naiveproxy/net/dns/dns_response.cc
2018-08-11 05:35:24 +00:00

352 lines
10 KiB
C++

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/dns/dns_response.h"
#include <limits>
#include "base/big_endian.h"
#include "base/strings/string_util.h"
#include "base/sys_byteorder.h"
#include "net/base/address_list.h"
#include "net/base/io_buffer.h"
#include "net/base/ip_address.h"
#include "net/base/net_errors.h"
#include "net/dns/dns_protocol.h"
#include "net/dns/dns_query.h"
#include "net/dns/dns_util.h"
namespace net {
namespace {
const size_t kHeaderSize = sizeof(dns_protocol::Header);
const uint8_t kRcodeMask = 0xf;
} // namespace
DnsResourceRecord::DnsResourceRecord() = default;
DnsResourceRecord::~DnsResourceRecord() = default;
DnsRecordParser::DnsRecordParser() : packet_(NULL), length_(0), cur_(0) {
}
DnsRecordParser::DnsRecordParser(const void* packet,
size_t length,
size_t offset)
: packet_(reinterpret_cast<const char*>(packet)),
length_(length),
cur_(packet_ + offset) {
DCHECK_LE(offset, length);
}
unsigned DnsRecordParser::ReadName(const void* const vpos,
std::string* out) const {
const char* const pos = reinterpret_cast<const char*>(vpos);
DCHECK(packet_);
DCHECK_LE(packet_, pos);
DCHECK_LE(pos, packet_ + length_);
const char* p = pos;
const char* end = packet_ + length_;
// Count number of seen bytes to detect loops.
unsigned seen = 0;
// Remember how many bytes were consumed before first jump.
unsigned consumed = 0;
if (pos >= end)
return 0;
if (out) {
out->clear();
out->reserve(dns_protocol::kMaxNameLength);
}
for (;;) {
// The first two bits of the length give the type of the length. It's
// either a direct length or a pointer to the remainder of the name.
switch (*p & dns_protocol::kLabelMask) {
case dns_protocol::kLabelPointer: {
if (p + sizeof(uint16_t) > end)
return 0;
if (consumed == 0) {
consumed = p - pos + sizeof(uint16_t);
if (!out)
return consumed; // If name is not stored, that's all we need.
}
seen += sizeof(uint16_t);
// If seen the whole packet, then we must be in a loop.
if (seen > length_)
return 0;
uint16_t offset;
base::ReadBigEndian<uint16_t>(p, &offset);
offset &= dns_protocol::kOffsetMask;
p = packet_ + offset;
if (p >= end)
return 0;
break;
}
case dns_protocol::kLabelDirect: {
uint8_t label_len = *p;
++p;
// Note: root domain (".") is NOT included.
if (label_len == 0) {
if (consumed == 0) {
consumed = p - pos;
} // else we set |consumed| before first jump
return consumed;
}
if (p + label_len >= end)
return 0; // Truncated or missing label.
if (out) {
if (!out->empty())
out->append(".");
out->append(p, label_len);
}
p += label_len;
seen += 1 + label_len;
break;
}
default:
// unhandled label type
return 0;
}
}
}
bool DnsRecordParser::ReadRecord(DnsResourceRecord* out) {
DCHECK(packet_);
size_t consumed = ReadName(cur_, &out->name);
if (!consumed)
return false;
base::BigEndianReader reader(cur_ + consumed,
packet_ + length_ - (cur_ + consumed));
uint16_t rdlen;
if (reader.ReadU16(&out->type) &&
reader.ReadU16(&out->klass) &&
reader.ReadU32(&out->ttl) &&
reader.ReadU16(&rdlen) &&
reader.ReadPiece(&out->rdata, rdlen)) {
cur_ = reader.ptr();
return true;
}
return false;
}
bool DnsRecordParser::SkipQuestion() {
size_t consumed = ReadName(cur_, NULL);
if (!consumed)
return false;
const char* next = cur_ + consumed + 2 * sizeof(uint16_t); // QTYPE + QCLASS
if (next > packet_ + length_)
return false;
cur_ = next;
return true;
}
DnsResponse::DnsResponse()
: io_buffer_(new IOBuffer(dns_protocol::kMaxUDPSize + 1)),
io_buffer_size_(dns_protocol::kMaxUDPSize + 1) {}
DnsResponse::DnsResponse(IOBuffer* buffer, size_t size)
: io_buffer_(buffer), io_buffer_size_(size) {}
DnsResponse::DnsResponse(size_t length)
: io_buffer_(new IOBuffer(length)), io_buffer_size_(length) {}
DnsResponse::DnsResponse(const void* data, size_t length, size_t answer_offset)
: io_buffer_(new IOBufferWithSize(length)),
io_buffer_size_(length),
parser_(io_buffer_->data(), length, answer_offset) {
DCHECK(data);
memcpy(io_buffer_->data(), data, length);
}
DnsResponse::~DnsResponse() = default;
bool DnsResponse::InitParse(size_t nbytes, const DnsQuery& query) {
// Response includes query, it should be at least that size.
if (nbytes < static_cast<size_t>(query.io_buffer()->size()) ||
nbytes >= io_buffer_size_) {
return false;
}
// Match the query id.
if (base::NetToHost16(header()->id) != query.id())
return false;
// Match question count.
if (base::NetToHost16(header()->qdcount) != 1)
return false;
// Match the question section.
const base::StringPiece question = query.question();
if (question !=
base::StringPiece(io_buffer_->data() + kHeaderSize, question.size())) {
return false;
}
// Construct the parser.
