mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-24 22:36:09 +03:00
177 lines
4.8 KiB
C++
177 lines
4.8 KiB
C++
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef BASE_CONTAINERS_LINKED_LIST_H_
|
|
#define BASE_CONTAINERS_LINKED_LIST_H_
|
|
|
|
#include "base/macros.h"
|
|
|
|
// Simple LinkedList type. (See the Q&A section to understand how this
|
|
// differs from std::list).
|
|
//
|
|
// To use, start by declaring the class which will be contained in the linked
|
|
// list, as extending LinkNode (this gives it next/previous pointers).
|
|
//
|
|
// class MyNodeType : public LinkNode<MyNodeType> {
|
|
// ...
|
|
// };
|
|
//
|
|
// Next, to keep track of the list's head/tail, use a LinkedList instance:
|
|
//
|
|
// LinkedList<MyNodeType> list;
|
|
//
|
|
// To add elements to the list, use any of LinkedList::Append,
|
|
// LinkNode::InsertBefore, or LinkNode::InsertAfter:
|
|
//
|
|
// LinkNode<MyNodeType>* n1 = ...;
|
|
// LinkNode<MyNodeType>* n2 = ...;
|
|
// LinkNode<MyNodeType>* n3 = ...;
|
|
//
|
|
// list.Append(n1);
|
|
// list.Append(n3);
|
|
// n3->InsertBefore(n3);
|
|
//
|
|
// Lastly, to iterate through the linked list forwards:
|
|
//
|
|
// for (LinkNode<MyNodeType>* node = list.head();
|
|
// node != list.end();
|
|
// node = node->next()) {
|
|
// MyNodeType* value = node->value();
|
|
// ...
|
|
// }
|
|
//
|
|
// Or to iterate the linked list backwards:
|
|
//
|
|
// for (LinkNode<MyNodeType>* node = list.tail();
|
|
// node != list.end();
|
|
// node = node->previous()) {
|
|
// MyNodeType* value = node->value();
|
|
// ...
|
|
// }
|
|
//
|
|
// Questions and Answers:
|
|
//
|
|
// Q. Should I use std::list or base::LinkedList?
|
|
//
|
|
// A. The main reason to use base::LinkedList over std::list is
|
|
// performance. If you don't care about the performance differences
|
|
// then use an STL container, as it makes for better code readability.
|
|
//
|
|
// Comparing the performance of base::LinkedList<T> to std::list<T*>:
|
|
//
|
|
// * Erasing an element of type T* from base::LinkedList<T> is
|
|
// an O(1) operation. Whereas for std::list<T*> it is O(n).
|
|
// That is because with std::list<T*> you must obtain an
|
|
// iterator to the T* element before you can call erase(iterator).
|
|
//
|
|
// * Insertion operations with base::LinkedList<T> never require
|
|
// heap allocations.
|
|
//
|
|
// Q. How does base::LinkedList implementation differ from std::list?
|
|
//
|
|
// A. Doubly-linked lists are made up of nodes that contain "next" and
|
|
// "previous" pointers that reference other nodes in the list.
|
|
//
|
|
// With base::LinkedList<T>, the type being inserted already reserves
|
|
// space for the "next" and "previous" pointers (base::LinkNode<T>*).
|
|
// Whereas with std::list<T> the type can be anything, so the implementation
|
|
// needs to glue on the "next" and "previous" pointers using
|
|
// some internal node type.
|
|
|
|
namespace base {
|
|
|
|
template <typename T>
|
|
class LinkNode {
|
|
public:
|
|
LinkNode() : previous_(NULL), next_(NULL) {}
|
|
LinkNode(LinkNode<T>* previous, LinkNode<T>* next)
|
|
: previous_(previous), next_(next) {}
|
|
|
|
// Insert |this| into the linked list, before |e|.
|
|
void InsertBefore(LinkNode<T>* e) {
|
|
this->next_ = e;
|
|
this->previous_ = e->previous_;
|
|
e->previous_->next_ = this;
|
|
e->previous_ = this;
|
|
}
|
|
|
|
// Insert |this| into the linked list, after |e|.
|
|
void InsertAfter(LinkNode<T>* e) {
|
|
this->next_ = e->next_;
|
|
this->previous_ = e;
|
|
e->next_->previous_ = this;
|
|
e->next_ = this;
|
|
}
|
|
|
|
// Remove |this| from the linked list.
|
|
void RemoveFromList() {
|
|
this->previous_->next_ = this->next_;
|
|
this->next_->previous_ = this->previous_;
|
|
// next() and previous() return non-NULL if and only this node is not in any
|
|
// list.
|
|
this->next_ = NULL;
|
|
this->previous_ = NULL;
|
|
}
|
|
|
|
LinkNode<T>* previous() const {
|
|
return previous_;
|
|
}
|
|
|
|
LinkNode<T>* next() const {
|
|
return next_;
|
|
}
|
|
|
|
// Cast from the node-type to the value type.
|
|
const T* value() const {
|
|
return static_cast<const T*>(this);
|
|
}
|
|
|
|
T* value() {
|
|
return static_cast<T*>(this);
|
|
}
|
|
|
|
private:
|
|
LinkNode<T>* previous_;
|
|
LinkNode<T>* next_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(LinkNode);
|
|
};
|
|
|
|
template <typename T>
|
|
class LinkedList {
|
|
public:
|
|
// The "root" node is self-referential, and forms the basis of a circular
|
|
// list (root_.next() will point back to the start of the list,
|
|
// and root_->previous() wraps around to the end of the list).
|
|
LinkedList() : root_(&root_, &root_) {}
|
|
|
|
// Appends |e| to the end of the linked list.
|
|
void Append(LinkNode<T>* e) {
|
|
e->InsertBefore(&root_);
|
|
}
|
|
|
|
LinkNode<T>* head() const {
|
|
return root_.next();
|
|
}
|
|
|
|
LinkNode<T>* tail() const {
|
|
return root_.previous();
|
|
}
|
|
|
|
const LinkNode<T>* end() const {
|
|
return &root_;
|
|
}
|
|
|
|
bool empty() const { return head() == end(); }
|
|
|
|
private:
|
|
LinkNode<T> root_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(LinkedList);
|
|
};
|
|
|
|
} // namespace base
|
|
|
|
#endif // BASE_CONTAINERS_LINKED_LIST_H_
|