naiveproxy/src/base/logging_unittest.cc
2020-02-05 22:06:49 +08:00

1171 lines
38 KiB
C++

// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <sstream>
#include "base/bind.h"
#include "base/callback.h"
#include "base/compiler_specific.h"
#include "base/files/file_util.h"
#include "base/files/scoped_temp_dir.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/run_loop.h"
#include "base/sanitizer_buildflags.h"
#include "base/strings/string_piece.h"
#include "base/test/scoped_feature_list.h"
#include "base/test/task_environment.h"
#include "build/build_config.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#if defined(OS_POSIX)
#include <signal.h>
#include <unistd.h>
#include "base/posix/eintr_wrapper.h"
#endif // OS_POSIX
#if defined(OS_LINUX) || defined(OS_ANDROID)
#include <ucontext.h>
#endif
#if defined(OS_WIN)
#include <windows.h>
#include <excpt.h>
#endif // OS_WIN
#if defined(OS_FUCHSIA)
#include <fuchsia/logger/cpp/fidl.h>
#include <fuchsia/logger/cpp/fidl_test_base.h>
#include <lib/fidl/cpp/binding.h>
#include <lib/sys/cpp/component_context.h>
#include <lib/zx/channel.h>
#include <lib/zx/event.h>
#include <lib/zx/exception.h>
#include <lib/zx/process.h>
#include <lib/zx/thread.h>
#include <lib/zx/time.h>
#include <zircon/process.h>
#include <zircon/syscalls/debug.h>
#include <zircon/syscalls/exception.h>
#include <zircon/types.h>
#include "base/fuchsia/default_context.h"
#include "base/fuchsia/fuchsia_logging.h"
#endif // OS_FUCHSIA
namespace logging {
namespace {
using ::testing::Return;
using ::testing::_;
// Needs to be global since log assert handlers can't maintain state.
int g_log_sink_call_count = 0;
#if !defined(OFFICIAL_BUILD) || defined(DCHECK_ALWAYS_ON) || !defined(NDEBUG)
void LogSink(const char* file,
int line,
const base::StringPiece message,
const base::StringPiece stack_trace) {
++g_log_sink_call_count;
}
#endif
// Class to make sure any manipulations we do to the min log level are
// contained (i.e., do not affect other unit tests).
class LogStateSaver {
public:
LogStateSaver() : old_min_log_level_(GetMinLogLevel()) {}
~LogStateSaver() {
SetMinLogLevel(old_min_log_level_);
g_log_sink_call_count = 0;
}
private:
int old_min_log_level_;
DISALLOW_COPY_AND_ASSIGN(LogStateSaver);
};
class LoggingTest : public testing::Test {
private:
base::test::SingleThreadTaskEnvironment task_environment_{
base::test::SingleThreadTaskEnvironment::MainThreadType::IO};
LogStateSaver log_state_saver_;
};
class MockLogSource {
public:
MOCK_METHOD0(Log, const char*());
};
class MockLogAssertHandler {
public:
MOCK_METHOD4(
HandleLogAssert,
void(const char*, int, const base::StringPiece, const base::StringPiece));
};
TEST_F(LoggingTest, BasicLogging) {
MockLogSource mock_log_source;
EXPECT_CALL(mock_log_source, Log())
.Times(DCHECK_IS_ON() ? 16 : 8)
.WillRepeatedly(Return("log message"));
SetMinLogLevel(LOG_INFO);
EXPECT_TRUE(LOG_IS_ON(INFO));
EXPECT_EQ(DCHECK_IS_ON(), DLOG_IS_ON(INFO));
EXPECT_TRUE(VLOG_IS_ON(0));
LOG(INFO) << mock_log_source.Log();
LOG_IF(INFO, true) << mock_log_source.Log();
PLOG(INFO) << mock_log_source.Log();
PLOG_IF(INFO, true) << mock_log_source.Log();
VLOG(0) << mock_log_source.Log();
VLOG_IF(0, true) << mock_log_source.Log();
VPLOG(0) << mock_log_source.Log();
VPLOG_IF(0, true) << mock_log_source.Log();
DLOG(INFO) << mock_log_source.Log();
DLOG_IF(INFO, true) << mock_log_source.Log();
DPLOG(INFO) << mock_log_source.Log();
DPLOG_IF(INFO, true) << mock_log_source.Log();
DVLOG(0) << mock_log_source.Log();
DVLOG_IF(0, true) << mock_log_source.Log();
DVPLOG(0) << mock_log_source.Log();
DVPLOG_IF(0, true) << mock_log_source.Log();
}
TEST_F(LoggingTest, LogIsOn) {
#if defined(NDEBUG)
const bool kDfatalIsFatal = false;
#else // defined(NDEBUG)
const bool kDfatalIsFatal = true;
#endif // defined(NDEBUG)
SetMinLogLevel(LOG_INFO);
EXPECT_TRUE(LOG_IS_ON(INFO));
EXPECT_TRUE(LOG_IS_ON(WARNING));
EXPECT_TRUE(LOG_IS_ON(ERROR));
EXPECT_TRUE(LOG_IS_ON(FATAL));
EXPECT_TRUE(LOG_IS_ON(DFATAL));
SetMinLogLevel(LOG_WARNING);
EXPECT_FALSE(LOG_IS_ON(INFO));
EXPECT_TRUE(LOG_IS_ON(WARNING));
EXPECT_TRUE(LOG_IS_ON(ERROR));
EXPECT_TRUE(LOG_IS_ON(FATAL));
EXPECT_TRUE(LOG_IS_ON(DFATAL));
SetMinLogLevel(LOG_ERROR);
EXPECT_FALSE(LOG_IS_ON(INFO));
EXPECT_FALSE(LOG_IS_ON(WARNING));
EXPECT_TRUE(LOG_IS_ON(ERROR));
EXPECT_TRUE(LOG_IS_ON(FATAL));
EXPECT_TRUE(LOG_IS_ON(DFATAL));
// LOG_IS_ON(FATAL) should always be true.
