mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2025-02-26 20:03:26 +03:00
1421 lines
60 KiB
C++
1421 lines
60 KiB
C++
// Copyright 2017 The Chromium Authors
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef BASE_CONTAINERS_SPAN_H_
|
|
#define BASE_CONTAINERS_SPAN_H_
|
|
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <concepts>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <span>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
#include "base/check.h"
|
|
#include "base/compiler_specific.h"
|
|
#include "base/containers/checked_iterators.h"
|
|
#include "base/containers/dynamic_extent.h"
|
|
#include "base/numerics/safe_conversions.h"
|
|
#include "base/template_util.h"
|
|
#include "base/types/to_address.h"
|
|
#include "third_party/abseil-cpp/absl/base/attributes.h"
|
|
|
|
namespace base {
|
|
|
|
template <typename T,
|
|
size_t Extent = dynamic_extent,
|
|
typename InternalPtrType = T*>
|
|
class span;
|
|
|
|
namespace internal {
|
|
|
|
template <typename From, typename To>
|
|
concept LegalDataConversion =
|
|
std::convertible_to<std::remove_reference_t<From> (*)[],
|
|
std::remove_reference_t<To> (*)[]>;
|
|
|
|
template <typename T, typename It>
|
|
concept CompatibleIter = std::contiguous_iterator<It> &&
|
|
LegalDataConversion<std::iter_reference_t<It>, T>;
|
|
|
|
template <typename T, typename R>
|
|
concept CompatibleRange =
|
|
std::ranges::contiguous_range<R> && std::ranges::sized_range<R> &&
|
|
LegalDataConversion<std::ranges::range_reference_t<R>, T> &&
|
|
(std::ranges::borrowed_range<R> || std::is_const_v<T>);
|
|
|
|
template <typename T>
|
|
concept LegacyRangeDataIsPointer = std::is_pointer_v<T>;
|
|
|
|
template <typename R>
|
|
concept LegacyRange = requires(R& r) {
|
|
{ std::ranges::data(r) } -> LegacyRangeDataIsPointer;
|
|
{ std::ranges::size(r) } -> std::convertible_to<size_t>;
|
|
};
|
|
|
|
// NOTE: Ideally we'd just use `CompatibleRange`, however this currently breaks
|
|
// code that was written prior to C++20 being standardized and assumes providing
|
|
// .data() and .size() is sufficient.
|
|
// TODO: https://crbug.com/1504998 - Remove in favor of CompatibleRange and fix
|
|
// callsites.
|
|
template <typename T, typename R>
|
|
concept LegacyCompatibleRange = LegacyRange<R> && requires(R& r) {
|
|
{ *std::ranges::data(r) } -> LegalDataConversion<T>;
|
|
};
|
|
|
|
template <size_t I>
|
|
using size_constant = std::integral_constant<size_t, I>;
|
|
|
|
template <typename T>
|
|
struct ExtentImpl : size_constant<dynamic_extent> {};
|
|
|
|
template <typename T, size_t N>
|
|
struct ExtentImpl<T[N]> : size_constant<N> {};
|
|
|
|
template <typename T, size_t N>
|
|
struct ExtentImpl<std::array<T, N>> : size_constant<N> {};
|
|
|
|
template <typename T, size_t N>
|
|
struct ExtentImpl<base::span<T, N>> : size_constant<N> {};
|
|
|
|
template <typename T>
|
|
using Extent = ExtentImpl<std::remove_cvref_t<T>>;
|
|
|
|
template <typename T>
|
|
inline constexpr size_t ExtentV = Extent<T>::value;
|
|
|
|
// must_not_be_dynamic_extent prevents |dynamic_extent| from being returned in a
|
|
// constexpr context.
|
|
template <size_t kExtent>
|
|
constexpr size_t must_not_be_dynamic_extent() {
|
|
static_assert(
|
|
kExtent != dynamic_extent,
|
|
"EXTENT should only be used for containers with a static extent.");
|
|
return kExtent;
|
|
}
|
|
|
|
template <class T, class U, size_t N, size_t M>
|
|
requires((N == M || N == dynamic_extent || M == dynamic_extent) &&
|
|
std::equality_comparable_with<T, U>)
|
|
constexpr bool span_cmp(span<T, N> l, span<U, M> r);
|
|
|
|
} // namespace internal
|
|
|
|
// A span is a value type that represents an array of elements of type T. Since
|
|
// it only consists of a pointer to memory with an associated size, it is very
|
|
// light-weight. It is cheap to construct, copy, move and use spans, so that
|
|
// users are encouraged to use it as a pass-by-value parameter. A span does not
|
|
// own the underlying memory, so care must be taken to ensure that a span does
|
|
// not outlive the backing store.
|
|
//
|
|
// span is somewhat analogous to std::string_view, but with arbitrary element
|
|
// types, allowing mutation if T is non-const.
|
|
//
|
|
// span is implicitly convertible from C++ arrays, as well as most [1]
|
|
// container-like types that provide a data() and size() method (such as
|
|
// std::vector<T>). A mutable span<T> can also be implicitly converted to an
|
|
// immutable span<const T>.
|
|
//
|
|
// Consider using a span for functions that take a data pointer and size
|
|
// parameter: it allows the function to still act on an array-like type, while
|
|
// allowing the caller code to be a bit more concise.
|
|
//
|
|
// For read-only data access pass a span<const T>: the caller can supply either
|
|
// a span<const T> or a span<T>, while the callee will have a read-only view.
|
|
// For read-write access a mutable span<T> is required.
|
|
//
|
|
// Without span:
|
|
// Read-Only:
|
|
// // std::string HexEncode(const uint8_t* data, size_t size);
|
|
// std::vector<uint8_t> data_buffer = GenerateData();
|
|
// std::string r = HexEncode(data_buffer.data(), data_buffer.size());
|
|
//
|
|
// Mutable:
|
|
// // ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt, Args...);
|
|
// char str_buffer[100];
|
|
// SafeSNPrintf(str_buffer, sizeof(str_buffer), "Pi ~= %lf", 3.14);
|
|
//
|
|
// With span:
|
|
// Read-Only:
|
|
// // std::string HexEncode(base::span<const uint8_t> data);
|
|
// std::vector<uint8_t> data_buffer = GenerateData();
|
|
// std::string r = HexEncode(data_buffer);
|
|
//
|
|
// Mutable:
|
|
// // ssize_t SafeSNPrintf(base::span<char>, const char* fmt, Args...);
|
|
// char str_buffer[100];
|
|
// SafeSNPrintf(str_buffer, "Pi ~= %lf", 3.14);
|
|
//
|
|
// Dynamic vs Fixed size spans
|
|
// ---------------------------
|
|
//
|
|
// Normally spans have a dynamic size, which is represented as a type as
|
|
// `span<T>`. However it is possible to encode the size of the span into the
|
|
// type as a second parameter such as `span<T, N>`. When working with fixed-size
|
|
// spans, the compiler will check the size of operations and prevent compilation
|
|
// when an invalid size is used for an operation such as assignment or
|
|
// `copy_from()`. However operations that produce a new span will make a
|
|
// dynamic-sized span by default. See below for how to prevent that.
|
|
//
|
|
// Fixed-size spans implicitly convert to a dynamic-size span, throwing away the
|
|
// compile-time size information from the type signature. So most code should
|
|
// work with dynamic-sized `span<T>` types and not worry about the existence of
|
|
// fixed-size spans.
|
|
//
|
|
// It is possible to convert from a dynamic-size to a fixed-size span (or to
|
|
// move from a fixed-size span to another fixed-size span) but it requires
|
|
// writing an the size explicitly in the code. Methods like `first` can be
|
|
// passed a size as a template argument, such as `first<N>()` to generate a
|
|
// fixed-size span. And the `make_span` function can be given a compile-time
|
|
// size in a similar way with `make_span<N>()`.
|
|
//
|
|
// Spans with "const" and pointers
|
|
// -------------------------------
|
|
//
|
|
// Const and pointers can get confusing. Here are vectors of pointers and their
|
|
// corresponding spans:
|
|
//
|
|
// const std::vector<int*> => base::span<int* const>
|
|
// std::vector<const int*> => base::span<const int*>
|
|
// const std::vector<const int*> => base::span<const int* const>
|
|
//
|
|
// Differences from the C++ standard
|
|
// ---------------------------------
|
|
//
|
|
// http://eel.is/c++draft/views.span contains the latest C++ draft of std::span.
|
|
// Chromium tries to follow the draft as close as possible. Differences between
|
|
// the draft and the implementation are documented in subsections below.
|
|
//
|
|
// Differences from [span.overview]:
|
|
// - Dynamic spans are implemented as a partial specialization of the regular
|
|
// class template. This leads to significantly simpler checks involving the
|
|
// extent, at the expense of some duplicated code. The same strategy is used
|
|
// by libc++.
