naiveproxy/src/base/synchronization/waitable_event_mac.cc
2022-05-29 18:11:59 +08:00

387 lines
14 KiB
C++

// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/synchronization/waitable_event.h"
#include <dispatch/dispatch.h>
#include <mach/mach.h>
#include <sys/event.h>
#include <memory>
#include "base/debug/activity_tracker.h"
#include "base/files/scoped_file.h"
#include "base/mac/dispatch_source_mach.h"
#include "base/mac/mac_util.h"
#include "base/mac/mach_logging.h"
#include "base/mac/scoped_dispatch_object.h"
#include "base/posix/eintr_wrapper.h"
#include "base/threading/scoped_blocking_call.h"
#include "base/threading/thread_restrictions.h"
#include "base/time/time.h"
#include "base/time/time_override.h"
#include "build/build_config.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
namespace base {
WaitableEvent::WaitableEvent(ResetPolicy reset_policy,
InitialState initial_state)
: policy_(reset_policy) {
mach_port_options_t options{};
options.flags = MPO_INSERT_SEND_RIGHT;
options.mpl.mpl_qlimit = 1;
mach_port_t name;
kern_return_t kr = mach_port_construct(mach_task_self(), &options, 0, &name);
MACH_CHECK(kr == KERN_SUCCESS, kr) << "mach_port_construct";
receive_right_ = new ReceiveRight(name, UseSlowWatchList(policy_));
send_right_.reset(name);
if (initial_state == InitialState::SIGNALED)
Signal();
}
WaitableEvent::~WaitableEvent() = default;
void WaitableEvent::Reset() {
PeekPort(receive_right_->Name(), true);
}
// NO_THREAD_SAFETY_ANALYSIS: Runtime dependent locking.
void WaitableEvent::Signal() NO_THREAD_SAFETY_ANALYSIS {
// If using the slow watch-list, copy the watchers to a local. After
// mach_msg(), the event object may be deleted by an awoken thread.
const bool use_slow_path = UseSlowWatchList(policy_);
ReceiveRight* receive_right = nullptr; // Manually reference counted.
std::unique_ptr<std::list<OnceClosure>> watch_list;
if (use_slow_path) {
// To avoid a race condition of a WaitableEventWatcher getting added
// while another thread is in this method, hold the watch-list lock for
// the duration of mach_msg(). This requires ref-counting the
// |receive_right_| object that contains it, in case the event is deleted
// by a waiting thread after mach_msg().
receive_right = receive_right_.get();
receive_right->AddRef();
ReceiveRight::WatchList* slow_watch_list = receive_right->SlowWatchList();
slow_watch_list->lock.Acquire();
if (!slow_watch_list->list.empty()) {
watch_list = std::make_unique<std::list<OnceClosure>>();
std::swap(*watch_list, slow_watch_list->list);
}
}
mach_msg_empty_send_t msg{};
msg.header.msgh_bits = MACH_MSGH_BITS_REMOTE(MACH_MSG_TYPE_COPY_SEND);
msg.header.msgh_size = sizeof(&msg);
msg.header.msgh_remote_port = send_right_.get();
// If the event is already signaled, this will time out because the queue
// has a length of one.
kern_return_t kr =
mach_msg(&msg.header, MACH_SEND_MSG | MACH_SEND_TIMEOUT, sizeof(msg), 0,
MACH_PORT_NULL, 0, MACH_PORT_NULL);
MACH_CHECK(kr == KERN_SUCCESS || kr == MACH_SEND_TIMED_OUT, kr) << "mach_msg";
if (use_slow_path) {
// If a WaitableEventWatcher were to start watching when the event is
// signaled, it runs the callback immediately without adding it to the
// list. Therefore the watch list can only be non-empty if the event is
// newly signaled.
if (watch_list.get()) {
MACH_CHECK(kr == KERN_SUCCESS, kr);
for (auto& watcher : *watch_list) {
std::move(watcher).Run();
}
}
receive_right->SlowWatchList()->lock.Release();
receive_right->Release();
}
}
bool WaitableEvent::IsSignaled() {
return PeekPort(receive_right_->Name(), policy_ == ResetPolicy::AUTOMATIC);
}
void WaitableEvent::Wait() {
bool result = TimedWait(TimeDelta::Max());
DCHECK(result) << "TimedWait() should never fail with infinite timeout";
}
bool WaitableEvent::TimedWait(const TimeDelta& wait_delta) {
if (wait_delta <= TimeDelta())
return IsSignaled();
// Record the event that this thread is blocking upon (for hang diagnosis) and
// consider blocked for scheduling purposes. Ignore this for non-blocking
// WaitableEvents.
absl::optional<debug::ScopedEventWaitActivity> event_activity;
absl::optional<internal::ScopedBlockingCallWithBaseSyncPrimitives>
scoped_blocking_call;
if (waiting_is_blocking_) {
event_activity.emplace(this);
scoped_blocking_call.emplace(FROM_HERE, BlockingType::MAY_BLOCK);
}
mach_msg_empty_rcv_t msg{};
msg.header.msgh_local_port = receive_right_->Name();
mach_msg_option_t options = MACH_RCV_MSG;
if (!wait_delta.is_max())
options |= MACH_RCV_TIMEOUT | MACH_RCV_INTERRUPT;
mach_msg_size_t rcv_size = sizeof(msg);
if (policy_ == ResetPolicy::MANUAL) {
// To avoid dequeing the message, receive with a size of 0 and set
// MACH_RCV_LARGE to keep the message in the queue.