parser_ = DnsRecordParser(io_buffer_->data(), nbytes,
kHeaderSize + question.size());
return true;
}
bool DnsResponse::InitParseWithoutQuery(size_t nbytes) {
if (nbytes < kHeaderSize || nbytes >= io_buffer_size_) {
return false;
}
parser_ = DnsRecordParser(io_buffer_->data(), nbytes, kHeaderSize);
unsigned qdcount = base::NetToHost16(header()->qdcount);
for (unsigned i = 0; i < qdcount; ++i) {
if (!parser_.SkipQuestion()) {
parser_ = DnsRecordParser(); // Make parser invalid again.
return false;
}
}
return true;
}
bool DnsResponse::IsValid() const {
return parser_.IsValid();
}
uint16_t DnsResponse::flags() const {
DCHECK(parser_.IsValid());
return base::NetToHost16(header()->flags) & ~(kRcodeMask);
}
uint8_t DnsResponse::rcode() const {
DCHECK(parser_.IsValid());
return base::NetToHost16(header()->flags) & kRcodeMask;
}
unsigned DnsResponse::answer_count() const {
DCHECK(parser_.IsValid());
return base::NetToHost16(header()->ancount);
}
unsigned DnsResponse::additional_answer_count() const {
DCHECK(parser_.IsValid());
return base::NetToHost16(header()->arcount);
}
base::StringPiece DnsResponse::qname() const {
DCHECK(parser_.IsValid());
// The response is HEADER QNAME QTYPE QCLASS ANSWER.
// |parser_| is positioned at the beginning of ANSWER, so the end of QNAME is
// two uint16_ts before it.
const size_t qname_size =
parser_.GetOffset() - 2 * sizeof(uint16_t) - kHeaderSize;
return base::StringPiece(io_buffer_->data() + kHeaderSize, qname_size);
}
uint16_t DnsResponse::qtype() const {
DCHECK(parser_.IsValid());
// QTYPE starts where QNAME ends.
const size_t type_offset = parser_.GetOffset() - 2 * sizeof(uint16_t);
uint16_t type;
base::ReadBigEndian<uint16_t>(io_buffer_->data() + type_offset, &type);
return type;
}
std::string DnsResponse::GetDottedName() const {
return DNSDomainToString(qname());
}
DnsRecordParser DnsResponse::Parser() const {
DCHECK(parser_.IsValid());
// Return a copy of the parser.
return parser_;
}
const dns_protocol::Header* DnsResponse::header() const {
return reinterpret_cast<const dns_protocol::Header*>(io_buffer_->data());
}
DnsResponse::Result DnsResponse::ParseToAddressList(
AddressList* addr_list,
base::TimeDelta* ttl) const {
DCHECK(IsValid());
// DnsTransaction already verified that |response| matches the issued query.
// We still need to determine if there is a valid chain of CNAMEs from the
// query name to the RR owner name.
// We err on the side of caution with the assumption that if we are too picky,
// we can always fall back to the system getaddrinfo.
// Expected owner of record. No trailing dot.
std::string expected_name = GetDottedName();
uint16_t expected_type = qtype();
DCHECK(expected_type == dns_protocol::kTypeA ||
expected_type == dns_protocol::kTypeAAAA);
size_t expected_size = (expected_type == dns_protocol::kTypeAAAA)
? IPAddress::kIPv6AddressSize
: IPAddress::kIPv4AddressSize;
uint32_t ttl_sec = std::numeric_limits<uint32_t>::max();
IPAddressList ip_addresses;
DnsRecordParser parser = Parser();
DnsResourceRecord record;
unsigned ancount = answer_count();
// NXDOMAIN or NODATA cases respectively.
if (rcode() == dns_protocol::kRcodeNXDOMAIN ||
(ancount == 0 && rcode() == dns_protocol::kRcodeNOERROR)) {
unsigned nscount = base::NetToHost16(header()->nscount);
for (unsigned i = 0; i < nscount; ++i) {
if (parser.ReadRecord(&record) && record.type == dns_protocol::kTypeSOA)
ttl_sec = std::min(ttl_sec, record.ttl);
}
}
for (unsigned i = 0; i < ancount; ++i) {
if (!parser.ReadRecord(&record))
return DNS_MALFORMED_RESPONSE;
if (record.type == dns_protocol::kTypeCNAME) {
// Following the CNAME chain, only if no addresses seen.
if (!ip_addresses.empty())
return DNS_CNAME_AFTER_ADDRESS;
if (!base::EqualsCaseInsensitiveASCII(record.name, expected_name))
return DNS_NAME_MISMATCH;
if (record.rdata.size() !=
parser.ReadName(record.rdata.begin(), &expected_name))
return DNS_MALFORMED_CNAME;
ttl_sec = std::min(ttl_sec, record.ttl);
} else if (record.type == expected_type) {
if (record.rdata.size() != expected_size)
return DNS_SIZE_MISMATCH;
if (!base::EqualsCaseInsensitiveASCII(record.name, expected_name))
return DNS_NAME_MISMATCH;
ttl_sec = std::min(ttl_sec, record.ttl);
ip_addresses.push_back(
IPAddress(reinterpret_cast<const uint8_t*>(record.rdata.data()),
record.rdata.length()));
}
}
// getcanonname in eglibc returns the first owner name of an A or AAAA RR.
// If the response passed all the checks so far, then |expected_name| is it.
*addr_list = AddressList::CreateFromIPAddressList(ip_addresses,
expected_name);
*ttl = base::TimeDelta::FromSeconds(ttl_sec);
return DNS_PARSE_OK;
}
} // namespace net