set_strict_cipher_list(ssl_.get(), command.c_str())) {
LOG(ERROR) << "SSL_set_cipher_list('" << command << "') failed";
return ERR_UNEXPECTED;
}
// TLS channel ids.
if (IsChannelIDEnabled()) {
SSL_enable_tls_channel_id(ssl_.get());
}
if (!ssl_config_.token_binding_params.empty()) {
std::vector<uint8_t> params(ssl_config_.token_binding_params.begin(),
ssl_config_.token_binding_params.end());
SSL_set_token_binding_params(ssl_.get(), params.data(), params.size());
}
if (!ssl_config_.alpn_protos.empty()) {
std::vector<uint8_t> wire_protos =
SerializeNextProtos(ssl_config_.alpn_protos);
SSL_set_alpn_protos(ssl_.get(),
wire_protos.empty() ? NULL : &wire_protos[0],
wire_protos.size());
}
SSL_enable_signed_cert_timestamps(ssl_.get());
SSL_enable_ocsp_stapling(ssl_.get());
// Configure BoringSSL to allow renegotiations. Once the initial handshake
// completes, if renegotiations are not allowed, the default reject value will
// be restored. This is done in this order to permit a BoringSSL
// optimization. See https://crbug.com/boringssl/123.
SSL_set_renegotiate_mode(ssl_.get(), ssl_renegotiate_freely);
SSL_set_shed_handshake_config(ssl_.get(), 1);
return OK;
}
void SSLClientSocketImpl::DoReadCallback(int rv) {
// Since Run may result in Read being called, clear |user_read_callback_|
// up front.
if (rv > 0)
was_ever_used_ = true;
user_read_buf_ = nullptr;
user_read_buf_len_ = 0;
std::move(user_read_callback_).Run(rv);
}
void SSLClientSocketImpl::DoWriteCallback(int rv) {
// Since Run may result in Write being called, clear |user_write_callback_|
// up front.
if (rv > 0)
was_ever_used_ = true;
user_write_buf_ = NULL;
user_write_buf_len_ = 0;
std::move(user_write_callback_).Run(rv);
}
int SSLClientSocketImpl::DoHandshake() {
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
int rv = SSL_do_handshake(ssl_.get());
int net_error = OK;
if (rv <= 0) {
int ssl_error = SSL_get_error(ssl_.get(), rv);
if (ssl_error == SSL_ERROR_WANT_CHANNEL_ID_LOOKUP) {
// The server supports channel ID. Stop to look one up before returning to
// the handshake.
next_handshake_state_ = STATE_CHANNEL_ID_LOOKUP;
return OK;
}
if (ssl_error == SSL_ERROR_WANT_X509_LOOKUP &&
!ssl_config_.send_client_cert) {
return ERR_SSL_CLIENT_AUTH_CERT_NEEDED;
}
if (ssl_error == SSL_ERROR_WANT_PRIVATE_KEY_OPERATION) {
DCHECK(ssl_config_.client_private_key);
DCHECK_NE(kSSLClientSocketNoPendingResult, signature_result_);
next_handshake_state_ = STATE_HANDSHAKE;
return ERR_IO_PENDING;
}
OpenSSLErrorInfo error_info;
net_error = MapLastOpenSSLError(ssl_error, err_tracer, &error_info);
if (net_error == ERR_IO_PENDING) {
// If not done, stay in this state
next_handshake_state_ = STATE_HANDSHAKE;
return ERR_IO_PENDING;
}
LOG(ERROR) << "handshake failed; returned " << rv << ", SSL error code "
<< ssl_error << ", net_error " << net_error;
net_log_.AddEvent(
NetLogEventType::SSL_HANDSHAKE_ERROR,
CreateNetLogOpenSSLErrorCallback(net_error, ssl_error, error_info));
}
next_handshake_state_ = STATE_HANDSHAKE_COMPLETE;
return net_error;
}
int SSLClientSocketImpl::DoHandshakeComplete(int result) {
if (result < 0)
return result;
if (in_confirm_handshake_) {
next_handshake_state_ = STATE_NONE;
return OK;
}
if (ssl_config_.version_interference_probe) {
DCHECK_LT(ssl_config_.version_max, TLS1_3_VERSION);
return ERR_SSL_VERSION_INTERFERENCE;
}
if (!ssl_session_cache_shard_.empty()) {
SSLContext::GetInstance()->session_cache()->ResetLookupCount(
GetSessionCacheKey());
}