|
|
//
|
|
// Differences from [span.objectrep]:
|
|
// - as_bytes() and as_writable_bytes() return spans of uint8_t instead of
|
|
// std::byte.
|
|
//
|
|
// Differences from [span.cons]:
|
|
// - The constructors from a contiguous range apart from a C array are folded
|
|
// into a single one, using a construct similarly to the one proposed
|
|
// (but not standardized) in https://wg21.link/P1419.
|
|
// The C array constructor is kept so that a span can be constructed from
|
|
// an init list like {{1, 2, 3}}.
|
|
// TODO: https://crbug.com/828324 - Consider adding C++26's constructor from
|
|
// a std::initializer_list instead.
|
|
// - The conversion constructors from a contiguous range into a dynamic span
|
|
// don't check for the range concept, but rather whether std::ranges::data
|
|
// and std::ranges::size are well formed. This is due to legacy reasons and
|
|
// should be fixed.
|
|
//
|
|
// Differences from [span.deduct]:
|
|
// - The deduction guides from a contiguous range are folded into a single one,
|
|
// and treat borrowed ranges correctly.
|
|
// - Add deduction guide from rvalue array.
|
|
//
|
|
// Other differences:
|
|
// - Using StrictNumeric<size_t> instead of size_t where possible.
|
|
//
|
|
// Additions beyond the C++ standard draft
|
|
// - as_chars() function.
|
|
// - as_writable_chars() function.
|
|
// - as_byte_span() function.
|
|
// - as_writable_byte_span() function.
|
|
// - copy_from() method.
|
|
// - span_from_ref() function.
|
|
// - byte_span_from_ref() function.
|
|
// - span_from_cstring() function.
|
|
// - byte_span_from_cstring() function.
|
|
// - split_at() method.
|
|
// - operator==() comparator function.
|
|
//
|
|
// Furthermore, all constructors and methods are marked noexcept due to the lack
|
|
// of exceptions in Chromium.
|
|
//
|
|
// Due to the lack of class template argument deduction guides in C++14
|
|
// appropriate make_span() utility functions are provided for historic reasons.
|
|
|
|
// [span], class template span
|
|
template <typename T, size_t N, typename InternalPtrType>
|
|
class GSL_POINTER span {
|
|
public:
|
|
using element_type = T;
|
|
using value_type = std::remove_cv_t<T>;
|
|
using size_type = size_t;
|
|
using difference_type = ptrdiff_t;
|
|
using pointer = T*;
|
|
using const_pointer = const T*;
|
|
using reference = T&;
|
|
using const_reference = const T&;
|
|
using iterator = CheckedContiguousIterator<T>;
|
|
using reverse_iterator = std::reverse_iterator<iterator>;
|
|
static constexpr size_t extent = N;
|
|
|
|
// [span.cons], span constructors, copy, assignment, and destructor
|
|
constexpr span() noexcept
|
|
requires(N == 0)
|
|
= default;
|
|
|
|
// Constructs a span from a contiguous iterator and a size.
|
|
//
|
|
// # Checks
|
|
// The function CHECKs that `count` matches the template parameter `N` and
|
|
// will terminate otherwise.
|
|
//
|
|
// # Safety
|
|
// The iterator must point to the first of at least `count` many elements, or
|
|
// Undefined Behaviour can result as the span will allow access beyond the
|
|
// valid range of the collection pointed to by the iterator.
|
|
template <typename It>
|
|
requires(internal::CompatibleIter<T, It>)
|
|
UNSAFE_BUFFER_USAGE explicit constexpr span(
|
|
It first,
|
|
StrictNumeric<size_t> count) noexcept
|
|
: // The use of to_address() here is to handle the case where the
|
|
// iterator `first` is pointing to the container's `end()`. In that
|
|
// case we can not use the address returned from the iterator, or
|
|
// dereference it through the iterator's `operator*`, but we can store
|
|
// it. We must assume in this case that `count` is 0, since the
|
|
// iterator does not point to valid data. Future hardening of iterators
|
|
// may disallow pulling the address from `end()`, as demonstrated by
|
|
// asserts() in libstdc++:
|
|
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93960.
|
|
//
|
|
// The span API dictates that the `data()` is accessible when size is
|
|
// 0, since the pointer may be valid, so we cannot prevent storing and
|
|
// giving out an invalid pointer here without breaking API
|
|
// compatibility and our unit tests. Thus protecting against this can
|
|
// likely only be successful from inside iterators themselves, where
|
|
// the context about the pointer is known.
|
|
//
|
|
// We can not protect here generally against an invalid iterator/count
|
|
// being passed in, since we have no context to determine if the
|
|
// iterator or count are valid.
|
|
data_(base::to_address(first)) {
|
|
// Guarantees that the N in the type signature is correct.
|
|
CHECK(N == count);
|
|
}
|
|
|
|
// Constructs a span from a contiguous iterator and a size.
|
|
//
|
|
// # Checks
|
|
// The function CHECKs that `it <= end` and will terminate otherwise.
|
|
//
|
|
// # Safety
|
|
// The begin and end iterators must be for the same allocation or Undefined
|
|
// Behaviour can result as the span will allow access beyond the valid range
|
|
// of the collection pointed to by `begin`.
|
|
template <typename It, typename End>
|
|
requires(internal::CompatibleIter<T, It> &&
|
|
std::sized_sentinel_for<End, It> &&
|
|
!std::convertible_to<End, size_t>)
|
|
UNSAFE_BUFFER_USAGE explicit constexpr span(It begin, End end) noexcept
|
|
// SAFETY: The caller must guarantee that the iterator and end sentinel
|
|
// are part of the same allocation, in which case it is the number of
|
|
// elements between the iterators and thus a valid size for the pointer to
|
|
// the element at `begin`.
|
|
//
|
|
// We CHECK that `end - begin` did not underflow below. Normally checking
|
|
// correctness afterward is flawed, however underflow is not UB and the
|
|
// size is not converted to an invalid pointer (which would be UB) before
|
|
// we CHECK for underflow.
|
|
: UNSAFE_BUFFERS(span(begin, static_cast<size_t>(end - begin))) {
|
|
// Verify `end - begin` did not underflow.
|
|
CHECK(begin <= end);
|
|
}
|
|
|
|
// NOLINTNEXTLINE(google-explicit-constructor)
|
|
constexpr span(T (&arr)[N]) noexcept
|
|
// SAFETY: The std::ranges::size() function gives the number of elements
|
|
// pointed to by the std::ranges::data() function, which meets the
|
|
// requirement of span.
|
|
: UNSAFE_BUFFERS(span(std::ranges::data(arr), std::ranges::size(arr))) {}
|
|
|
|
template <typename R, size_t X = internal::ExtentV<R>>
|
|
requires(internal::CompatibleRange<T, R> && (X == N || X == dynamic_extent))
|
|
// NOLINTNEXTLINE(google-explicit-constructor)
|
|
explicit(X == dynamic_extent) constexpr span(R&& range) noexcept
|
|
// SAFETY: The std::ranges::size() function gives the number of elements
|
|
// pointed to by the std::ranges::data() function, which meets the
|
|
// requirement of span.
|
|
: UNSAFE_BUFFERS(
|
|
span(std::ranges::data(range), std::ranges::size(range))) {}
|
|
|
|
// [span.sub], span subviews
|
|
template <size_t Count>
|
|
constexpr span<T, Count> first() const noexcept
|
|
requires(Count <= N)
|
|
{
|
|
// SAFETY: span provides that data() points to at least `N` many elements.
|
|
// `Count` is non-negative by its type and `Count <= N` from the requires
|
|
// condition. So `Count` is a valid new size for `data()`.
|
|
return UNSAFE_BUFFERS(span<T, Count>(data(), Count));
|
|
}
|
|
|
|
template <size_t Count>
|
|
constexpr span<T, Count> last() const noexcept
|
|
requires(Count <= N)
|
|
{
|
|
// SAFETY: span provides that data() points to at least `N` many elements.
|
|
// `Count` is non-negative by its type and `Count <= N` from the requires
|
|
// condition. So `0 <= N - Count <= N`, meaning `N - Count` is a valid new
|
|
// size for `data()` and it will point to `Count` many elements.`
|
|
return UNSAFE_BUFFERS(span<T, Count>(data() + (N - Count), Count));
|
|
}
|
|
|
|
// Returns a span over the first `count` elements.
|
|
//
|
|
// # Checks
|
|
// The function CHECKs that the span contains at least `count` elements and
|
|
// will terminate otherwise.
|
|
constexpr span<T> first(StrictNumeric<size_t> count) const noexcept {
|
|
CHECK_LE(size_t{count}, size());
|
|
// SAFETY: span provides that data() points to at least `N` many elements.