SetMinLogLevel(LOG_FATAL + 1);
EXPECT_FALSE(LOG_IS_ON(INFO));
EXPECT_FALSE(LOG_IS_ON(WARNING));
EXPECT_FALSE(LOG_IS_ON(ERROR));
EXPECT_TRUE(LOG_IS_ON(FATAL));
EXPECT_EQ(kDfatalIsFatal, LOG_IS_ON(DFATAL));
}
TEST_F(LoggingTest, LoggingIsLazyBySeverity) {
MockLogSource mock_log_source;
EXPECT_CALL(mock_log_source, Log()).Times(0);
SetMinLogLevel(LOG_WARNING);
EXPECT_FALSE(LOG_IS_ON(INFO));
EXPECT_FALSE(DLOG_IS_ON(INFO));
EXPECT_FALSE(VLOG_IS_ON(1));
LOG(INFO) << mock_log_source.Log();
LOG_IF(INFO, false) << mock_log_source.Log();
PLOG(INFO) << mock_log_source.Log();
PLOG_IF(INFO, false) << mock_log_source.Log();
VLOG(1) << mock_log_source.Log();
VLOG_IF(1, true) << mock_log_source.Log();
VPLOG(1) << mock_log_source.Log();
VPLOG_IF(1, true) << mock_log_source.Log();
DLOG(INFO) << mock_log_source.Log();
DLOG_IF(INFO, true) << mock_log_source.Log();
DPLOG(INFO) << mock_log_source.Log();
DPLOG_IF(INFO, true) << mock_log_source.Log();
DVLOG(1) << mock_log_source.Log();
DVLOG_IF(1, true) << mock_log_source.Log();
DVPLOG(1) << mock_log_source.Log();
DVPLOG_IF(1, true) << mock_log_source.Log();
}
TEST_F(LoggingTest, LoggingIsLazyByDestination) {
MockLogSource mock_log_source;
MockLogSource mock_log_source_error;
EXPECT_CALL(mock_log_source, Log()).Times(0);
// Severity >= ERROR is always printed to stderr.
EXPECT_CALL(mock_log_source_error, Log()).Times(1).
WillRepeatedly(Return("log message"));
LoggingSettings settings;
settings.logging_dest = LOG_NONE;
InitLogging(settings);
LOG(INFO) << mock_log_source.Log();
LOG(WARNING) << mock_log_source.Log();
LOG(ERROR) << mock_log_source_error.Log();
}
// Check that logging to stderr is gated on LOG_TO_STDERR.
TEST_F(LoggingTest, LogToStdErrFlag) {
LoggingSettings settings;
settings.logging_dest = LOG_NONE;
InitLogging(settings);
MockLogSource mock_log_source;
EXPECT_CALL(mock_log_source, Log()).Times(0);
LOG(INFO) << mock_log_source.Log();
settings.logging_dest = LOG_TO_STDERR;
MockLogSource mock_log_source_stderr;
InitLogging(settings);
EXPECT_CALL(mock_log_source_stderr, Log()).Times(1).WillOnce(Return("foo"));
LOG(INFO) << mock_log_source_stderr.Log();
}
// Check that messages with severity ERROR or higher are always logged to
// stderr if no log-destinations are set, other than LOG_TO_FILE.
// This test is currently only POSIX-compatible.
#if defined(OS_POSIX) || defined(OS_FUCHSIA)
namespace {
void TestForLogToStderr(int log_destinations,
bool* did_log_info,
bool* did_log_error) {
const char kInfoLogMessage[] = "This is an INFO level message";
const char kErrorLogMessage[] = "Here we have a message of level ERROR";
base::ScopedTempDir temp_dir;
ASSERT_TRUE(temp_dir.CreateUniqueTempDir());
// Set up logging.
LoggingSettings settings;
settings.logging_dest = log_destinations;
base::FilePath file_logs_path;
if (log_destinations & LOG_TO_FILE) {
file_logs_path = temp_dir.GetPath().Append("file.log");
settings.log_file_path = file_logs_path.value().c_str();
}
InitLogging(settings);
// Create a file and change stderr to write to that file, to easily check
// contents.
base::FilePath stderr_logs_path = temp_dir.GetPath().Append("stderr.log");
base::File stderr_logs = base::File(
stderr_logs_path,
base::File::FLAG_CREATE | base::File::FLAG_WRITE | base::File::FLAG_READ);
base::ScopedFD stderr_backup = base::ScopedFD(dup(STDERR_FILENO));
int dup_result = dup2(stderr_logs.GetPlatformFile(), STDERR_FILENO);
ASSERT_EQ(dup_result, STDERR_FILENO);
LOG(INFO) << kInfoLogMessage;
LOG(ERROR) << kErrorLogMessage;
// Restore the original stderr logging destination.
dup_result = dup2(stderr_backup.get(), STDERR_FILENO);
ASSERT_EQ(dup_result, STDERR_FILENO);
// Check which of the messages were written to stderr.
std::string written_logs;
ASSERT_TRUE(base::ReadFileToString(stderr_logs_path, &written_logs));
*did_log_info = written_logs.find(kInfoLogMessage) != std::string::npos;
*did_log_error = written_logs.find(kErrorLogMessage) != std::string::npos;
}
} // namespace
TEST_F(LoggingTest, AlwaysLogErrorsToStderr) {
bool did_log_info = false;
bool did_log_error = false;
// When no destinations are specified, ERRORs should still log to stderr.