const uint8_t* alpn_proto = NULL;
unsigned alpn_len = 0;
SSL_get0_alpn_selected(ssl_.get(), &alpn_proto, &alpn_len);
if (alpn_len > 0) {
base::StringPiece proto(reinterpret_cast<const char*>(alpn_proto),
alpn_len);
negotiated_protocol_ = NextProtoFromString(proto);
}
RecordNegotiatedProtocol();
const uint8_t* ocsp_response_raw;
size_t ocsp_response_len;
SSL_get0_ocsp_response(ssl_.get(), &ocsp_response_raw, &ocsp_response_len);
set_stapled_ocsp_response_received(ocsp_response_len != 0);
UMA_HISTOGRAM_BOOLEAN("Net.OCSPResponseStapled", ocsp_response_len != 0);
const uint8_t* sct_list;
size_t sct_list_len;
SSL_get0_signed_cert_timestamp_list(ssl_.get(), &sct_list, &sct_list_len);
set_signed_cert_timestamps_received(sct_list_len != 0);
if (!IsRenegotiationAllowed())
SSL_set_renegotiate_mode(ssl_.get(), ssl_renegotiate_never);
uint16_t signature_algorithm = SSL_get_peer_signature_algorithm(ssl_.get());
if (signature_algorithm != 0) {
base::UmaHistogramSparse("Net.SSLSignatureAlgorithm", signature_algorithm);
}
if (IsTLS13ExperimentHost(host_and_port_.host())) {
// To measure the effects of TLS 1.3's anti-downgrade mechanism, record
// whether the codepath would have been blocked against servers known to
// implement draft TLS 1.3. This should be a safe security measure to
// enable, but some middleboxes have non-compliant behavior here. See
// https://crbug.com/boringssl/226.
UMA_HISTOGRAM_BOOLEAN("Net.SSLDraftDowngradeTLS13Experiment",
!!SSL_is_draft_downgrade(ssl_.get()));
}
// Verify the certificate.
next_handshake_state_ = STATE_VERIFY_CERT;
return OK;
}
int SSLClientSocketImpl::DoChannelIDLookup() {
NetLogParametersCallback callback = base::Bind(
&NetLogChannelIDLookupCallback, base::Unretained(channel_id_service_));
net_log_.BeginEvent(NetLogEventType::SSL_GET_CHANNEL_ID, callback);
next_handshake_state_ = STATE_CHANNEL_ID_LOOKUP_COMPLETE;
return channel_id_service_->GetOrCreateChannelID(
host_and_port_.host(), &channel_id_key_,
base::Bind(&SSLClientSocketImpl::OnHandshakeIOComplete,
base::Unretained(this)),
&channel_id_request_);
}
int SSLClientSocketImpl::DoChannelIDLookupComplete(int result) {
net_log_.EndEvent(NetLogEventType::SSL_GET_CHANNEL_ID,
base::Bind(&NetLogChannelIDLookupCompleteCallback,
channel_id_key_.get(), result));
if (result < 0)
return result;
// Hand the key to OpenSSL. Check for error in case OpenSSL rejects the key
// type.
DCHECK(channel_id_key_);
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
if (!SSL_set1_tls_channel_id(ssl_.get(), channel_id_key_->key())) {
LOG(ERROR) << "Failed to set Channel ID.";
return ERR_FAILED;
}
// Return to the handshake.
channel_id_sent_ = true;
next_handshake_state_ = STATE_HANDSHAKE;
return OK;
}
int SSLClientSocketImpl::DoVerifyCert(int result) {
DCHECK(start_cert_verification_time_.is_null());
server_cert_ = x509_util::CreateX509CertificateFromBuffers(
SSL_get0_peer_certificates(ssl_.get()));
// OpenSSL decoded the certificate, but the X509Certificate implementation
// could not. This is treated as a fatal SSL-level protocol error rather than
// a certificate error. See https://crbug.com/91341.
if (!server_cert_)
return ERR_SSL_SERVER_CERT_BAD_FORMAT;
net_log_.AddEvent(NetLogEventType::SSL_CERTIFICATES_RECEIVED,
base::Bind(&NetLogX509CertificateCallback,
base::Unretained(server_cert_.get())));
next_handshake_state_ = STATE_VERIFY_CERT_COMPLETE;
// If the certificate is bad and has been previously accepted, use
// the previous status and bypass the error.