|
|
// `count` is non-negative by its type and `count <= N` from the CHECK
|
|
// above. So `count` is a valid new size for `data()`.
|
|
return UNSAFE_BUFFERS({data(), count});
|
|
}
|
|
|
|
// Returns a span over the last `count` elements.
|
|
//
|
|
// # Checks
|
|
// The function CHECKs that the span contains at least `count` elements and
|
|
// will terminate otherwise.
|
|
constexpr span<T> last(StrictNumeric<size_t> count) const noexcept {
|
|
CHECK_LE(size_t{count}, N);
|
|
// SAFETY: span provides that data() points to at least `N` many elements.
|
|
// `count` is non-negative by its type and `count <= N` from the CHECK
|
|
// above. So `0 <= N - count <= N`, meaning `N - count` is a valid new size
|
|
// for `data()` and it will point to `count` many elements.
|
|
return UNSAFE_BUFFERS({data() + (N - size_t{count}), count});
|
|
}
|
|
|
|
template <size_t Offset, size_t Count = dynamic_extent>
|
|
constexpr auto subspan() const noexcept
|
|
requires(Offset <= N && (Count == dynamic_extent || Count <= N - Offset))
|
|
{
|
|
constexpr size_t kExtent = Count != dynamic_extent ? Count : N - Offset;
|
|
// SAFETY: span provides that data() points to at least `N` many elements.
|
|
//
|
|
// If Count is dynamic_extent, kExtent becomes `N - Offset`. Since `Offset
|
|
// <= N` from the requires condition, then `Offset` is a valid offset for
|
|
// data(), and `Offset + kExtent = Offset + N - Offset = N >= Offset` is
|
|
// also a valid offset that is not before `Offset`. This makes a span at
|
|
// `Offset` with size `kExtent` valid.
|
|
//
|
|
// Otherwise `Count <= N - Offset` and `0 <= Offset <= N` by the requires
|
|
// condition, so `Offset <= N - Count` and `N - Count` can not underflow.
|
|
// Then `Offset` is a valid offset for data() and `kExtent` is `Count <= N -
|
|
// Offset`, so `Offset + kExtent <= Offset + N - Offset = N` which makes
|
|
// both `Offset` and `Offset + kExtent` valid offsets for data(), and since
|
|
// `kExtent` is non-negative, `Offset + kExtent` is not before `Offset` so
|
|
// `kExtent` is a valid size for the span at `data() + Offset`.
|
|
return UNSAFE_BUFFERS(span<T, kExtent>(data() + Offset, kExtent));
|
|
}
|
|
|
|
// Returns a span over the first `count` elements starting at the given
|
|
// `offset` from the start of the span.
|
|
//
|
|
// # Checks
|
|
// The function CHECKs that the span contains at least `offset + count`
|
|
// elements, or at least `offset` elements if `count` is not specified, and
|
|
// will terminate otherwise.
|
|
constexpr span<T> subspan(size_t offset,
|
|
size_t count = dynamic_extent) const noexcept {
|
|
CHECK_LE(offset, N);
|
|
CHECK(count == dynamic_extent || count <= N - offset);
|
|
const size_t new_extent = count != dynamic_extent ? count : N - offset;
|
|
// SAFETY: span provides that data() points to at least `N` many elements.
|
|
//
|
|
// If Count is dynamic_extent, `new_extent` becomes `N - offset`. Since
|
|
// `offset <= N` from the requires condition, then `offset` is a valid
|
|
// offset for data(), and `offset + new_extent = offset + N - offset = N >=
|
|
// offset` is also a valid offset that is not before `offset`. This makes a
|
|
// span at `offset` with size `new_extent` valid.
|
|
//
|
|
// Otherwise `count <= N - offset` and `0 <= offset <= N` by the requires
|
|
// condition, so `offset <= N - count` and `N - count` can not underflow.
|
|
// Then `offset` is a valid offset for data() and `new_extent` is `count <=
|
|
// N - offset`, so `offset + new_extent <= offset + N - offset = N` which
|
|
// makes both `offset` and `offset + new_extent` valid offsets for data(),
|
|
// and since `new_extent` is non-negative, `offset + new_extent` is not
|
|
// before `offset` so `new_extent` is a valid size for the span at `data() +
|
|
// offset`.
|
|
return UNSAFE_BUFFERS({data() + offset, new_extent});
|
|
}
|
|
|
|
// Splits a span into two at the given `offset`, returning two spans that
|
|
// cover the full range of the original span.
|
|
//
|
|
// Similar to calling subspan() with the `offset` as the length on the first
|
|
// call, and then the `offset` as the offset in the second.
|
|
//
|
|
// The split_at<N>() overload allows construction of a fixed-size span from a
|
|
// compile-time constant. If the input span is fixed-size, both output output
|
|
// spans will be. Otherwise, the first will be fixed-size and the second will
|
|
// be dynamic-size.
|
|
//
|
|
// This is a non-std extension that is inspired by the Rust slice::split_at()
|
|
// and split_at_mut() methods.
|
|
//
|
|
// # Checks
|
|
// The function CHECKs that the span contains at least `offset` elements and
|
|
// will terminate otherwise.
|
|
constexpr std::pair<span<T>, span<T>> split_at(size_t offset) const noexcept {
|
|
return {first(offset), subspan(offset)};
|
|
}
|
|
|
|
template <size_t Offset>
|
|
requires(Offset <= N)
|
|
constexpr std::pair<span<T, Offset>, span<T, N - Offset>> split_at()
|
|
const noexcept {
|
|
return {first<Offset>(), subspan<Offset, N - Offset>()};
|
|
}
|
|
|
|
// [span.obs], span observers
|
|
constexpr size_t size() const noexcept { return N; }
|
|
constexpr size_t size_bytes() const noexcept { return size() * sizeof(T); }
|
|
[[nodiscard]] constexpr bool empty() const noexcept { return size() == 0; }
|
|
|
|
// [span.elem], span element access
|
|
//
|
|
// # Checks
|
|
// The function CHECKs that the `idx` is inside the span and will terminate
|
|
// otherwise.
|
|
constexpr T& operator[](size_t idx) const noexcept {
|
|
CHECK_LT(idx, size());
|
|
// SAFETY: Since data() always points to at least `N` elements, the check
|
|
// above ensures `idx < N` and is thus in range for data().
|
|
return UNSAFE_BUFFERS(data()[idx]);
|
|
}
|
|
|
|
constexpr T& front() const noexcept
|
|
requires(N > 0)
|
|
{
|
|
// SAFETY: Since data() always points to at least `N` elements, the requires
|
|
// constraint above ensures `0 < N` and is thus in range for data().
|
|
return UNSAFE_BUFFERS(data()[0]);
|
|
}
|
|
|
|
constexpr T& back() const noexcept
|
|
requires(N > 0)
|
|
{
|
|
// SAFETY: Since data() always points to at least `N` elements, the requires
|
|
// constraint above ensures `N > 0` and thus `N - 1` does not underflow and
|
|
// is in range for data().
|
|
return UNSAFE_BUFFERS(data()[N - 1]);
|
|
}
|
|
|
|
// Returns a pointer to the first element in the span. If the span is empty
|
|
// (`size()` is 0), the returned pointer may or may not be null, and it must
|
|
// not be dereferenced.
|
|
//
|
|
// It is always valid to add `size()` to the the pointer in C++ code, though
|
|
// it may be invalid in C code when the span is empty.
|
|
constexpr T* data() const noexcept { return data_; }
|
|
|
|
// [span.iter], span iterator support
|
|
constexpr iterator begin() const noexcept {
|
|
// SAFETY: span provides that data() points to at least `size()` many
|
|
// elements, and size() is non-negative. So data() + size() is a valid
|
|
// pointer for the data() allocation.
|
|
return UNSAFE_BUFFERS(iterator(data(), data() + size()));
|
|
}
|
|
|
|
constexpr iterator end() const noexcept {
|
|
// SAFETY: span provides that data() points to at least `size()` many
|
|
// elements, and size() is non-negative. So data() + size() is a valid
|
|
// pointer for the data() allocation.
|
|
return UNSAFE_BUFFERS(iterator(data(), data() + size(), data() + size()));
|
|
}
|
|
|
|
constexpr reverse_iterator rbegin() const noexcept {
|
|
return reverse_iterator(end());
|
|
}
|
|
|
|
constexpr reverse_iterator rend() const noexcept {
|
|
return reverse_iterator(begin());
|
|
}
|
|
|
|
// Bounds-checked copy from a non-overlapping span. The spans must be the
|
|
// exact same size or a hard CHECK() occurs. If the two spans overlap,
|
|
// Undefined Behaviour occurs.
|
|
//
|
|
// This is a non-std extension that is inspired by the Rust
|
|
// slice::copy_from_slice() method.
|
|
//
|
|
// # Checks
|
|
// The function CHECKs that the `other` span has the same size as itself and
|
|
// will terminate otherwise.