TestForLogToStderr(LOG_NONE, &did_log_info, &did_log_error);
EXPECT_FALSE(did_log_info);
EXPECT_TRUE(did_log_error);
// Logging only to a file should also log ERRORs to stderr as well.
TestForLogToStderr(LOG_TO_FILE, &did_log_info, &did_log_error);
EXPECT_FALSE(did_log_info);
EXPECT_TRUE(did_log_error);
// ERRORs should not be logged to stderr if any destination besides FILE is
// set.
TestForLogToStderr(LOG_TO_SYSTEM_DEBUG_LOG, &did_log_info, &did_log_error);
EXPECT_FALSE(did_log_info);
EXPECT_FALSE(did_log_error);
// Both ERRORs and INFO should be logged if LOG_TO_STDERR is set.
TestForLogToStderr(LOG_TO_STDERR, &did_log_info, &did_log_error);
EXPECT_TRUE(did_log_info);
EXPECT_TRUE(did_log_error);
}
#endif
#if defined(OS_CHROMEOS)
TEST_F(LoggingTest, InitWithFileDescriptor) {
const char kErrorLogMessage[] = "something bad happened";
// Open a file to pass to the InitLogging.
base::ScopedTempDir temp_dir;
ASSERT_TRUE(temp_dir.CreateUniqueTempDir());
base::FilePath file_log_path = temp_dir.GetPath().Append("file.log");
FILE* log_file = fopen(file_log_path.value().c_str(), "w");
CHECK(log_file);
// Set up logging.
LoggingSettings settings;
settings.logging_dest = LOG_TO_FILE;
settings.log_file = log_file;
InitLogging(settings);
LOG(ERROR) << kErrorLogMessage;
// Check the message was written to the log file.
std::string written_logs;
ASSERT_TRUE(base::ReadFileToString(file_log_path, &written_logs));
ASSERT_NE(written_logs.find(kErrorLogMessage), std::string::npos);
}
TEST_F(LoggingTest, DuplicateLogFile) {
const char kErrorLogMessage1[] = "something really bad happened";
const char kErrorLogMessage2[] = "some other bad thing happened";
base::ScopedTempDir temp_dir;
ASSERT_TRUE(temp_dir.CreateUniqueTempDir());
base::FilePath file_log_path = temp_dir.GetPath().Append("file.log");
// Set up logging.
LoggingSettings settings;
settings.logging_dest = LOG_TO_FILE;
settings.log_file_path = file_log_path.value().c_str();
InitLogging(settings);
LOG(ERROR) << kErrorLogMessage1;
// Duplicate the log FILE, close the original (to make sure we actually
// duplicated it), and write to the duplicate.
FILE* log_file_dup = DuplicateLogFILE();
CHECK(log_file_dup);
CloseLogFile();
fprintf(log_file_dup, "%s\n", kErrorLogMessage2);
fflush(log_file_dup);
// Check the messages were written to the log file.
std::string written_logs;
ASSERT_TRUE(base::ReadFileToString(file_log_path, &written_logs));
ASSERT_NE(written_logs.find(kErrorLogMessage1), std::string::npos);
ASSERT_NE(written_logs.find(kErrorLogMessage2), std::string::npos);
fclose(log_file_dup);
}
#endif // defined(OS_CHROMEOS)
// Official builds have CHECKs directly call BreakDebugger.
#if !defined(OFFICIAL_BUILD)
// https://crbug.com/709067 tracks test flakiness on iOS.
#if defined(OS_IOS)
#define MAYBE_CheckStreamsAreLazy DISABLED_CheckStreamsAreLazy
#else
#define MAYBE_CheckStreamsAreLazy CheckStreamsAreLazy
#endif
TEST_F(LoggingTest, MAYBE_CheckStreamsAreLazy) {
MockLogSource mock_log_source, uncalled_mock_log_source;
EXPECT_CALL(mock_log_source, Log()).Times(8).
WillRepeatedly(Return("check message"));
EXPECT_CALL(uncalled_mock_log_source, Log()).Times(0);
ScopedLogAssertHandler scoped_assert_handler(base::BindRepeating(LogSink));
CHECK(mock_log_source.Log()) << uncalled_mock_log_source.Log();
PCHECK(!mock_log_source.Log()) << mock_log_source.Log();
CHECK_EQ(mock_log_source.Log(), mock_log_source.Log())
<< uncalled_mock_log_source.Log();
CHECK_NE(mock_log_source.Log(), mock_log_source.Log())
<< mock_log_source.Log();
}
#endif
#if defined(OFFICIAL_BUILD) && defined(OS_WIN)
NOINLINE void CheckContainingFunc(int death_location) {
CHECK(death_location != 1);
CHECK(death_location != 2);
CHECK(death_location != 3);
}
int GetCheckExceptionData(EXCEPTION_POINTERS* p, DWORD* code, void** addr) {
*code = p->ExceptionRecord->ExceptionCode;
*addr = p->ExceptionRecord->ExceptionAddress;
return EXCEPTION_EXECUTE_HANDLER;
}
TEST_F(LoggingTest, CheckCausesDistinctBreakpoints) {
DWORD code1 = 0;
DWORD code2 = 0;
DWORD code3 = 0;
void* addr1 = nullptr;
void* addr2 = nullptr;
void* addr3 = nullptr;
// Record the exception code and addresses.
