naiveproxy/src/base/no_destructor.h
2024-02-17 02:00:50 +08:00

144 lines
5.3 KiB
C++

// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NO_DESTRUCTOR_H_
#define BASE_NO_DESTRUCTOR_H_
#include <new>
#include <type_traits>
#include <utility>
namespace base {
// Helper type to create a function-local static variable of type `T` when `T`
// has a non-trivial destructor. Storing a `T` in a `base::NoDestructor<T>` will
// prevent `~T()` from running, even when the variable goes out of scope.
//
// Useful when a variable has static storage duration but its type has a
// non-trivial destructor. Chromium bans global constructors and destructors:
// using a function-local static variable prevents the former, while using
// `base::NoDestructor<T>` prevents the latter.
//
// ## Caveats
//
// - Must not be used for locals or fields; by definition, this does not run
// destructors, and this will likely lead to memory leaks and other
// surprising and undesirable behaviour.
//
// - If `T` is not constexpr constructible, must be a function-local static
// variable, since a global `NoDestructor<T>` will still generate a static
// initializer.
//
// - If `T` is constinit constructible, may be used as a global, but mark the
// global `constinit`.
//
// - If the data is rarely used, consider creating it on demand rather than
// caching it for the lifetime of the program. Though `base::NoDestructor<T>`
// does not heap allocate, the compiler still reserves space in bss for
// storing `T`, which costs memory at runtime.
//
// - If `T` is trivially destructible, do not use `base::NoDestructor<T>`:
//
// const uint64_t GetUnstableSessionSeed() {
// // No need to use `base::NoDestructor<T>` as `uint64_t` is trivially
// // destructible and does not require a global destructor.
// static const uint64_t kSessionSeed = base::RandUint64();
// return kSessionSeed;
// }
//
// ## Example Usage
//
// const std::string& GetDefaultText() {
// // Required since `static const std::string` requires a global destructor.
// static const base::NoDestructor<std::string> s("Hello world!");
// return *s;
// }
//
// More complex initialization using a lambda:
//
// const std::string& GetRandomNonce() {
// // `nonce` is initialized with random data the first time this function is
// // called, but its value is fixed thereafter.
// static const base::NoDestructor<std::string> nonce([] {
// std::string s(16);
// crypto::RandString(s.data(), s.size());
// return s;
// }());
// return *nonce;
// }
//
// ## Thread safety
//
// Initialisation of function-local static variables is thread-safe since C++11.
// The standard guarantees that:
//
// - function-local static variables will be initialised the first time
// execution passes through the declaration.
//
// - if another thread's execution concurrently passes through the declaration
// in the middle of initialisation, that thread will wait for the in-progress
// initialisation to complete.
template <typename T>
class NoDestructor {
public:
static_assert(!(std::is_trivially_constructible_v<T> &&
std::is_trivially_destructible_v<T>),
"T is trivially constructible and destructible; please use a "
"constinit object of type T directly instead");
static_assert(
!std::is_trivially_destructible_v<T>,
"T is trivially destructible; please use a function-local static "
"of type T directly instead");
// Not constexpr; just write static constexpr T x = ...; if the value should
// be a constexpr.
template <typename... Args>
explicit NoDestructor(Args&&... args) {
new (storage_) T(std::forward<Args>(args)...);
}
// Allows copy and move construction of the contained type, to allow
// construction from an initializer list, e.g. for std::vector.
explicit NoDestructor(const T& x) { new (storage_) T(x); }
explicit NoDestructor(T&& x) { new (storage_) T(std::move(x)); }
NoDestructor(const NoDestructor&) = delete;
NoDestructor& operator=(const NoDestructor&) = delete;
~NoDestructor() = default;
const T& operator*() const { return *get(); }
T& operator*() { return *get(); }
const T* operator->() const { return get(); }
T* operator->() { return get(); }
const T* get() const { return reinterpret_cast<const T*>(storage_); }
T* get() { return reinterpret_cast<T*>(storage_); }
private:
alignas(T) char storage_[sizeof(T)];
#if defined(LEAK_SANITIZER)
// TODO(https://crbug.com/812277): This is a hack to work around the fact
// that LSan doesn't seem to treat NoDestructor as a root for reachability
// analysis. This means that code like this:
// static base::NoDestructor<std::vector<int>> v({1, 2, 3});
// is considered a leak. Using the standard leak sanitizer annotations to
// suppress leaks doesn't work: std::vector is implicitly constructed before
// calling the base::NoDestructor constructor.
//
// Unfortunately, I haven't been able to demonstrate this issue in simpler
// reproductions: until that's resolved, hold an explicit pointer to the
// placement-new'd object in leak sanitizer mode to help LSan realize that
// objects allocated by the contained type are still reachable.
T* storage_ptr_ = reinterpret_cast<T*>(storage_);
#endif // defined(LEAK_SANITIZER)
};
} // namespace base
#endif // BASE_NO_DESTRUCTOR_H_