|
|
constexpr void copy_from(span<const T, N> other)
|
|
requires(!std::is_const_v<T>)
|
|
{
|
|
CHECK_EQ(size_bytes(), other.size_bytes());
|
|
// Verify non-overlapping in developer builds.
|
|
//
|
|
// SAFETY: span provides that data() points to at least size() many
|
|
// elements, so adding size() to the data() pointer is well-defined.
|
|
DCHECK(UNSAFE_BUFFERS(data() + size()) <= other.data() ||
|
|
data() >= UNSAFE_BUFFERS(other.data() + other.size()));
|
|
// When compiling with -Oz, std::ranges::copy() does not get inlined, which
|
|
// makes copy_from() very expensive compared to memcpy for small sizes (up
|
|
// to around 4x slower). We observe that this is because ranges::copy() uses
|
|
// begin()/end() and span's iterators are checked iterators, not just
|
|
// pointers. This additional complexity prevents inlining and breaks the
|
|
// ability for the compiler to eliminate code.
|
|
//
|
|
// See also https://crbug.com/1396134.
|
|
//
|
|
// We also see std::copy() (with pointer arguments! not iterators) optimize
|
|
// and inline better than memcpy() since memcpy() needs to rely on
|
|
// size_bytes(), which while computable at compile time when `other` has a
|
|
// fixed size, the optimizer stumbles on with -Oz.
|
|
//
|
|
// SAFETY: The copy() here does not check bounds, but we have verified that
|
|
// `this` and `other` have the same bounds above (and are pointers of the
|
|
// same type), so `data()` and `other.data()` both have at least
|
|
// `other.size()` elements.
|
|
UNSAFE_BUFFERS(
|
|
std::copy(other.data(), other.data() + other.size(), data()));
|
|
}
|
|
|
|
// Implicit conversion from std::span<T, N> to base::span<T, N>.
|
|
//
|
|
// We get other conversions for free from std::span's constructors, but it
|
|
// does not deduce N on its range constructor.
|
|
span(std::span<std::remove_const_t<T>, N> other)
|
|
: // SAFETY: std::span contains a valid data pointer and size such
|
|
// that pointer+size remains valid.
|
|
UNSAFE_BUFFERS(
|
|
span(std::ranges::data(other), std::ranges::size(other))) {}
|
|
span(std::span<T, N> other)
|
|
requires(std::is_const_v<T>)
|
|
: // SAFETY: std::span contains a valid data pointer and size such
|
|
// that pointer+size remains valid.
|
|
UNSAFE_BUFFERS(
|
|
span(std::ranges::data(other), std::ranges::size(other))) {}
|
|
|
|
// Implicit conversion from base::span<T, N> to std::span<T, N>.
|
|
//
|
|
// We get other conversions for free from std::span's constructors, but it
|
|
// does not deduce N on its range constructor.
|
|
operator std::span<T, N>() const { return std::span<T, N>(*this); }
|
|
operator std::span<const T, N>() const
|
|
requires(!std::is_const_v<T>)
|
|
{
|
|
return std::span<const T, N>(*this);
|
|
}
|
|
|
|
// Compares two spans for equality by comparing the objects pointed to by the
|
|
// spans. The operation is defined for spans of different types as long as the
|
|
// types are themselves comparable.
|
|
//
|
|
// For primitive types, this replaces the less safe `memcmp` function, where
|
|
// `memcmp(a.data(), b.data(), a.size())` can be written as `a == b` and can
|
|
// no longer go outside the bounds of `b`. Otherwise, it replaced std::equal
|
|
// or std::ranges::equal when working with spans, and when no projection is
|
|
// needed.
|
|
//
|
|
// If the spans are of different sizes, they are not equal. If both spans are
|
|
// empty, they are always equal (even though their data pointers may differ).
|
|
//
|
|
// # Implementation note
|
|
// The non-template overloads allow implicit conversions to span for
|
|
// comparison.
|
|
friend constexpr bool operator==(span lhs, span rhs)
|
|
requires(std::equality_comparable<const T>)
|
|
{
|
|
return internal::span_cmp(span<const T, N>(lhs), span<const T, N>(rhs));
|
|
}
|
|
friend constexpr bool operator==(span lhs, span<const T, N> rhs)
|
|
requires(!std::is_const_v<T> && std::equality_comparable<const T>)
|
|
{
|
|
return internal::span_cmp(span<const T, N>(lhs), span<const T, N>(rhs));
|
|
}
|
|
template <class U, size_t M>
|
|
requires((N == M || M == dynamic_extent) &&
|
|
std::equality_comparable_with<const T, const U>)
|
|
friend constexpr bool operator==(span lhs, span<U, M> rhs) {
|
|
return internal::span_cmp(span<const T, N>(lhs), span<const U, M>(rhs));
|
|
}
|
|
|
|
private:
|
|
// This field is not a raw_ptr<> since span is mostly used for stack
|
|
// variables. Use `raw_span` instead for class fields, which does use
|
|
// raw_ptr<> internally.
|
|
InternalPtrType data_ = nullptr;
|
|
};
|
|
|
|
// [span], class template span
|
|
template <typename T, typename InternalPtrType>
|
|
class GSL_POINTER span<T, dynamic_extent, InternalPtrType> {
|
|
public:
|
|
using element_type = T;
|
|
using value_type = std::remove_cv_t<T>;
|
|
using size_type = size_t;
|
|
using difference_type = ptrdiff_t;
|
|
using pointer = T*;
|
|
using const_pointer = const T*;
|
|
using reference = T&;
|
|
using const_reference = const T&;
|
|
using iterator = CheckedContiguousIterator<T>;
|
|
using reverse_iterator = std::reverse_iterator<iterator>;
|
|
static constexpr size_t extent = dynamic_extent;
|
|
|
|
constexpr span() noexcept = default;
|
|
|
|
// Constructs a span from a contiguous iterator and a size.
|
|
//
|
|
// # Safety
|
|
// The iterator must point to the first of at least `count` many elements, or
|
|
// Undefined Behaviour can result as the span will allow access beyond the
|
|
// valid range of the collection pointed to by the iterator.
|
|
template <typename It>
|
|
requires(internal::CompatibleIter<T, It>)
|
|
UNSAFE_BUFFER_USAGE constexpr span(It first,
|
|
StrictNumeric<size_t> count) noexcept
|
|
// The use of to_address() here is to handle the case where the iterator
|
|
// `first` is pointing to the container's `end()`. In that case we can
|
|
// not use the address returned from the iterator, or dereference it
|
|
// through the iterator's `operator*`, but we can store it. We must
|
|
// assume in this case that `count` is 0, since the iterator does not
|
|
// point to valid data. Future hardening of iterators may disallow
|
|
// pulling the address from `end()`, as demonstrated by asserts() in
|
|
// libstdc++: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93960.
|
|
//
|
|
// The span API dictates that the `data()` is accessible when size is 0,
|
|
// since the pointer may be valid, so we cannot prevent storing and
|
|
// giving out an invalid pointer here without breaking API compatibility
|
|
// and our unit tests. Thus protecting against this can likely only be
|
|
// successful from inside iterators themselves, where the context about
|
|
// the pointer is known.
|
|
//
|
|
// We can not protect here generally against an invalid iterator/count
|
|
// being passed in, since we have no context to determine if the
|
|
// iterator or count are valid.
|
|
: data_(base::to_address(first)), size_(count) {}
|
|
|
|
// Constructs a span from a contiguous iterator and a size.
|
|
//
|
|
// # Safety
|
|
// The begin and end iterators must be for the same allocation, and `begin <=
|
|
// end` or Undefined Behaviour can result as the span will allow access beyond
|
|
// the valid range of the collection pointed to by `begin`.
|
|
template <typename It, typename End>
|
|
requires(internal::CompatibleIter<T, It> &&
|
|
std::sized_sentinel_for<End, It> &&
|
|
!std::convertible_to<End, size_t>)
|
|
UNSAFE_BUFFER_USAGE constexpr span(It begin, End end) noexcept
|
|
// SAFETY: The caller must guarantee that the iterator and end sentinel
|
|
// are part of the same allocation, in which case it is the number of
|
|
// elements between the iterators and thus a valid size for the pointer to
|
|
// the element at `begin`.
|
|
//
|
|
// We CHECK that `end - begin` did not underflow below. Normally checking
|
|
// correctness afterward is flawed, however underflow is not UB and the
|
|
// size is not converted to an invalid pointer (which would be UB) before
|
|
// we CHECK for underflow.
|
|
: UNSAFE_BUFFERS(span(begin, static_cast<size_t>(end - begin))) {
|
|
// Verify `end - begin` did not underflow.