__try {
CheckContainingFunc(1);
} __except (
GetCheckExceptionData(GetExceptionInformation(), &code1, &addr1)) {
}
__try {
CheckContainingFunc(2);
} __except (
GetCheckExceptionData(GetExceptionInformation(), &code2, &addr2)) {
}
__try {
CheckContainingFunc(3);
} __except (
GetCheckExceptionData(GetExceptionInformation(), &code3, &addr3)) {
}
// Ensure that the exception codes are correct (in particular, breakpoints,
// not access violations).
EXPECT_EQ(STATUS_BREAKPOINT, code1);
EXPECT_EQ(STATUS_BREAKPOINT, code2);
EXPECT_EQ(STATUS_BREAKPOINT, code3);
// Ensure that none of the CHECKs are colocated.
EXPECT_NE(addr1, addr2);
EXPECT_NE(addr1, addr3);
EXPECT_NE(addr2, addr3);
}
#elif defined(OS_FUCHSIA)
// CHECK causes a direct crash (without jumping to another function) only in
// official builds. Unfortunately, continuous test coverage on official builds
// is lower. Furthermore, since the Fuchsia implementation uses threads, it is
// not possible to rely on an implementation of CHECK that calls abort(), which
// takes down the whole process, preventing the thread exception handler from
// handling the exception. DO_CHECK here falls back on IMMEDIATE_CRASH() in
// non-official builds, to catch regressions earlier in the CQ.
#if defined(OFFICIAL_BUILD)
#define DO_CHECK CHECK
#else
#define DO_CHECK(cond) \
if (!(cond)) { \
IMMEDIATE_CRASH(); \
}
#endif
struct thread_data_t {
// For signaling the thread ended properly.
zx::event event;
// For catching thread exceptions. Created by the crashing thread.
zx::channel channel;
// Location where the thread is expected to crash.
int death_location;
};
// Indicates the exception channel has been created successfully.
constexpr zx_signals_t kChannelReadySignal = ZX_USER_SIGNAL_0;
// Indicates an error setting up the crash thread.
constexpr zx_signals_t kCrashThreadErrorSignal = ZX_USER_SIGNAL_1;
void* CrashThread(void* arg) {
thread_data_t* data = (thread_data_t*)arg;
int death_location = data->death_location;
// Register the exception handler.
zx_status_t status =
zx::thread::self()->create_exception_channel(0, &data->channel);
if (status != ZX_OK) {
data->event.signal(0, kCrashThreadErrorSignal);
return nullptr;
}
data->event.signal(0, kChannelReadySignal);
DO_CHECK(death_location != 1);
DO_CHECK(death_location != 2);
DO_CHECK(death_location != 3);
// We should never reach this point, signal the thread incorrectly ended
// properly.
data->event.signal(0, kCrashThreadErrorSignal);
return nullptr;
}
// Runs the CrashThread function in a separate thread.
void SpawnCrashThread(int death_location, uintptr_t* child_crash_addr) {
zx::event event;
zx_status_t status = zx::event::create(0, &event);
ASSERT_EQ(status, ZX_OK);
// Run the thread.
thread_data_t thread_data = {std::move(event), zx::channel(), death_location};
pthread_t thread;
int ret = pthread_create(&thread, nullptr, CrashThread, &thread_data);
ASSERT_EQ(ret, 0);
// Wait for the thread to set up its exception channel.
zx_signals_t signals = 0;
status =
thread_data.event.wait_one(kChannelReadySignal | kCrashThreadErrorSignal,
zx::time::infinite(), &signals);
ASSERT_EQ(status, ZX_OK);
ASSERT_EQ(signals, kChannelReadySignal);
// Wait for the exception and read it out of the channel.
status =
thread_data.channel.wait_one(ZX_CHANNEL_READABLE | ZX_CHANNEL_PEER_CLOSED,
zx::time::infinite(), &signals);
ASSERT_EQ(status, ZX_OK);
// Check the thread did crash and not terminate.
ASSERT_FALSE(signals & ZX_CHANNEL_PEER_CLOSED);
zx_exception_info_t exception_info;
zx::exception exception;
status = thread_data.channel.read(
0, &exception_info, exception.reset_and_get_address(),
sizeof(exception_info), 1, nullptr, nullptr);
ASSERT_EQ(status, ZX_OK);
// Get the crash address.