CertStatus cert_status;
if (ssl_config_.IsAllowedBadCert(server_cert_.get(), &cert_status)) {
server_cert_verify_result_.Reset();
server_cert_verify_result_.cert_status = cert_status;
server_cert_verify_result_.verified_cert = server_cert_;
return OK;
}
start_cert_verification_time_ = base::TimeTicks::Now();
const uint8_t* ocsp_response_raw;
size_t ocsp_response_len;
SSL_get0_ocsp_response(ssl_.get(), &ocsp_response_raw, &ocsp_response_len);
base::StringPiece ocsp_response(
reinterpret_cast<const char*>(ocsp_response_raw), ocsp_response_len);
return cert_verifier_->Verify(
CertVerifier::RequestParams(server_cert_, host_and_port_.host(),
ssl_config_.GetCertVerifyFlags(),
ocsp_response.as_string(), CertificateList()),
// TODO(davidben): Route the CRLSet through SSLConfig so
// SSLClientSocket doesn't depend on SSLConfigService.
SSLConfigService::GetCRLSet().get(), &server_cert_verify_result_,
base::Bind(&SSLClientSocketImpl::OnHandshakeIOComplete,
base::Unretained(this)),
&cert_verifier_request_, net_log_);
}
int SSLClientSocketImpl::DoVerifyCertComplete(int result) {
cert_verifier_request_.reset();
if (!start_cert_verification_time_.is_null()) {
base::TimeDelta verify_time =
base::TimeTicks::Now() - start_cert_verification_time_;
if (result == OK) {
UMA_HISTOGRAM_TIMES("Net.SSLCertVerificationTime", verify_time);
} else {
UMA_HISTOGRAM_TIMES("Net.SSLCertVerificationTimeError", verify_time);
}
}
// If the connection was good, check HPKP and CT status simultaneously,
// but prefer to treat the HPKP error as more serious, if there was one.
const CertStatus cert_status = server_cert_verify_result_.cert_status;
if ((result == OK ||
(IsCertificateError(result) && IsCertStatusMinorError(cert_status)))) {
int ct_result = VerifyCT();
TransportSecurityState::PKPStatus pin_validity =
transport_security_state_->CheckPublicKeyPins(
host_and_port_, server_cert_verify_result_.is_issued_by_known_root,
server_cert_verify_result_.public_key_hashes, server_cert_.get(),
server_cert_verify_result_.verified_cert.get(),
TransportSecurityState::ENABLE_PIN_REPORTS, &pinning_failure_log_);
switch (pin_validity) {
case TransportSecurityState::PKPStatus::VIOLATED:
server_cert_verify_result_.cert_status |=
CERT_STATUS_PINNED_KEY_MISSING;
result = ERR_SSL_PINNED_KEY_NOT_IN_CERT_CHAIN;
break;
case TransportSecurityState::PKPStatus::BYPASSED:
pkp_bypassed_ = true;
FALLTHROUGH;
case TransportSecurityState::PKPStatus::OK:
// Do nothing.
break;
}
if (result != ERR_SSL_PINNED_KEY_NOT_IN_CERT_CHAIN && ct_result != OK)
result = ct_result;
}
is_fatal_cert_error_ =
IsCertStatusError(cert_status) && !IsCertStatusMinorError(cert_status) &&
transport_security_state_->ShouldSSLErrorsBeFatal(host_and_port_.host());
if (result == OK) {
DCHECK(!certificate_verified_);
certificate_verified_ = true;
MaybeCacheSession();
SSLInfo ssl_info;
bool ok = GetSSLInfo(&ssl_info);
DCHECK(ok);
// See how feasible enforcing RSA key usage would be. See
// https://crbug.com/795089.
RSAKeyUsage rsa_key_usage = CheckRSAKeyUsage(
server_cert_.get(), SSL_get_current_cipher(ssl_.get()));
if (rsa_key_usage != RSAKeyUsage::kNotRSA) {
if (server_cert_verify_result_.is_issued_by_known_root) {
UMA_HISTOGRAM_ENUMERATION(
"Net.SSLRSAKeyUsage.KnownRoot", rsa_key_usage,
static_cast<int>(RSAKeyUsage::kLastValue) + 1);
} else {
UMA_HISTOGRAM_ENUMERATION(
"Net.SSLRSAKeyUsage.UnknownRoot", rsa_key_usage,
static_cast<int>(RSAKeyUsage::kLastValue) + 1);
}
}
}
completed_connect_ = true;
// Exit DoHandshakeLoop and return the result to the caller to Connect.