|
|
CHECK(begin <= end);
|
|
}
|
|
|
|
template <size_t N>
|
|
// NOLINTNEXTLINE(google-explicit-constructor)
|
|
constexpr span(T (&arr)[N]) noexcept
|
|
// SAFETY: The std::ranges::size() function gives the number of elements
|
|
// pointed to by the std::ranges::data() function, which meets the
|
|
// requirement of span.
|
|
: UNSAFE_BUFFERS(span(std::ranges::data(arr), std::ranges::size(arr))) {}
|
|
|
|
template <typename R>
|
|
requires(internal::LegacyCompatibleRange<T, R>)
|
|
// NOLINTNEXTLINE(google-explicit-constructor)
|
|
constexpr span(R&& range) noexcept
|
|
// SAFETY: The std::ranges::size() function gives the number of elements
|
|
// pointed to by the std::ranges::data() function, which meets the
|
|
// requirement of span.
|
|
: UNSAFE_BUFFERS(
|
|
span(std::ranges::data(range), std::ranges::size(range))) {}
|
|
|
|
// [span.sub], span subviews
|
|
template <size_t Count>
|
|
constexpr span<T, Count> first() const noexcept {
|
|
CHECK_LE(Count, size());
|
|
// SAFETY: span provides that data() points to at least `size()` many
|
|
// elements. `Count` is non-negative by its type and `Count <= size()` from
|
|
// the CHECK above. So `Count` is a valid new size for `data()`.
|
|
return UNSAFE_BUFFERS(span<T, Count>(data(), Count));
|
|
}
|
|
|
|
template <size_t Count>
|
|
constexpr span<T, Count> last() const noexcept {
|
|
CHECK_LE(Count, size());
|
|
// SAFETY: span provides that data() points to at least `size()` many
|
|
// elements. `Count` is non-negative by its type and `Count <= size()` from
|
|
// the check above. So `0 <= size() - Count <= size()`, meaning
|
|
// `size() - Count` is a valid new size for `data()` and it will point to
|
|
// `Count` many elements.
|
|
return UNSAFE_BUFFERS(span<T, Count>(data() + (size() - Count), Count));
|
|
}
|
|
|
|
// Returns a span over the first `count` elements.
|
|
//
|
|
// # Checks
|
|
// The function CHECKs that the span contains at least `count` elements and
|
|
// will terminate otherwise.
|
|
constexpr span<T> first(StrictNumeric<size_t> count) const noexcept {
|
|
CHECK_LE(size_t{count}, size());
|
|
// SAFETY: span provides that data() points to at least `size()` many
|
|
// elements. `count` is non-negative by its type and `count <= size()` from
|
|
// the CHECK above. So `count` is a valid new size for `data()`.
|
|
return UNSAFE_BUFFERS({data(), count});
|
|
}
|
|
|
|
// Returns a span over the last `count` elements.
|
|
//
|
|
// # Checks
|
|
// The function CHECKs that the span contains at least `count` elements and
|
|
// will terminate otherwise.
|
|
constexpr span<T> last(StrictNumeric<size_t> count) const noexcept {
|
|
CHECK_LE(size_t{count}, size());
|
|
// SAFETY: span provides that data() points to at least `size()` many
|
|
// elements. `count` is non-negative by its type and `count <= size()` from
|
|
// the CHECK above. So `0 <= size() - count <= size()`, meaning
|
|
// `size() - count` is a valid new size for `data()` and it will point to
|
|
// `count` many elements.
|
|
return UNSAFE_BUFFERS({data() + (size() - size_t{count}), count});
|
|
}
|
|
|
|
template <size_t Offset, size_t Count = dynamic_extent>
|
|
constexpr span<T, Count> subspan() const noexcept {
|
|
CHECK_LE(Offset, size());
|
|
CHECK(Count == dynamic_extent || Count <= size() - Offset);
|
|
const size_t new_extent = Count != dynamic_extent ? Count : size() - Offset;
|
|
// SAFETY: span provides that data() points to at least `size()` many
|
|
// elements.
|
|
//
|
|
// If Count is dynamic_extent, `new_extent` becomes `size() - Offset`. Since
|
|
// `Offset <= size()` from the check above, then `Offset` is a valid offset
|
|
// for data(), and `Offset + new_extent = Offset + size() - Offset = size()
|
|
// >= Offset` is also a valid offset that is not before `Offset`. This makes
|
|
// a span at `Offset` with size `new_extent` valid.
|
|
//
|
|
// Otherwise `Count <= size() - Offset` and `0 <= Offset <= size()` by the
|
|
// check above, so `Offset <= size() - Count` and `size() - Count` can not
|
|
// underflow. Then `Offset` is a valid offset for data() and `new_extent` is
|
|
// `Count <= size() - Offset`, so `Offset + extent <= Offset + size() -
|
|
// Offset = size()` which makes both `Offset` and `Offset + new_extent`
|
|
// valid offsets for data(), and since `new_extent` is non-negative, `Offset
|
|
// + new_extent` is not before `Offset` so `new_extent` is a valid size for
|
|
// the span at `data() + Offset`.
|
|
return UNSAFE_BUFFERS(span<T, Count>(data() + Offset, new_extent));
|
|
}
|
|
|
|
// Returns a span over the first `count` elements starting at the given
|
|
// `offset` from the start of the span.
|
|
//
|
|
// # Checks
|
|
// The function CHECKs that the span contains at least `offset + count`
|
|
// elements, or at least `offset` elements if `count` is not specified, and
|
|
// will terminate otherwise.
|
|
constexpr span<T> subspan(size_t offset,
|
|
size_t count = dynamic_extent) const noexcept {
|
|
CHECK_LE(offset, size());
|
|
CHECK(count == dynamic_extent || count <= size() - offset);
|
|
const size_t new_extent = count != dynamic_extent ? count : size() - offset;
|
|
// SAFETY: span provides that data() points to at least `size()` many
|
|
// elements.
|
|
//
|
|
// If count is dynamic_extent, `new_extent` becomes `size() - offset`. Since
|
|
// `offset <= size()` from the check above, then `offset` is a valid offset
|
|
// for data(), and `offset + new_extent = offset + size() - offset = size()
|
|
// >= offset` is also a valid offset that is not before `offset`. This makes
|
|
// a span at `offset` with size `new_extent` valid.
|
|
//
|
|
// Otherwise `count <= size() - offset` and `0 <= offset <= size()` by the
|
|
// checks above, so `offset <= size() - count` and `size() - count` can not
|
|
// underflow. Then `offset` is a valid offset for data() and `new_extent` is
|
|
// `count <= size() - offset`, so `offset + new_extent <= offset + size() -
|
|
// offset = size()` which makes both `offset` and `offset + new_extent`
|
|
// valid offsets for data(), and since `new_extent` is non-negative, `offset
|
|
// + new_extent` is not before `offset` so `new_extent` is a valid size for
|
|
// the span at `data() + offset`.
|
|
return UNSAFE_BUFFERS({data() + offset, new_extent});
|
|
}
|
|
|
|
// Splits a span into two at the given `offset`, returning two spans that
|
|
// cover the full range of the original span.
|
|
//
|
|
// Similar to calling subspan() with the `offset` as the length on the first
|
|
// call, and then the `offset` as the offset in the second.
|
|
//
|
|
// The split_at<N>() overload allows construction of a fixed-size span from a
|
|
// compile-time constant. If the input span is fixed-size, both output output
|
|
// spans will be. Otherwise, the first will be fixed-size and the second will
|
|
// be dynamic-size.
|
|
//
|
|
// This is a non-std extension that is inspired by the Rust slice::split_at()
|
|
// and split_at_mut() methods.
|
|
//
|
|
// # Checks
|
|
// The function CHECKs that the span contains at least `offset` elements and
|
|
// will terminate otherwise.
|
|
constexpr std::pair<span<T>, span<T>> split_at(size_t offset) const noexcept {
|
|
return {first(offset), subspan(offset)};
|
|
}
|
|
|
|
// An overload of `split_at` which returns a fixed-size span.
|
|
//
|
|
// # Checks
|
|
// The function CHECKs that the span contains at least `Offset` elements and
|
|
// will terminate otherwise.
|
|
template <size_t Offset>
|
|
constexpr std::pair<span<T, Offset>, span<T>> split_at() const noexcept {
|
|
CHECK_LE(Offset, size());
|
|
return {first<Offset>(), subspan(Offset)};
|
|
}
|
|
|
|
// [span.obs], span observers
|
|
constexpr size_t size() const noexcept { return size_; }
|
|
constexpr size_t size_bytes() const noexcept { return size() * sizeof(T); }
|
|
[[nodiscard]] constexpr bool empty() const noexcept { return size() == 0; }
|
|
|
|
// [span.elem], span element access
|
|
//
|
|
// # Checks
|
|
// The function CHECKs that the `idx` is inside the span and will terminate
|
|
// otherwise.