zx::thread zircon_thread;
status = exception.get_thread(&zircon_thread);
ASSERT_EQ(status, ZX_OK);
zx_thread_state_general_regs_t buffer;
status = zircon_thread.read_state(ZX_THREAD_STATE_GENERAL_REGS, &buffer,
sizeof(buffer));
ASSERT_EQ(status, ZX_OK);
#if defined(ARCH_CPU_X86_64)
*child_crash_addr = static_cast<uintptr_t>(buffer.rip);
#elif defined(ARCH_CPU_ARM64)
*child_crash_addr = static_cast<uintptr_t>(buffer.pc);
#else
#error Unsupported architecture
#endif
status = zircon_thread.kill();
ASSERT_EQ(status, ZX_OK);
}
TEST_F(LoggingTest, CheckCausesDistinctBreakpoints) {
uintptr_t child_crash_addr_1 = 0;
uintptr_t child_crash_addr_2 = 0;
uintptr_t child_crash_addr_3 = 0;
SpawnCrashThread(1, &child_crash_addr_1);
SpawnCrashThread(2, &child_crash_addr_2);
SpawnCrashThread(3, &child_crash_addr_3);
ASSERT_NE(0u, child_crash_addr_1);
ASSERT_NE(0u, child_crash_addr_2);
ASSERT_NE(0u, child_crash_addr_3);
ASSERT_NE(child_crash_addr_1, child_crash_addr_2);
ASSERT_NE(child_crash_addr_1, child_crash_addr_3);
ASSERT_NE(child_crash_addr_2, child_crash_addr_3);
}
#elif defined(OS_POSIX) && !defined(OS_NACL) && !defined(OS_IOS) && \
(defined(ARCH_CPU_X86_FAMILY) || defined(ARCH_CPU_ARM_FAMILY))
int g_child_crash_pipe;
void CheckCrashTestSighandler(int, siginfo_t* info, void* context_ptr) {
// Conversely to what clearly stated in "man 2 sigaction", some Linux kernels
// do NOT populate the |info->si_addr| in the case of a SIGTRAP. Hence we
// need the arch-specific boilerplate below, which is inspired by breakpad.
// At the same time, on OSX, ucontext.h is deprecated but si_addr works fine.
uintptr_t crash_addr = 0;
#if defined(OS_MACOSX)
crash_addr = reinterpret_cast<uintptr_t>(info->si_addr);
#else // OS_POSIX && !OS_MACOSX
ucontext_t* context = reinterpret_cast<ucontext_t*>(context_ptr);
#if defined(ARCH_CPU_X86)
crash_addr = static_cast<uintptr_t>(context->uc_mcontext.gregs[REG_EIP]);
#elif defined(ARCH_CPU_X86_64)
crash_addr = static_cast<uintptr_t>(context->uc_mcontext.gregs[REG_RIP]);
#elif defined(ARCH_CPU_ARMEL)
crash_addr = static_cast<uintptr_t>(context->uc_mcontext.arm_pc);
#elif defined(ARCH_CPU_ARM64)
crash_addr = static_cast<uintptr_t>(context->uc_mcontext.pc);
#endif // ARCH_*
#endif // OS_POSIX && !OS_MACOSX
HANDLE_EINTR(write(g_child_crash_pipe, &crash_addr, sizeof(uintptr_t)));
_exit(0);
}
// CHECK causes a direct crash (without jumping to another function) only in
// official builds. Unfortunately, continuous test coverage on official builds
// is lower. DO_CHECK here falls back on a home-brewed implementation in
// non-official builds, to catch regressions earlier in the CQ.
#if defined(OFFICIAL_BUILD)
#define DO_CHECK CHECK
#else
#define DO_CHECK(cond) \
if (!(cond)) \
IMMEDIATE_CRASH()
#endif
void CrashChildMain(int death_location) {
struct sigaction act = {};
act.sa_sigaction = CheckCrashTestSighandler;
act.sa_flags = SA_SIGINFO;
ASSERT_EQ(0, sigaction(SIGTRAP, &act, nullptr));
ASSERT_EQ(0, sigaction(SIGBUS, &act, nullptr));
ASSERT_EQ(0, sigaction(SIGILL, &act, nullptr));
DO_CHECK(death_location != 1);
DO_CHECK(death_location != 2);
printf("\n");
DO_CHECK(death_location != 3);
// Should never reach this point.
const uintptr_t failed = 0;
HANDLE_EINTR(write(g_child_crash_pipe, &failed, sizeof(uintptr_t)));
}
void SpawnChildAndCrash(int death_location, uintptr_t* child_crash_addr) {
int pipefd[2];
ASSERT_EQ(0, pipe(pipefd));
int pid = fork();
ASSERT_GE(pid, 0);
if (pid == 0) { // child process.
close(pipefd[0]); // Close reader (parent) end.
g_child_crash_pipe = pipefd[1];
CrashChildMain(death_location);
FAIL() << "The child process was supposed to crash. It didn't.";
}
close(pipefd[1]); // Close writer (child) end.
DCHECK(child_crash_addr);
int res = HANDLE_EINTR(read(pipefd[0], child_crash_addr, sizeof(uintptr_t)));
ASSERT_EQ(static_cast<int>(sizeof(uintptr_t)), res);
}
TEST_F(LoggingTest, CheckCausesDistinctBreakpoints) {
uintptr_t child_crash_addr_1 = 0;
uintptr_t child_crash_addr_2 = 0;
uintptr_t child_crash_addr_3 = 0;
SpawnChildAndCrash(1, &child_crash_addr_1);
SpawnChildAndCrash(2, &child_crash_addr_2);
SpawnChildAndCrash(3, &child_crash_addr_3);
ASSERT_NE(0u, child_crash_addr_1);
ASSERT_NE(0u, child_crash_addr_2);
ASSERT_NE(0u, child_crash_addr_3);
ASSERT_NE(child_crash_addr_1, child_crash_addr_2);
ASSERT_NE(child_crash_addr_1, child_crash_addr_3);
ASSERT_NE(child_crash_addr_2, child_crash_addr_3);
}
#endif // OS_POSIX
TEST_F(LoggingTest, DebugLoggingReleaseBehavior) {
#if DCHECK_IS_ON()
int debug_only_variable = 1;
#endif
// These should avoid emitting references to |debug_only_variable|
// in release mode.