options |= MACH_RCV_LARGE;
rcv_size = 0;
}
// TimeTicks takes care of overflow but we special case is_max() nonetheless
// to avoid invoking TimeTicksNowIgnoringOverride() unnecessarily (same for
// the increment step of the for loop if the condition variable returns
// early). Ref: https://crbug.com/910524#c7
const TimeTicks end_time =
wait_delta.is_max() ? TimeTicks::Max()
: subtle::TimeTicksNowIgnoringOverride() + wait_delta;
// Fake |kr| value to boostrap the for loop.
kern_return_t kr = MACH_RCV_INTERRUPTED;
for (mach_msg_timeout_t timeout = wait_delta.is_max()
? MACH_MSG_TIMEOUT_NONE
: wait_delta.InMillisecondsRoundedUp();
// If the thread is interrupted during mach_msg(), the system call will
// be restarted. However, the libsyscall wrapper does not adjust the
// timeout by the amount of time already waited. Using MACH_RCV_INTERRUPT
// will instead return from mach_msg(), so that the call can be retried
// with an adjusted timeout.
kr == MACH_RCV_INTERRUPTED;
timeout =
end_time.is_max()
? MACH_MSG_TIMEOUT_NONE
: std::max<int64_t>(
0, (end_time - subtle::TimeTicksNowIgnoringOverride())
.InMillisecondsRoundedUp())) {
kr = mach_msg(&msg.header, options, 0, rcv_size, receive_right_->Name(),
timeout, MACH_PORT_NULL);
}
if (kr == KERN_SUCCESS) {
return true;
} else if (rcv_size == 0 && kr == MACH_RCV_TOO_LARGE) {
return true;
} else {
MACH_CHECK(kr == MACH_RCV_TIMED_OUT, kr) << "mach_msg";
return false;
}
}
// static
bool WaitableEvent::UseSlowWatchList(ResetPolicy policy) {
#if BUILDFLAG(IS_IOS)
const bool use_slow_path = false;
#else
static bool use_slow_path = !mac::IsAtLeastOS10_12();
#endif
return policy == ResetPolicy::MANUAL && use_slow_path;
}
// static
size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables, size_t count) {
DCHECK(count) << "Cannot wait on no events";
internal::ScopedBlockingCallWithBaseSyncPrimitives scoped_blocking_call(
FROM_HERE, BlockingType::MAY_BLOCK);
// Record an event (the first) that this thread is blocking upon.
debug::ScopedEventWaitActivity event_activity(raw_waitables[0]);
// On macOS 10.11+, using Mach port sets may cause system instability, per
// https://crbug.com/756102. On macOS 10.12+, a kqueue can be used
// instead to work around that. On macOS 10.9 and 10.10, kqueue only works
// for port sets, so port sets are just used directly. On macOS 10.11,
// libdispatch sources are used. Therefore, there are three different
// primitives that can be used to implement WaitMany. Which one to use is
// selected at run-time by OS version checks.
enum WaitManyPrimitive {
KQUEUE,
DISPATCH,
PORT_SET,
};
#if BUILDFLAG(IS_IOS)
const WaitManyPrimitive kPrimitive = PORT_SET;
#else
const WaitManyPrimitive kPrimitive =
mac::IsAtLeastOS10_12() ? KQUEUE
: (mac::IsOS10_11() ? DISPATCH : PORT_SET);
#endif
if (kPrimitive == KQUEUE) {
std::vector<kevent64_s> events(count);
for (size_t i = 0; i < count; ++i) {
EV_SET64(&events[i], raw_waitables[i]->receive_right_->Name(),
EVFILT_MACHPORT, EV_ADD, 0, 0, i, 0, 0);
}
std::vector<kevent64_s> out_events(count);
ScopedFD wait_many(kqueue());
PCHECK(wait_many.is_valid()) << "kqueue";
int rv = HANDLE_EINTR(kevent64(wait_many.get(), events.data(), count,
out_events.data(), count, 0, nullptr));
PCHECK(rv > 0) << "kevent64";
size_t triggered = -1;
for (size_t i = 0; i < static_cast<size_t>(rv); ++i) {
// WaitMany should return the lowest index in |raw_waitables| that was
// triggered.
size_t index = static_cast<size_t>(out_events[i].udata);
triggered = std::min(triggered, index);
}
if (raw_waitables[triggered]->policy_ == ResetPolicy::AUTOMATIC) {
// The message needs to be dequeued to reset the event.
PeekPort(raw_waitables[triggered]->receive_right_->Name(), true);
}
return triggered;
} else if (kPrimitive == DISPATCH) {
// Each item in |raw_waitables| will be watched using a dispatch souce
// scheduled on the serial |queue|. The first one to be invoked will
// signal the |semaphore| that this method will wait on.