|
|
constexpr T& operator[](size_t idx) const noexcept {
|
|
CHECK_LT(idx, size());
|
|
// SAFETY: Since data() always points to at least `size()` elements, the
|
|
// check above ensures `idx < size()` and is thus in range for data().
|
|
return UNSAFE_BUFFERS(data()[idx]);
|
|
}
|
|
|
|
// Returns a reference to the first element in the span.
|
|
//
|
|
// # Checks
|
|
// The function CHECKs that the span is not empty and will terminate
|
|
// otherwise.
|
|
constexpr T& front() const noexcept {
|
|
CHECK(!empty());
|
|
// SAFETY: Since data() always points to at least `size()` elements, the
|
|
// check above above ensures `0 < size()` and is thus in range for data().
|
|
return UNSAFE_BUFFERS(data()[0]);
|
|
}
|
|
|
|
// Returns a reference to the last element in the span.
|
|
//
|
|
// # Checks
|
|
// The function CHECKs that the span is not empty and will terminate
|
|
// otherwise.
|
|
constexpr T& back() const noexcept {
|
|
CHECK(!empty());
|
|
// SAFETY: Since data() always points to at least `size()` elements, the
|
|
// check above above ensures `size() > 0` and thus `size() - 1` does not
|
|
// underflow and is in range for data().
|
|
return UNSAFE_BUFFERS(data()[size() - 1]);
|
|
}
|
|
|
|
// Returns a pointer to the first element in the span. If the span is empty
|
|
// (`size()` is 0), the returned pointer may or may not be null, and it must
|
|
// not be dereferenced.
|
|
//
|
|
// It is always valid to add `size()` to the the pointer in C++ code, though
|
|
// it may be invalid in C code when the span is empty.
|
|
constexpr T* data() const noexcept { return data_; }
|
|
|
|
// [span.iter], span iterator support
|
|
constexpr iterator begin() const noexcept {
|
|
// SAFETY: span provides that data() points to at least `size()` many
|
|
// elements, and size() is non-negative. So data() + size() is a valid
|
|
// pointer for the data() allocation.
|
|
return UNSAFE_BUFFERS(iterator(data(), data() + size()));
|
|
}
|
|
|
|
constexpr iterator end() const noexcept {
|
|
// SAFETY: span provides that data() points to at least `size()` many
|
|
// elements, and size() is non-negative. So data() + size() is a valid
|
|
// pointer for the data() allocation.
|
|
return UNSAFE_BUFFERS(iterator(data(), data() + size(), data() + size()));
|
|
}
|
|
|
|
constexpr reverse_iterator rbegin() const noexcept {
|
|
return reverse_iterator(end());
|
|
}
|
|
|
|
constexpr reverse_iterator rend() const noexcept {
|
|
return reverse_iterator(begin());
|
|
}
|
|
|
|
// Bounds-checked copy from a non-overlapping span. The spans must be the
|
|
// exact same size or a hard CHECK() occurs. If the two spans overlap,
|
|
// Undefined Behaviour occurs.
|
|
//
|
|
// This is a non-std extension that is inspired by the Rust
|
|
// slice::copy_from_slice() method.
|
|
//
|
|
// # Checks
|
|
// The function CHECKs that the `other` span has the same size as itself and
|
|
// will terminate otherwise.
|
|
constexpr void copy_from(span<const T> other)
|
|
requires(!std::is_const_v<T>)
|
|
{
|
|
CHECK_EQ(size_bytes(), other.size_bytes());
|
|
// Verify non-overlapping in developer builds.
|
|
//
|
|
// SAFETY: span provides that data() points to at least size() many
|
|
// elements, so adding size() to the data() pointer is well-defined.
|
|
DCHECK(UNSAFE_BUFFERS(data() + size()) <= other.data() ||
|
|
data() >= UNSAFE_BUFFERS(other.data() + other.size()));
|
|
// When compiling with -Oz, std::ranges::copy() does not get inlined, which
|
|
// makes copy_from() very expensive compared to memcpy for small sizes (up
|
|
// to around 4x slower). We observe that this is because ranges::copy() uses
|
|
// begin()/end() and span's iterators are checked iterators, not just
|
|
// pointers. This additional complexity prevents inlining and breaks the
|
|
// ability for the compiler to eliminate code.
|
|
//
|
|
// See also https://crbug.com/1396134.
|
|
//
|
|
// We also see std::copy() (with pointer arguments! not iterators) optimize
|
|
// and inline better than memcpy() since memcpy() needs to rely on
|
|
// size_bytes(), which while computable at compile time when `other` has a
|
|
// fixed size, the optimizer stumbles on with -Oz.
|
|
//
|
|
// SAFETY: The copy() here does not check bounds, but we have verified that
|
|
// `this` and `other` have the same bounds above (and are pointers of the
|
|
// same type), so `data()` and `other.data()` both have at least
|
|
// `other.size()` elements.
|
|
UNSAFE_BUFFERS(
|
|
std::copy(other.data(), other.data() + other.size(), data()));
|
|
}
|
|
|
|
// Compares two spans for equality by comparing the objects pointed to by the
|
|
// spans. The operation is defined for spans of different types as long as the
|
|
// types are themselves comparable.
|
|
//
|
|
// For primitive types, this replaces the less safe `memcmp` function, where
|
|
// `memcmp(a.data(), b.data(), a.size())` can be written as `a == b` and can
|
|
// no longer go outside the bounds of `b`. Otherwise, it replaced std::equal
|
|
// or std::ranges::equal when working with spans, and when no projection is
|
|
// needed.
|
|
//
|
|
// If the spans are of different sizes, they are not equal. If both spans are
|
|
// empty, they are always equal (even though their data pointers may differ).
|
|
//
|
|
// # Implementation note
|
|
// The non-template overloads allow implicit conversions to span for
|
|
// comparison.
|
|
friend constexpr bool operator==(span lhs, span rhs)
|
|
requires(std::equality_comparable<const T>)
|
|
{
|
|
return internal::span_cmp(span<const T>(lhs), span<const T>(rhs));
|
|
}
|
|
friend constexpr bool operator==(span lhs, span<const T> rhs)
|
|
requires(!std::is_const_v<T> && std::equality_comparable<const T>)
|
|
{
|
|
return internal::span_cmp(span<const T>(lhs), span<const T>(rhs));
|
|
}
|
|
template <class U, size_t M>
|
|
requires(std::equality_comparable_with<const T, const U>)
|
|
friend constexpr bool operator==(span lhs, span<U, M> rhs) {
|
|
return internal::span_cmp(span<const T>(lhs), span<const U, M>(rhs));
|
|
}
|
|
|
|
private:
|
|
// This field is not a raw_ptr<> since span is mostly used for stack
|
|
// variables. Use `raw_span` instead for class fields, which does use
|
|
// raw_ptr<> internally.
|
|
InternalPtrType data_ = nullptr;
|
|
size_t size_ = 0;
|
|
};
|
|
|
|
// [span.deduct], deduction guides.
|
|
template <typename It, typename EndOrSize>
|
|
requires(std::contiguous_iterator<It>)
|
|
span(It, EndOrSize) -> span<std::remove_reference_t<std::iter_reference_t<It>>>;
|
|
|
|
template <
|
|
typename R,
|
|
typename T = std::remove_reference_t<std::ranges::range_reference_t<R>>>
|
|
requires(std::ranges::contiguous_range<R>)
|
|
span(R&&)
|
|
-> span<std::conditional_t<std::ranges::borrowed_range<R>, T, const T>,
|
|
internal::ExtentV<R>>;
|
|
|
|
// This guide prefers to let the contiguous_range guide match, since it can
|
|
// produce a fixed-size span. Whereas, LegacyRange only produces a dynamic-sized
|
|
// span.
|
|
template <typename R>
|
|
requires(!std::ranges::contiguous_range<R> && internal::LegacyRange<R>)
|
|
span(R&& r) noexcept
|
|
-> span<std::remove_reference_t<decltype(*std::ranges::data(r))>>;
|
|
|
|
template <typename T, size_t N>
|
|
span(const T (&)[N]) -> span<const T, N>;
|
|
|
|
// [span.objectrep], views of object representation
|
|
template <typename T, size_t X>
|
|
constexpr auto as_bytes(span<T, X> s) noexcept {
|
|
constexpr size_t N = X == dynamic_extent ? dynamic_extent : sizeof(T) * X;
|
|
// SAFETY: span provides that data() points to at least size_bytes() many
|
|
// bytes. So since `uint8_t` has a size of 1 byte, the size_bytes() value is
|
|
// a valid size for a span at data() when viewed as `uint8_t*`.
|
|
//
|
|
// The reinterpret_cast is valid as the alignment of uint8_t (which is 1) is
|
|
// always less-than or equal to the alignment of T.