DLOG_IF(INFO, debug_only_variable) << "test";
DLOG_ASSERT(debug_only_variable) << "test";
DPLOG_IF(INFO, debug_only_variable) << "test";
DVLOG_IF(1, debug_only_variable) << "test";
}
TEST_F(LoggingTest, DcheckStreamsAreLazy) {
MockLogSource mock_log_source;
EXPECT_CALL(mock_log_source, Log()).Times(0);
#if DCHECK_IS_ON()
DCHECK(true) << mock_log_source.Log();
DCHECK_EQ(0, 0) << mock_log_source.Log();
#else
DCHECK(mock_log_source.Log()) << mock_log_source.Log();
DPCHECK(mock_log_source.Log()) << mock_log_source.Log();
DCHECK_EQ(0, 0) << mock_log_source.Log();
DCHECK_EQ(mock_log_source.Log(), static_cast<const char*>(nullptr))
<< mock_log_source.Log();
#endif
}
void DcheckEmptyFunction1() {
// Provide a body so that Release builds do not cause the compiler to
// optimize DcheckEmptyFunction1 and DcheckEmptyFunction2 as a single
// function, which breaks the Dcheck tests below.
LOG(INFO) << "DcheckEmptyFunction1";
}
void DcheckEmptyFunction2() {}
#if defined(DCHECK_IS_CONFIGURABLE)
class ScopedDcheckSeverity {
public:
ScopedDcheckSeverity(LogSeverity new_severity) : old_severity_(LOG_DCHECK) {
LOG_DCHECK = new_severity;
}
~ScopedDcheckSeverity() { LOG_DCHECK = old_severity_; }
private:
LogSeverity old_severity_;
};
#endif // defined(DCHECK_IS_CONFIGURABLE)
// https://crbug.com/709067 tracks test flakiness on iOS.
#if defined(OS_IOS)
#define MAYBE_Dcheck DISABLED_Dcheck
#else
#define MAYBE_Dcheck Dcheck
#endif
TEST_F(LoggingTest, MAYBE_Dcheck) {
#if defined(DCHECK_IS_CONFIGURABLE)
// DCHECKs are enabled, and LOG_DCHECK is mutable, but defaults to non-fatal.
// Set it to LOG_FATAL to get the expected behavior from the rest of this
// test.
ScopedDcheckSeverity dcheck_severity(LOG_FATAL);
#endif // defined(DCHECK_IS_CONFIGURABLE)
#if defined(NDEBUG) && !defined(DCHECK_ALWAYS_ON)
// Release build.
EXPECT_FALSE(DCHECK_IS_ON());
EXPECT_FALSE(DLOG_IS_ON(DCHECK));
#elif defined(NDEBUG) && defined(DCHECK_ALWAYS_ON)
// Release build with real DCHECKS.
ScopedLogAssertHandler scoped_assert_handler(base::BindRepeating(LogSink));
EXPECT_TRUE(DCHECK_IS_ON());
EXPECT_TRUE(DLOG_IS_ON(DCHECK));
#else
// Debug build.
ScopedLogAssertHandler scoped_assert_handler(base::BindRepeating(LogSink));
EXPECT_TRUE(DCHECK_IS_ON());
EXPECT_TRUE(DLOG_IS_ON(DCHECK));
#endif
// DCHECKs are fatal iff they're compiled in DCHECK_IS_ON() and the DCHECK
// log level is set to fatal.
const bool dchecks_are_fatal = DCHECK_IS_ON() && LOG_DCHECK == LOG_FATAL;
EXPECT_EQ(0, g_log_sink_call_count);
DCHECK(false);
EXPECT_EQ(dchecks_are_fatal ? 1 : 0, g_log_sink_call_count);
DPCHECK(false);
EXPECT_EQ(dchecks_are_fatal ? 2 : 0, g_log_sink_call_count);
DCHECK_EQ(0, 1);
EXPECT_EQ(dchecks_are_fatal ? 3 : 0, g_log_sink_call_count);
// Test DCHECK on std::nullptr_t
g_log_sink_call_count = 0;
const void* p_null = nullptr;
const void* p_not_null = &p_null;
DCHECK_EQ(p_null, nullptr);
DCHECK_EQ(nullptr, p_null);
DCHECK_NE(p_not_null, nullptr);
DCHECK_NE(nullptr, p_not_null);
EXPECT_EQ(0, g_log_sink_call_count);
// Test DCHECK on a scoped enum.
enum class Animal { DOG, CAT };
DCHECK_EQ(Animal::DOG, Animal::DOG);
EXPECT_EQ(0, g_log_sink_call_count);
DCHECK_EQ(Animal::DOG, Animal::CAT);
EXPECT_EQ(dchecks_are_fatal ? 1 : 0, g_log_sink_call_count);
// Test DCHECK on functions and function pointers.
g_log_sink_call_count = 0;
struct MemberFunctions {
void MemberFunction1() {
// See the comment in DcheckEmptyFunction1().