DCHECK_EQ(STATE_NONE, next_handshake_state_);
return result;
}
void SSLClientSocketImpl::DoConnectCallback(int rv) {
if (!user_connect_callback_.is_null()) {
std::move(user_connect_callback_).Run(rv > OK ? OK : rv);
}
}
void SSLClientSocketImpl::OnHandshakeIOComplete(int result) {
int rv = DoHandshakeLoop(result);
if (rv != ERR_IO_PENDING) {
if (in_confirm_handshake_) {
in_confirm_handshake_ = false;
net_log_.EndEvent(NetLogEventType::SSL_CONFIRM_HANDSHAKE);
} else {
LogConnectEndEvent(rv);
}
DoConnectCallback(rv);
}
}
int SSLClientSocketImpl::DoHandshakeLoop(int last_io_result) {
TRACE_EVENT0(kNetTracingCategory, "SSLClientSocketImpl::DoHandshakeLoop");
int rv = last_io_result;
do {
// Default to STATE_NONE for next state.
// (This is a quirk carried over from the windows
// implementation. It makes reading the logs a bit harder.)
// State handlers can and often do call GotoState just
// to stay in the current state.
State state = next_handshake_state_;
next_handshake_state_ = STATE_NONE;
switch (state) {
case STATE_HANDSHAKE:
rv = DoHandshake();
break;
case STATE_HANDSHAKE_COMPLETE:
rv = DoHandshakeComplete(rv);
break;
case STATE_CHANNEL_ID_LOOKUP:
DCHECK_EQ(OK, rv);
rv = DoChannelIDLookup();
break;
case STATE_CHANNEL_ID_LOOKUP_COMPLETE:
rv = DoChannelIDLookupComplete(rv);
break;
case STATE_VERIFY_CERT:
DCHECK_EQ(OK, rv);
rv = DoVerifyCert(rv);
break;
case STATE_VERIFY_CERT_COMPLETE:
rv = DoVerifyCertComplete(rv);
break;
case STATE_NONE:
default:
rv = ERR_UNEXPECTED;
NOTREACHED() << "unexpected state" << state;
break;
}
} while (rv != ERR_IO_PENDING && next_handshake_state_ != STATE_NONE);
return rv;
}
int SSLClientSocketImpl::DoPayloadRead(IOBuffer* buf, int buf_len) {
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
DCHECK_LT(0, buf_len);
DCHECK(buf);
int rv;
if (pending_read_error_ != kSSLClientSocketNoPendingResult) {
rv = pending_read_error_;
pending_read_error_ = kSSLClientSocketNoPendingResult;
if (rv == 0) {
net_log_.AddByteTransferEvent(NetLogEventType::SSL_SOCKET_BYTES_RECEIVED,
rv, buf->data());
} else {
net_log_.AddEvent(
NetLogEventType::SSL_READ_ERROR,
CreateNetLogOpenSSLErrorCallback(rv, pending_read_ssl_error_,
pending_read_error_info_));
}
pending_read_ssl_error_ = SSL_ERROR_NONE;
pending_read_error_info_ = OpenSSLErrorInfo();
return rv;
}
int total_bytes_read = 0;
int ssl_ret;
do {
ssl_ret = SSL_read(ssl_.get(), buf->data() + total_bytes_read,
buf_len - total_bytes_read);
if (ssl_ret > 0)
total_bytes_read += ssl_ret;
// Continue processing records as long as there is more data available
// synchronously.
} while (total_bytes_read < buf_len && ssl_ret > 0 &&
transport_adapter_->HasPendingReadData());
// Although only the final SSL_read call may have failed, the failure needs to
// processed immediately, while the information still available in OpenSSL's
// error queue.
if (ssl_ret <= 0) {
pending_read_ssl_error_ = SSL_get_error(ssl_.get(), ssl_ret);
if (pending_read_ssl_error_ == SSL_ERROR_ZERO_RETURN) {
pending_read_error_ = 0;
} else if (pending_read_ssl_error_ == SSL_ERROR_WANT_X509_LOOKUP &&
!ssl_config_.send_client_cert) {
pending_read_error_ = ERR_SSL_CLIENT_AUTH_CERT_NEEDED;
} else if (pending_read_ssl_error_ ==
SSL_ERROR_WANT_PRIVATE_KEY_OPERATION) {
DCHECK(ssl_config_.client_private_key);
DCHECK_NE(kSSLClientSocketNoPendingResult, signature_result_);
pending_read_error_ = ERR_IO_PENDING;
} else {
pending_read_error_ = MapLastOpenSSLError(
pending_read_ssl_error_, err_tracer, &pending_read_error_info_);
}
// Many servers do not reliably send a close_notify alert when shutting down
// a connection, and instead terminate the TCP connection. This is reported
// as ERR_CONNECTION_CLOSED. Because of this, map the unclean shutdown to a
// graceful EOF, instead of treating it as an error as it should be.
if (pending_read_error_ == ERR_CONNECTION_CLOSED)
pending_read_error_ = 0;
}
if (total_bytes_read > 0) {
// Return any bytes read to the caller. The error will be deferred to the
// next call of DoPayloadRead.
rv = total_bytes_read;
// Do not treat insufficient data as an error to return in the next call to
// DoPayloadRead() - instead, let the call fall through to check SSL_read()
// again. The transport may have data available by then.
if (pending_read_error_ == ERR_IO_PENDING)
pending_read_error_ = kSSLClientSocketNoPendingResult;
} else {
// No bytes were returned. Return the pending read error immediately.