|
|
return UNSAFE_BUFFERS(span<const uint8_t, N>(
|
|
reinterpret_cast<const uint8_t*>(s.data()), s.size_bytes()));
|
|
}
|
|
|
|
template <typename T, size_t X>
|
|
requires(!std::is_const_v<T>)
|
|
constexpr auto as_writable_bytes(span<T, X> s) noexcept {
|
|
constexpr size_t N = X == dynamic_extent ? dynamic_extent : sizeof(T) * X;
|
|
// SAFETY: span provides that data() points to at least size_bytes() many
|
|
// bytes. So since `uint8_t` has a size of 1 byte, the size_bytes() value is a
|
|
// valid size for a span at data() when viewed as `uint8_t*`.
|
|
//
|
|
// The reinterpret_cast is valid as the alignment of uint8_t (which is 1) is
|
|
// always less-than or equal to the alignment of T.
|
|
return UNSAFE_BUFFERS(
|
|
span<uint8_t, N>(reinterpret_cast<uint8_t*>(s.data()), s.size_bytes()));
|
|
}
|
|
|
|
// as_chars() is the equivalent of as_bytes(), except that it returns a
|
|
// span of const char rather than const uint8_t. This non-std function is
|
|
// added since chrome still represents many things as char arrays which
|
|
// rightfully should be uint8_t.
|
|
template <typename T, size_t X>
|
|
constexpr auto as_chars(span<T, X> s) noexcept {
|
|
constexpr size_t N = X == dynamic_extent ? dynamic_extent : sizeof(T) * X;
|
|
// SAFETY: span provides that data() points to at least size_bytes() many
|
|
// bytes. So since `char` has a size of 1 byte, the size_bytes() value is a
|
|
// valid size for a span at data() when viewed as `char*`.
|
|
//
|
|
// The reinterpret_cast is valid as the alignment of char (which is 1) is
|
|
// always less-than or equal to the alignment of T.
|
|
return UNSAFE_BUFFERS(span<const char, N>(
|
|
reinterpret_cast<const char*>(s.data()), s.size_bytes()));
|
|
}
|
|
|
|
// as_string_view() converts a span over byte-sized primitives (holding chars or
|
|
// uint8_t) into a std::string_view, where each byte is represented as a char.
|
|
// It also accepts any type that can implicitly convert to a span, such as
|
|
// arrays.
|
|
//
|
|
// If you want to view an arbitrary span type as a string, first explicitly
|
|
// convert it to bytes via `base::as_bytes()`.
|
|
//
|
|
// For spans over byte-sized primitives, this is sugar for:
|
|
// ```
|
|
// std::string_view(as_chars(span).begin(), as_chars(span).end())
|
|
// ```
|
|
constexpr std::string_view as_string_view(span<const char> s) noexcept {
|
|
return std::string_view(s.begin(), s.end());
|
|
}
|
|
constexpr std::string_view as_string_view(
|
|
span<const unsigned char> s) noexcept {
|
|
const auto c = as_chars(s);
|
|
return std::string_view(c.begin(), c.end());
|
|
}
|
|
|
|
// as_writable_chars() is the equivalent of as_writable_bytes(), except that
|
|
// it returns a span of char rather than uint8_t. This non-std function is
|
|
// added since chrome still represents many things as char arrays which
|
|
// rightfully should be uint8_t.
|
|
template <typename T, size_t X>
|
|
requires(!std::is_const_v<T>)
|
|
auto as_writable_chars(span<T, X> s) noexcept {
|
|
constexpr size_t N = X == dynamic_extent ? dynamic_extent : sizeof(T) * X;
|
|
// SAFETY: span provides that data() points to at least size_bytes() many
|
|
// bytes. So since `char` has a size of 1 byte, the size_bytes() value is
|
|
// a valid size for a span at data() when viewed as `char*`.
|
|
//
|
|
// The reinterpret_cast is valid as the alignment of char (which is 1) is
|
|
// always less-than or equal to the alignment of T.
|
|
return UNSAFE_BUFFERS(
|
|
span<char, N>(reinterpret_cast<char*>(s.data()), s.size_bytes()));
|
|
}
|
|
|
|
// Type-deducing helper for constructing a span.
|
|
//
|
|
// # Safety
|
|
// The contiguous iterator `it` must point to the first element of at least
|
|
// `size` many elements or Undefined Behaviour may result as the span may give
|
|
// access beyond the bounds of the collection pointed to by `it`.
|
|
template <int&... ExplicitArgumentBarrier, typename It>
|
|
UNSAFE_BUFFER_USAGE constexpr auto make_span(
|
|
It it,
|
|
StrictNumeric<size_t> size) noexcept {
|
|
using T = std::remove_reference_t<std::iter_reference_t<It>>;
|
|
// SAFETY: The caller guarantees that `it` is the first of at least `size`
|
|
// many elements.
|
|
return UNSAFE_BUFFERS(span<T>(it, size));
|
|
}
|
|
|
|
// Type-deducing helper for constructing a span.
|
|
//
|
|
// # Checks
|
|
// The function CHECKs that `it <= end` and will terminate otherwise.
|
|
//
|
|
// # Safety
|
|
// The contiguous iterator `it` and its end sentinel `end` must be for the same
|
|
// allocation or Undefined Behaviour may result as the span may give access
|
|
// beyond the bounds of the collection pointed to by `it`.
|
|
template <int&... ExplicitArgumentBarrier,
|
|
typename It,
|
|
typename End,
|
|
typename = std::enable_if_t<!std::is_convertible_v<End, size_t>>>
|
|
UNSAFE_BUFFER_USAGE constexpr auto make_span(It it, End end) noexcept {
|
|
using T = std::remove_reference_t<std::iter_reference_t<It>>;
|
|
// SAFETY: The caller guarantees that `it` and `end` are iterators of the
|
|
// same allocation.
|
|
return UNSAFE_BUFFERS(span<T>(it, end));
|
|
}
|
|
|
|
// make_span utility function that deduces both the span's value_type and extent
|
|
// from the passed in argument.
|
|
//
|
|
// Usage: auto span = base::make_span(...);
|
|
template <int&... ExplicitArgumentBarrier, typename Container>
|
|
constexpr auto make_span(Container&& container) noexcept {
|
|
using T =
|
|
std::remove_pointer_t<decltype(std::data(std::declval<Container>()))>;
|
|
using Extent = internal::Extent<Container>;
|
|
return span<T, Extent::value>(std::forward<Container>(container));
|
|
}
|
|
|
|
// make_span utility function that allows callers to explicit specify the span's
|
|
// extent, the value_type is deduced automatically. This is useful when passing
|
|
// a dynamically sized container to a method expecting static spans, when the
|
|
// container is known to have the correct size.
|
|
//
|
|
// Note: This will CHECK that N indeed matches size(container).
|
|
//
|
|
// # Usage
|
|
// As this function is unsafe, the caller must guarantee that the size is
|
|
// correct for the iterator, and will not allow the span to reach out of bounds.
|
|
// ```
|
|
// // SAFETY: <An explanation of how the size is checked/ensured to always be
|
|
// // valid for the iterator>.
|
|
// auto static_span = UNSAFE_BUFFERS(base::make_span<N>(it, size));
|
|
// ```
|
|
//
|
|
// # Safety
|
|
// The contiguous iterator `it` must point to the first element of at least
|
|
// `size` many elements or Undefined Behaviour may result as the span may give
|
|
// access beyond the bounds of the collection pointed to by `it`.
|
|
template <size_t N, int&... ExplicitArgumentBarrier, typename It>
|
|
UNSAFE_BUFFER_USAGE constexpr auto make_span(
|
|
It it,
|
|
StrictNumeric<size_t> size) noexcept {
|
|
using T = std::remove_reference_t<std::iter_reference_t<It>>;
|
|
// SAFETY: The caller guarantees that `it` is the first of at least `size`
|
|
// many elements.
|
|
return UNSAFE_BUFFERS(span<T, N>(it, size));
|
|
}
|
|
|
|
// make_span utility function that allows callers to explicit specify the span's
|
|
// extent, the value_type is deduced automatically. This is useful when passing
|
|
// a dynamically sized container to a method expecting static spans, when the
|
|
// container is known to have the correct size.
|
|
//
|
|
// Note: This will CHECK that N indeed matches size(container).
|
|
//
|
|
// # Usage
|
|
// As this function is unsafe, the caller must guarantee that the `end` is from
|
|
// the same allocation as the `it` iterator.
|
|
// ```
|
|
// // SAFETY: <An explanation if non-trivial how the iterators are not from
|
|
// // different containers/allocations>.
|
|
// auto static_span = UNSAFE_BUFFERS(base::make_span<N>(it, end));
|
|
// ```
|
|
//
|
|
// # Checks
|
|
// The function CHECKs that `it <= end` and will terminate otherwise.