LOG(INFO) << "Do not merge with MemberFunction2.";
}
void MemberFunction2() {}
};
void (MemberFunctions::*mp1)() = &MemberFunctions::MemberFunction1;
void (MemberFunctions::*mp2)() = &MemberFunctions::MemberFunction2;
void (*fp1)() = DcheckEmptyFunction1;
void (*fp2)() = DcheckEmptyFunction2;
void (*fp3)() = DcheckEmptyFunction1;
DCHECK_EQ(fp1, fp3);
EXPECT_EQ(0, g_log_sink_call_count);
DCHECK_EQ(mp1, &MemberFunctions::MemberFunction1);
EXPECT_EQ(0, g_log_sink_call_count);
DCHECK_EQ(mp2, &MemberFunctions::MemberFunction2);
EXPECT_EQ(0, g_log_sink_call_count);
DCHECK_EQ(fp1, fp2);
EXPECT_EQ(dchecks_are_fatal ? 1 : 0, g_log_sink_call_count);
DCHECK_EQ(mp2, &MemberFunctions::MemberFunction1);
EXPECT_EQ(dchecks_are_fatal ? 2 : 0, g_log_sink_call_count);
}
TEST_F(LoggingTest, DcheckReleaseBehavior) {
int some_variable = 1;
// These should still reference |some_variable| so we don't get
// unused variable warnings.
DCHECK(some_variable) << "test";
DPCHECK(some_variable) << "test";
DCHECK_EQ(some_variable, 1) << "test";
}
TEST_F(LoggingTest, DCheckEqStatements) {
bool reached = false;
if (false)
DCHECK_EQ(false, true); // Unreached.
else
DCHECK_EQ(true, reached = true); // Reached, passed.
ASSERT_EQ(DCHECK_IS_ON() ? true : false, reached);
if (false)
DCHECK_EQ(false, true); // Unreached.
}
TEST_F(LoggingTest, CheckEqStatements) {
bool reached = false;
if (false)
CHECK_EQ(false, true); // Unreached.
else
CHECK_EQ(true, reached = true); // Reached, passed.
ASSERT_TRUE(reached);
if (false)
CHECK_EQ(false, true); // Unreached.
}
TEST_F(LoggingTest, NestedLogAssertHandlers) {
::testing::InSequence dummy;
::testing::StrictMock<MockLogAssertHandler> handler_a, handler_b;
EXPECT_CALL(
handler_a,
HandleLogAssert(
_, _, base::StringPiece("First assert must be caught by handler_a"),
_));
EXPECT_CALL(
handler_b,
HandleLogAssert(
_, _, base::StringPiece("Second assert must be caught by handler_b"),
_));
EXPECT_CALL(
handler_a,
HandleLogAssert(
_, _,
base::StringPiece("Last assert must be caught by handler_a again"),
_));
logging::ScopedLogAssertHandler scoped_handler_a(base::BindRepeating(
&MockLogAssertHandler::HandleLogAssert, base::Unretained(&handler_a)));
// Using LOG(FATAL) rather than CHECK(false) here since log messages aren't
// preserved for CHECKs in official builds.
LOG(FATAL) << "First assert must be caught by handler_a";
{
logging::ScopedLogAssertHandler scoped_handler_b(base::BindRepeating(
&MockLogAssertHandler::HandleLogAssert, base::Unretained(&handler_b)));
LOG(FATAL) << "Second assert must be caught by handler_b";
}
LOG(FATAL) << "Last assert must be caught by handler_a again";
}
// Test that defining an operator<< for a type in a namespace doesn't prevent
// other code in that namespace from calling the operator<<(ostream, wstring)
// defined by logging.h. This can fail if operator<<(ostream, wstring) can't be
// found by ADL, since defining another operator<< prevents name lookup from
// looking in the global namespace.
namespace nested_test {
class Streamable {};
ALLOW_UNUSED_TYPE std::ostream& operator<<(std::ostream& out,
const Streamable&) {
return out << "Streamable";
}
TEST_F(LoggingTest, StreamingWstringFindsCorrectOperator) {
std::wstring wstr = L"Hello World";
std::ostringstream ostr;
ostr << wstr;
EXPECT_EQ("Hello World", ostr.str());
}
} // namespace nested_test
#if defined(DCHECK_IS_CONFIGURABLE)
TEST_F(LoggingTest, ConfigurableDCheck) {
// Verify that DCHECKs default to non-fatal in configurable-DCHECK builds.
// Note that we require only that DCHECK is non-fatal by default, rather
// than requiring that it be exactly INFO, ERROR, etc level.
EXPECT_LT(LOG_DCHECK, LOG_FATAL);
DCHECK(false);
// Verify that DCHECK* aren't hard-wired to crash on failure.
LOG_DCHECK = LOG_INFO;
DCHECK(false);
DCHECK_EQ(1, 2);
// Verify that DCHECK does crash if LOG_DCHECK is set to LOG_FATAL.
LOG_DCHECK = LOG_FATAL;
::testing::StrictMock<MockLogAssertHandler> handler;
EXPECT_CALL(handler, HandleLogAssert(_, _, _, _)).Times(2);
{
logging::ScopedLogAssertHandler scoped_handler_b(base::BindRepeating(
&MockLogAssertHandler::HandleLogAssert, base::Unretained(&handler)));
DCHECK(false);
DCHECK_EQ(1, 2);
}
}
TEST_F(LoggingTest, ConfigurableDCheckFeature) {
// Initialize FeatureList with and without DcheckIsFatal, and verify the
// value of LOG_DCHECK. Note that we don't require that DCHECK take a
// specific value when the feature is off, only that it is non-fatal.