DCHECK_NE(kSSLClientSocketNoPendingResult, pending_read_error_);
rv = pending_read_error_;
pending_read_error_ = kSSLClientSocketNoPendingResult;
}
if (rv >= 0) {
net_log_.AddByteTransferEvent(NetLogEventType::SSL_SOCKET_BYTES_RECEIVED,
rv, buf->data());
} else if (rv != ERR_IO_PENDING) {
net_log_.AddEvent(
NetLogEventType::SSL_READ_ERROR,
CreateNetLogOpenSSLErrorCallback(rv, pending_read_ssl_error_,
pending_read_error_info_));
pending_read_ssl_error_ = SSL_ERROR_NONE;
pending_read_error_info_ = OpenSSLErrorInfo();
}
return rv;
}
int SSLClientSocketImpl::DoPayloadWrite() {
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
int rv = SSL_write(ssl_.get(), user_write_buf_->data(), user_write_buf_len_);
if (rv >= 0) {
net_log_.AddByteTransferEvent(NetLogEventType::SSL_SOCKET_BYTES_SENT, rv,
user_write_buf_->data());
return rv;
}
int ssl_error = SSL_get_error(ssl_.get(), rv);
if (ssl_error == SSL_ERROR_WANT_PRIVATE_KEY_OPERATION)
return ERR_IO_PENDING;
OpenSSLErrorInfo error_info;
int net_error = MapLastOpenSSLError(ssl_error, err_tracer, &error_info);
if (net_error != ERR_IO_PENDING) {
net_log_.AddEvent(
NetLogEventType::SSL_WRITE_ERROR,
CreateNetLogOpenSSLErrorCallback(net_error, ssl_error, error_info));
}
return net_error;
}
void SSLClientSocketImpl::RetryAllOperations() {
// SSL_do_handshake, SSL_read, and SSL_write may all be retried when blocked,
// so retry all operations for simplicity. (Otherwise, SSL_get_error for each
// operation may be remembered to retry only the blocked ones.)
// Performing these callbacks may cause |this| to be deleted. If this
// happens, the other callbacks should not be invoked. Guard against this by
// holding a WeakPtr to |this| and ensuring it's still valid.
base::WeakPtr<SSLClientSocketImpl> guard(weak_factory_.GetWeakPtr());
if (next_handshake_state_ == STATE_HANDSHAKE) {
// In handshake phase. The parameter to OnHandshakeIOComplete is unused.
OnHandshakeIOComplete(OK);
}
if (!guard.get())
return;
int rv_read = ERR_IO_PENDING;
int rv_write = ERR_IO_PENDING;
if (user_read_buf_) {
rv_read = DoPayloadRead(user_read_buf_.get(), user_read_buf_len_);
} else if (!user_read_callback_.is_null()) {
// ReadIfReady() is called by the user. Skip DoPayloadRead() and just let
// the user know that read can be retried.
rv_read = OK;
}
if (user_write_buf_)
rv_write = DoPayloadWrite();
if (rv_read != ERR_IO_PENDING)
DoReadCallback(rv_read);
if (!guard.get())
return;
if (rv_write != ERR_IO_PENDING)
DoWriteCallback(rv_write);
}
int SSLClientSocketImpl::VerifyCT() {
const uint8_t* sct_list_raw;
size_t sct_list_len;
SSL_get0_signed_cert_timestamp_list(ssl_.get(), &sct_list_raw, &sct_list_len);
base::StringPiece sct_list(reinterpret_cast<const char*>(sct_list_raw),
sct_list_len);
const uint8_t* ocsp_response_raw;
size_t ocsp_response_len;
SSL_get0_ocsp_response(ssl_.get(), &ocsp_response_raw, &ocsp_response_len);
base::StringPiece ocsp_response(
reinterpret_cast<const char*>(ocsp_response_raw), ocsp_response_len);
// Note that this is a completely synchronous operation: The CT Log Verifier
// gets all the data it needs for SCT verification and does not do any
// external communication.