|
|
//
|
|
// # Safety
|
|
// The contiguous iterator `it` and its end sentinel `end` must be for the same
|
|
// allocation or Undefined Behaviour may result as the span may give access
|
|
// beyond the bounds of the collection pointed to by `it`.
|
|
template <size_t N,
|
|
int&... ExplicitArgumentBarrier,
|
|
typename It,
|
|
typename End,
|
|
typename = std::enable_if_t<!std::is_convertible_v<End, size_t>>>
|
|
UNSAFE_BUFFER_USAGE constexpr auto make_span(It it, End end) noexcept {
|
|
using T = std::remove_reference_t<std::iter_reference_t<It>>;
|
|
// SAFETY: The caller guarantees that `it` and `end` are iterators of the
|
|
// same allocation.
|
|
return UNSAFE_BUFFERS(span<T, N>(it, end));
|
|
}
|
|
|
|
template <size_t N, int&... ExplicitArgumentBarrier, typename Container>
|
|
constexpr auto make_span(Container&& container) noexcept {
|
|
using T =
|
|
std::remove_pointer_t<decltype(std::data(std::declval<Container>()))>;
|
|
// SAFETY: The std::size() function gives the number of elements pointed to by
|
|
// the std::data() function, which meets the requirement of span.
|
|
return UNSAFE_BUFFERS(span<T, N>(std::data(container), std::size(container)));
|
|
}
|
|
|
|
// `span_from_ref` converts a reference to T into a span of length 1. This is a
|
|
// non-std helper that is inspired by the `std::slice::from_ref()` function from
|
|
// Rust.
|
|
template <typename T>
|
|
constexpr span<T, 1u> span_from_ref(
|
|
T& single_object ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept {
|
|
// SAFETY: Given a valid reference to `single_object` the span of size 1 will
|
|
// be a valid span that points to the `single_object`.
|
|
return UNSAFE_BUFFERS(span<T, 1u>(std::addressof(single_object), 1u));
|
|
}
|
|
|
|
// `byte_span_from_ref` converts a reference to T into a span of uint8_t of
|
|
// length sizeof(T). This is a non-std helper that is a sugar for
|
|
// `as_writable_bytes(span_from_ref(x))`.
|
|
//
|
|
// Const references are turned into a `span<const T, sizeof(T)>` while mutable
|
|
// references are turned into a `span<T, sizeof(T)>`.
|
|
template <typename T>
|
|
constexpr span<const uint8_t, sizeof(T)> byte_span_from_ref(
|
|
const T& single_object ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept {
|
|
return as_bytes(span_from_ref(single_object));
|
|
}
|
|
template <typename T>
|
|
constexpr span<uint8_t, sizeof(T)> byte_span_from_ref(
|
|
T& single_object ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept {
|
|
return as_writable_bytes(span_from_ref(single_object));
|
|
}
|
|
|
|
// Converts a string literal (such as `"hello"`) to a span of `char` while
|
|
// omitting the terminating NUL character. These two are equivalent:
|
|
// ```
|
|
// base::span<char, 5u> s1 = base::span_from_cstring("hello");
|
|
// base::span<char, 5u> s2 = base::span(std::string_view("hello"));
|
|
// ```
|
|
//
|
|
// If you want to include the NUL terminator, then use the span constructor
|
|
// directly, such as:
|
|
// ```
|
|
// base::span<char, 6u> s = base::span("hello");
|
|
// ```
|
|
template <size_t N>
|
|
constexpr span<const char, N - 1> span_from_cstring(
|
|
const char (&lit ABSL_ATTRIBUTE_LIFETIME_BOUND)[N]) {
|
|
return span(lit).template first<N - 1>();
|
|
}
|
|
|
|
// Converts a string literal (such as `"hello"`) to a span of `uint8_t` while
|
|
// omitting the terminating NUL character. These two are equivalent:
|
|
// ```
|
|
// base::span<uint8_t, 5u> s1 = base::byte_span_from_cstring("hello");
|
|
// base::span<uint8_t, 5u> s2 = base::as_byte_span(std::string_view("hello"));
|
|
// ```
|
|
//
|
|
// If you want to include the NUL terminator, then use the span constructor
|
|
// directly, such as:
|
|
// ```
|
|
// base::span<uint8_t, 6u> s = base::as_bytes(base::span("hello"));
|
|
// ```
|
|
template <size_t N>
|
|
constexpr span<const uint8_t, N - 1> byte_span_from_cstring(
|
|
const char (&lit ABSL_ATTRIBUTE_LIFETIME_BOUND)[N]) {
|
|
return as_bytes(span(lit).template first<N - 1>());
|
|
}
|
|
|
|
// Convenience function for converting an object which is itself convertible
|
|
// to span into a span of bytes (i.e. span of const uint8_t). Typically used
|
|
// to convert std::string or string-objects holding chars, or std::vector
|
|
// or vector-like objects holding other scalar types, prior to passing them
|
|
// into an API that requires byte spans.
|
|
template <typename T>
|
|
requires requires(const T& arg) {
|
|
requires !std::is_array_v<std::remove_reference_t<T>>;
|
|
make_span(arg);
|
|
}
|
|
constexpr span<const uint8_t> as_byte_span(const T& arg) {
|
|
return as_bytes(make_span(arg));
|
|
}
|
|
|
|
// This overload for arrays preserves the compile-time size N of the array in
|
|
// the span type signature span<uint8_t, N>.
|
|
template <typename T, size_t N>
|
|
constexpr span<const uint8_t, N * sizeof(T)> as_byte_span(
|
|
const T (&arr ABSL_ATTRIBUTE_LIFETIME_BOUND)[N]) {
|
|
return as_bytes(make_span<N>(arr));
|
|
}
|
|
|
|
// Convenience function for converting an object which is itself convertible
|
|
// to span into a span of mutable bytes (i.e. span of uint8_t). Typically used
|
|
// to convert std::string or string-objects holding chars, or std::vector
|
|
// or vector-like objects holding other scalar types, prior to passing them
|
|
// into an API that requires mutable byte spans.
|
|
template <typename T>
|
|
requires requires(T&& arg) {
|
|
requires !std::is_array_v<std::remove_reference_t<T>>;
|
|
make_span(arg);
|
|
requires !std::is_const_v<typename decltype(make_span(arg))::element_type>;
|
|
}
|
|
constexpr span<uint8_t> as_writable_byte_span(T&& arg) {
|
|
return as_writable_bytes(make_span(arg));
|
|
}
|
|
|
|
// This overload for arrays preserves the compile-time size N of the array in
|
|
// the span type signature span<uint8_t, N>.
|
|
template <typename T, size_t N>
|
|
requires(!std::is_const_v<T>)
|
|
constexpr span<uint8_t, N * sizeof(T)> as_writable_byte_span(
|
|
T (&arr ABSL_ATTRIBUTE_LIFETIME_BOUND)[N]) {
|
|
return as_writable_bytes(make_span<N>(arr));
|
|
}
|
|
template <typename T, size_t N>
|
|
requires(!std::is_const_v<T>)
|
|
constexpr span<uint8_t, N * sizeof(T)> as_writable_byte_span(
|
|
T (&&arr ABSL_ATTRIBUTE_LIFETIME_BOUND)[N]) {
|
|
return as_writable_bytes(make_span<N>(arr));
|
|
}
|
|
|
|
namespace internal {
|
|
|
|
// Template helper for implementing operator==.
|
|
template <class T, class U, size_t N, size_t M>
|
|
requires((N == M || N == dynamic_extent || M == dynamic_extent) &&
|
|
std::equality_comparable_with<T, U>)
|
|
constexpr bool span_cmp(span<T, N> l, span<U, M> r) {
|
|
return l.size() == r.size() && std::equal(l.begin(), l.end(), r.begin());
|
|
}
|
|
|
|
} // namespace internal
|
|
|
|
} // namespace base
|
|
|
|
template <typename T, size_t N, typename Ptr>
|
|
inline constexpr bool
|
|
std::ranges::enable_borrowed_range<base::span<T, N, Ptr>> = true;
|
|
|
|
template <typename T, size_t N, typename Ptr>
|
|
inline constexpr bool std::ranges::enable_view<base::span<T, N, Ptr>> = true;
|
|
|
|
// EXTENT returns the size of any type that can be converted to a |base::span|
|
|
// with definite extent, i.e. everything that is a contiguous storage of some
|
|
// sort with static size. Specifically, this works for std::array in a constexpr
|
|
// context. Note:
|
|
// * |std::size| should be preferred for plain arrays.
|
|
// * In run-time contexts, functions such as |std::array::size| should be
|
|
// preferred.
|
|
#define EXTENT(x) \
|
|
::base::internal::must_not_be_dynamic_extent<decltype(::base::make_span( \
|
|
x))::extent>()
|
|
|
|
#endif // BASE_CONTAINERS_SPAN_H_
|