ScopedDispatchObject<dispatch_queue_t> queue(dispatch_queue_create(
"org.chromium.base.WaitableEvent.WaitMany", DISPATCH_QUEUE_SERIAL));
ScopedDispatchObject<dispatch_semaphore_t> semaphore(
dispatch_semaphore_create(0));
// Block capture references. |signaled| will identify the index in
// |raw_waitables| whose source was invoked.
dispatch_semaphore_t semaphore_ref = semaphore.get();
const size_t kUnsignaled = -1;
__block size_t signaled = kUnsignaled;
// Create a MACH_RECV dispatch source for each event. These must be
// destroyed before the |queue| and |semaphore|.
std::vector<std::unique_ptr<DispatchSourceMach>> sources;
for (size_t i = 0; i < count; ++i) {
const bool auto_reset =
raw_waitables[i]->policy_ == WaitableEvent::ResetPolicy::AUTOMATIC;
// The block will copy a reference to |right|.
scoped_refptr<WaitableEvent::ReceiveRight> right =
raw_waitables[i]->receive_right_;
auto source =
std::make_unique<DispatchSourceMach>(queue, right->Name(), ^{
// After the semaphore is signaled, another event be signaled and
// the source may have its block put on the |queue|. WaitMany
// should only report (and auto-reset) one event, so the first
// event to signal is reported.
if (signaled == kUnsignaled) {
signaled = i;
if (auto_reset) {
PeekPort(right->Name(), true);
}
dispatch_semaphore_signal(semaphore_ref);
}
});
source->Resume();
sources.push_back(std::move(source));
}
dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
DCHECK_NE(signaled, kUnsignaled);
return signaled;
} else {
DCHECK_EQ(kPrimitive, PORT_SET);
kern_return_t kr;
mac::ScopedMachPortSet port_set;
{
mach_port_t name;
kr =
mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_PORT_SET, &name);
MACH_CHECK(kr == KERN_SUCCESS, kr) << "mach_port_allocate";
port_set.reset(name);
}
for (size_t i = 0; i < count; ++i) {
kr = mach_port_insert_member(mach_task_self(),
raw_waitables[i]->receive_right_->Name(),
port_set.get());
MACH_CHECK(kr == KERN_SUCCESS, kr) << "index " << i;
}
mach_msg_empty_rcv_t msg{};
// Wait on the port set. Only specify space enough for the header, to
// identify which port in the set is signaled. Otherwise, receiving from the
// port set may dequeue a message for a manual-reset event object, which
// would cause it to be reset.
kr = mach_msg(&msg.header,
MACH_RCV_MSG | MACH_RCV_LARGE | MACH_RCV_LARGE_IDENTITY, 0,
sizeof(msg.header), port_set.get(), 0, MACH_PORT_NULL);
MACH_CHECK(kr == MACH_RCV_TOO_LARGE, kr) << "mach_msg";
for (size_t i = 0; i < count; ++i) {
WaitableEvent* event = raw_waitables[i];
if (msg.header.msgh_local_port == event->receive_right_->Name()) {
if (event->policy_ == ResetPolicy::AUTOMATIC) {
// The message needs to be dequeued to reset the event.
PeekPort(msg.header.msgh_local_port, true);
}
return i;
}
}
NOTREACHED();
return 0;
}
}
// static
bool WaitableEvent::PeekPort(mach_port_t port, bool dequeue) {
if (dequeue) {
mach_msg_empty_rcv_t msg{};
msg.header.msgh_local_port = port;
kern_return_t kr = mach_msg(&msg.header, MACH_RCV_MSG | MACH_RCV_TIMEOUT, 0,
sizeof(msg), port, 0, MACH_PORT_NULL);
if (kr == KERN_SUCCESS) {
return true;
} else {
MACH_CHECK(kr == MACH_RCV_TIMED_OUT, kr) << "mach_msg";
return false;
}
} else {
mach_port_seqno_t seqno = 0;
mach_msg_size_t size;
mach_msg_id_t id;
mach_msg_trailer_t trailer;
mach_msg_type_number_t trailer_size = sizeof(trailer);
kern_return_t kr = mach_port_peek(
mach_task_self(), port, MACH_RCV_TRAILER_TYPE(MACH_RCV_TRAILER_NULL),
&seqno, &size, &id, reinterpret_cast<mach_msg_trailer_info_t>(&trailer),
&trailer_size);
if (kr == KERN_SUCCESS) {
return true;
} else {
MACH_CHECK(kr == KERN_FAILURE, kr) << "mach_port_peek";
return false;
}
}
}
WaitableEvent::ReceiveRight::ReceiveRight(mach_port_t name,
bool create_slow_watch_list)
: right_(name),
slow_watch_list_(create_slow_watch_list ? new WatchList() : nullptr) {}
WaitableEvent::ReceiveRight::~ReceiveRight() = default;
WaitableEvent::ReceiveRight::WatchList::WatchList() = default;
WaitableEvent::ReceiveRight::WatchList::~WatchList() = default;
} // namespace base