cert_transparency_verifier_->Verify(
host_and_port().host(), server_cert_verify_result_.verified_cert.get(),
ocsp_response, sct_list, &ct_verify_result_.scts, net_log_);
ct::SCTList verified_scts =
ct::SCTsMatchingStatus(ct_verify_result_.scts, ct::SCT_STATUS_OK);
ct_verify_result_.policy_compliance = policy_enforcer_->CheckCompliance(
server_cert_verify_result_.verified_cert.get(), verified_scts, net_log_);
if (server_cert_verify_result_.cert_status & CERT_STATUS_IS_EV) {
if (ct_verify_result_.policy_compliance !=
ct::CTPolicyCompliance::CT_POLICY_COMPLIES_VIA_SCTS &&
ct_verify_result_.policy_compliance !=
ct::CTPolicyCompliance::CT_POLICY_BUILD_NOT_TIMELY) {
server_cert_verify_result_.cert_status |=
CERT_STATUS_CT_COMPLIANCE_FAILED;
server_cert_verify_result_.cert_status &= ~CERT_STATUS_IS_EV;
}
// Record the CT compliance status for connections with EV certificates, to
// distinguish how often EV status is being dropped due to failing CT
// compliance.
if (server_cert_verify_result_.is_issued_by_known_root) {
UMA_HISTOGRAM_ENUMERATION("Net.CertificateTransparency.EVCompliance2.SSL",
ct_verify_result_.policy_compliance,
ct::CTPolicyCompliance::CT_POLICY_MAX);
}
}
// Record the CT compliance of every connection to get an overall picture of
// how many connections are CT-compliant.
if (server_cert_verify_result_.is_issued_by_known_root) {
UMA_HISTOGRAM_ENUMERATION(
"Net.CertificateTransparency.ConnectionComplianceStatus2.SSL",
ct_verify_result_.policy_compliance,
ct::CTPolicyCompliance::CT_POLICY_MAX);
}
TransportSecurityState::CTRequirementsStatus ct_requirement_status =
transport_security_state_->CheckCTRequirements(
host_and_port_, server_cert_verify_result_.is_issued_by_known_root,
server_cert_verify_result_.public_key_hashes,
server_cert_verify_result_.verified_cert.get(), server_cert_.get(),
ct_verify_result_.scts,
TransportSecurityState::ENABLE_EXPECT_CT_REPORTS,
ct_verify_result_.policy_compliance);
if (ct_requirement_status != TransportSecurityState::CT_NOT_REQUIRED) {
ct_verify_result_.policy_compliance_required = true;
if (server_cert_verify_result_.is_issued_by_known_root) {
// Record the CT compliance of connections for which compliance is
// required; this helps answer the question: "Of all connections that are
// supposed to be serving valid CT information, how many fail to do so?"
UMA_HISTOGRAM_ENUMERATION(
"Net.CertificateTransparency.CTRequiredConnectionComplianceStatus2."
"SSL",
ct_verify_result_.policy_compliance,
ct::CTPolicyCompliance::CT_POLICY_MAX);
}
} else {
ct_verify_result_.policy_compliance_required = false;
}
switch (ct_requirement_status) {
case TransportSecurityState::CT_REQUIREMENTS_NOT_MET:
server_cert_verify_result_.cert_status |=
CERT_STATUS_CERTIFICATE_TRANSPARENCY_REQUIRED;
return ERR_CERTIFICATE_TRANSPARENCY_REQUIRED;
case TransportSecurityState::CT_REQUIREMENTS_MET:
case TransportSecurityState::CT_NOT_REQUIRED:
return OK;
}
NOTREACHED();
return OK;
}
int SSLClientSocketImpl::ClientCertRequestCallback(SSL* ssl) {
DCHECK(ssl == ssl_.get());
net_log_.AddEvent(NetLogEventType::SSL_CLIENT_CERT_REQUESTED);
certificate_requested_ = true;
// Clear any currently configured certificates.
SSL_certs_clear(ssl_.get());
#if defined(OS_IOS)
// TODO(droger): Support client auth on iOS. See http://crbug.com/145954).
LOG(WARNING) << "Client auth is not supported";
#else // !defined(OS_IOS)
if (!ssl_config_.send_client_cert) {
// First pass: we know that a client certificate is needed, but we do not
// have one at hand. Suspend the handshake. SSL_get_error will return
// SSL_ERROR_WANT_X509_LOOKUP.
return -1;
}
// Second pass: a client certificate should have been selected.
if (ssl_config_.client_cert.get()) {
if (!ssl_config_.client_private_key) {
// The caller supplied a null private key. Fail the handshake and surface
// an appropriate error to the caller.
LOG(WARNING) << "Client cert found without private key";
OpenSSLPutNetError(FROM_HERE, ERR_SSL_CLIENT_AUTH_CERT_NO_PRIVATE_KEY);
return -1;
}
if (!SetSSLChainAndKey(ssl_.get(), ssl_config_.client_cert.get(), nullptr,
&SSLContext::kPrivateKeyMethod)) {
OpenSSLPutNetError(FROM_HERE, ERR_SSL_CLIENT_AUTH_CERT_BAD_FORMAT);
return -1;
}
std::vector<uint16_t> preferences =
ssl_config_.client_private_key->GetAlgorithmPreferences();
SSL_set_signing_algorithm_prefs(ssl_.get(), preferences.data(),
preferences.size());
net_log_.AddEvent(
NetLogEventType::SSL_CLIENT_CERT_PROVIDED,
NetLog::IntCallback(
"cert_count",
1 + ssl_config_.client_cert->intermediate_buffers().size()));
return 1;
}
#endif // defined(OS_IOS)
// Send no client certificate.
net_log_.AddEvent(NetLogEventType::SSL_CLIENT_CERT_PROVIDED,
NetLog::IntCallback("cert_count", 0));
return 1;
}
void SSLClientSocketImpl::MaybeCacheSession() {
// Only cache the session once both a new session has been established and the
// certificate has been verified. Due to False Start, these events may happen
// in either order.
if (!pending_session_ || !certificate_verified_ ||
ssl_session_cache_shard_.empty()) {
return;
}
SSLContext::GetInstance()->session_cache()->Insert(GetSessionCacheKey(),
pending_session_.get());
pending_session_ = nullptr;
}
int SSLClientSocketImpl::NewSessionCallback(SSL_SESSION* session) {
if (ssl_session_cache_shard_.empty())
return 0;
// OpenSSL passes a reference to |session|.
pending_session_.reset(session);
MaybeCacheSession();
return 1;
}
void SSLClientSocketImpl::AddCTInfoToSSLInfo(SSLInfo* ssl_info) const {
ssl_info->UpdateCertificateTransparencyInfo(ct_verify_result_);
}
std::string SSLClientSocketImpl::GetSessionCacheKey() const {
// If there is no session cache shard configured, disable session
// caching. GetSessionCacheKey may not be called. When
// https://crbug.com/458365 is fixed, this check will not be needed.
DCHECK(!ssl_session_cache_shard_.empty());
std::string result = host_and_port_.ToString();
result.push_back('/');
result.append(ssl_session_cache_shard_);
result.push_back('/');
result.push_back(ssl_config_.channel_id_enabled ? '1' : '0');
result.push_back(ssl_config_.version_interference_probe ? '1' : '0');
return result;
}
bool SSLClientSocketImpl::IsRenegotiationAllowed() const {
if (SSL_is_token_binding_negotiated(ssl_.get()))
return false;
if (negotiated_protocol_ == kProtoUnknown)
return ssl_config_.renego_allowed_default;
for (NextProto allowed : ssl_config_.renego_allowed_for_protos) {
if (negotiated_protocol_ == allowed)
return true;
}
return false;
}
ssl_private_key_result_t SSLClientSocketImpl::PrivateKeySignCallback(
uint8_t* out,
size_t* out_len,
size_t max_out,
uint16_t algorithm,
const uint8_t* in,
size_t in_len) {
DCHECK_EQ(kSSLClientSocketNoPendingResult, signature_result_);
DCHECK(signature_.empty());
DCHECK(ssl_config_.client_private_key);
net_log_.BeginEvent(
NetLogEventType::SSL_PRIVATE_KEY_OP,
base::Bind(&NetLogPrivateKeyOperationCallback, algorithm));
signature_result_ = ERR_IO_PENDING;
ssl_config_.client_private_key->Sign(
algorithm, base::make_span(in, in_len),
base::BindOnce(&SSLClientSocketImpl::OnPrivateKeyComplete,
weak_factory_.GetWeakPtr()));
return ssl_private_key_retry;
}
ssl_private_key_result_t SSLClientSocketImpl::PrivateKeyCompleteCallback(
uint8_t* out,
size_t* out_len,
size_t max_out) {
DCHECK_NE(kSSLClientSocketNoPendingResult, signature_result_);
DCHECK(ssl_config_.client_private_key);
if (signature_result_ == ERR_IO_PENDING)
return ssl_private_key_retry;
if (signature_result_ != OK) {
OpenSSLPutNetError(FROM_HERE, signature_result_);
return ssl_private_key_failure;
}
if (signature_.size() > max_out) {
OpenSSLPutNetError(FROM_HERE, ERR_SSL_CLIENT_AUTH_SIGNATURE_FAILED);
return ssl_private_key_failure;
}
memcpy(out, signature_.data(), signature_.size());
*out_len = signature_.size();
signature_.clear();
return ssl_private_key_success;
}
void SSLClientSocketImpl::OnPrivateKeyComplete(
Error error,
const std::vector<uint8_t>& signature) {
DCHECK_EQ(ERR_IO_PENDING, signature_result_);
DCHECK(signature_.empty());
DCHECK(ssl_config_.client_private_key);
net_log_.EndEventWithNetErrorCode(NetLogEventType::SSL_PRIVATE_KEY_OP, error);
signature_result_ = error;
if (signature_result_ == OK)
signature_ = signature;
// During a renegotiation, either Read or Write calls may be blocked on an
// asynchronous private key operation.
RetryAllOperations();
}
void SSLClientSocketImpl::InfoCallback(int type, int value) {
if (type == SSL_CB_HANDSHAKE_START && completed_connect_) {
UMA_HISTOGRAM_BOOLEAN("Net.SSLSecureRenegotiation",
SSL_get_secure_renegotiation_support(ssl_.get()));
}
}
void SSLClientSocketImpl::MessageCallback(int is_write,
int content_type,
const void* buf,
size_t len) {
switch (content_type) {
case SSL3_RT_ALERT:
net_log_.AddEvent(is_write ? NetLogEventType::SSL_ALERT_SENT
: NetLogEventType::SSL_ALERT_RECEIVED,
base::Bind(&NetLogSSLAlertCallback, buf, len));
break;
case SSL3_RT_HANDSHAKE:
net_log_.AddEvent(
is_write ? NetLogEventType::SSL_HANDSHAKE_MESSAGE_SENT
: NetLogEventType::SSL_HANDSHAKE_MESSAGE_RECEIVED,
base::Bind(&NetLogSSLMessageCallback, !!is_write, buf, len));
break;
default:
return;
}
}
void SSLClientSocketImpl::LogConnectEndEvent(int rv) {
if (rv != OK) {
net_log_.EndEventWithNetErrorCode(NetLogEventType::SSL_CONNECT, rv);
return;
}
net_log_.EndEvent(NetLogEventType::SSL_CONNECT,
base::Bind(&NetLogSSLInfoCallback, base::Unretained(this)));
}
void SSLClientSocketImpl::RecordNegotiatedProtocol() const {
UMA_HISTOGRAM_ENUMERATION("Net.SSLNegotiatedAlpnProtocol",
negotiated_protocol_, kProtoLast + 1);
}
bool SSLClientSocketImpl::IsChannelIDEnabled() const {
return ssl_config_.channel_id_enabled && channel_id_service_;
}
int SSLClientSocketImpl::MapLastOpenSSLError(
int ssl_error,
const crypto::OpenSSLErrStackTracer& tracer,
OpenSSLErrorInfo* info) {
int net_error = MapOpenSSLErrorWithDetails(ssl_error, tracer, info);
if (ssl_error == SSL_ERROR_SSL &&
ERR_GET_LIB(info->error_code) == ERR_LIB_SSL) {
// TLS does not provide an alert for missing client certificates, so most
// servers send a generic handshake_failure alert. Detect this case by
// checking if we have received a CertificateRequest but sent no
// certificate. See https://crbug.com/646567.
if (ERR_GET_REASON(info->error_code) ==
SSL_R_SSLV3_ALERT_HANDSHAKE_FAILURE &&
certificate_requested_ && ssl_config_.send_client_cert &&
!ssl_config_.client_cert) {
net_error = ERR_BAD_SSL_CLIENT_AUTH_CERT;
}
// Per spec, access_denied is only for client-certificate-based access
// control, but some buggy firewalls use it when blocking a page. To avoid a
// confusing error, map it to a generic protocol error if no
// CertificateRequest was sent. See https://crbug.com/630883.
if (ERR_GET_REASON(info->error_code) == SSL_R_TLSV1_ALERT_ACCESS_DENIED &&
!certificate_requested_) {
net_error = ERR_SSL_PROTOCOL_ERROR;
}
// This error is specific to the client, so map it here.
if (ERR_GET_REASON(info->error_code) ==
SSL_R_NO_COMMON_SIGNATURE_ALGORITHMS) {
net_error = ERR_SSL_CLIENT_AUTH_NO_COMMON_ALGORITHMS;
}
}
return net_error;
}
} // namespace net