{
base::test::ScopedFeatureList feature_list;
feature_list.InitFromCommandLine("DcheckIsFatal", "");
EXPECT_EQ(LOG_DCHECK, LOG_FATAL);
}
{
base::test::ScopedFeatureList feature_list;
feature_list.InitFromCommandLine("", "DcheckIsFatal");
EXPECT_LT(LOG_DCHECK, LOG_FATAL);
}
// The default case is last, so we leave LOG_DCHECK in the default state.
{
base::test::ScopedFeatureList feature_list;
feature_list.InitFromCommandLine("", "");
EXPECT_LT(LOG_DCHECK, LOG_FATAL);
}
}
#endif // defined(DCHECK_IS_CONFIGURABLE)
#if defined(OS_FUCHSIA)
class TestLogListener : public fuchsia::logger::testing::LogListener_TestBase {
public:
TestLogListener() = default;
~TestLogListener() override = default;
void RunUntilDone() {
base::RunLoop loop;
dump_logs_done_quit_closure_ = loop.QuitClosure();
loop.Run();
}
bool DidReceiveString(base::StringPiece message,
fuchsia::logger::LogMessage* logged_message) {
for (const auto& log_message : log_messages_) {
if (log_message.msg.find(message.as_string()) != std::string::npos) {
*logged_message = log_message;
return true;
}
}
return false;
}
// LogListener implementation.
void LogMany(std::vector<fuchsia::logger::LogMessage> messages) override {
log_messages_.insert(log_messages_.end(),
std::make_move_iterator(messages.begin()),
std::make_move_iterator(messages.end()));
}
void Done() override { std::move(dump_logs_done_quit_closure_).Run(); }
void NotImplemented_(const std::string& name) override {
NOTIMPLEMENTED() << name;
}
private:
fuchsia::logger::LogListenerPtr log_listener_;
std::vector<fuchsia::logger::LogMessage> log_messages_;
base::OnceClosure dump_logs_done_quit_closure_;
DISALLOW_COPY_AND_ASSIGN(TestLogListener);
};
// Verifies that calling the log macro goes to the Fuchsia system logs.
TEST_F(LoggingTest, FuchsiaSystemLogging) {
const char kLogMessage[] = "system log!";
LOG(ERROR) << kLogMessage;
TestLogListener listener;
fidl::Binding<fuchsia::logger::LogListener> binding(&listener);
fuchsia::logger::LogMessage logged_message;
do {
std::unique_ptr<fuchsia::logger::LogFilterOptions> options =
std::make_unique<fuchsia::logger::LogFilterOptions>();
options->tags = {"base_unittests__exec"};
fuchsia::logger::LogPtr logger =
base::fuchsia::ComponentContextForCurrentProcess()
->svc()
->Connect<fuchsia::logger::Log>();
logger->DumpLogs(binding.NewBinding(), std::move(options));
listener.RunUntilDone();
} while (!listener.DidReceiveString(kLogMessage, &logged_message));
EXPECT_EQ(logged_message.severity,
static_cast<int32_t>(fuchsia::logger::LogLevelFilter::ERROR));
ASSERT_EQ(logged_message.tags.size(), 1u);
EXPECT_EQ(logged_message.tags[0], base::CommandLine::ForCurrentProcess()
->GetProgram()
.BaseName()
.AsUTF8Unsafe());
}
TEST_F(LoggingTest, FuchsiaLogging) {
MockLogSource mock_log_source;
EXPECT_CALL(mock_log_source, Log())
.Times(DCHECK_IS_ON() ? 2 : 1)
.WillRepeatedly(Return("log message"));
SetMinLogLevel(LOG_INFO);
EXPECT_TRUE(LOG_IS_ON(INFO));
EXPECT_EQ(DCHECK_IS_ON(), DLOG_IS_ON(INFO));
ZX_LOG(INFO, ZX_ERR_INTERNAL) << mock_log_source.Log();
ZX_DLOG(INFO, ZX_ERR_INTERNAL) << mock_log_source.Log();
ZX_CHECK(true, ZX_ERR_INTERNAL);
ZX_DCHECK(true, ZX_ERR_INTERNAL);
}
#endif // defined(OS_FUCHSIA)
TEST_F(LoggingTest, LogPrefix) {
// Set up a callback function to capture the log output string.
auto old_log_message_handler = GetLogMessageHandler();
// Use a static because only captureless lambdas can be converted to a
// function pointer for SetLogMessageHandler().
static std::string* log_string_ptr = nullptr;
std::string log_string;
log_string_ptr = &log_string;
SetLogMessageHandler([](int severity, const char* file, int line,
size_t start, const std::string& str) -> bool {
*log_string_ptr = str;
return true;
});
// Logging with a prefix includes the prefix string after the opening '['.
const char kPrefix[] = "prefix";
SetLogPrefix(kPrefix);
LOG(ERROR) << "test"; // Writes into |log_string|.
EXPECT_EQ(1u, log_string.find(kPrefix));
// Logging without a prefix does not include the prefix string.
SetLogPrefix(nullptr);
LOG(ERROR) << "test"; // Writes into |log_string|.
EXPECT_EQ(std::string::npos, log_string.find(kPrefix));
// Clean up.
SetLogMessageHandler(old_log_message_handler);
log_string_ptr = nullptr;
}
#if !defined(ADDRESS_SANITIZER) && !defined(MEMORY_SANITIZER) && \
!BUILDFLAG(IS_HWASAN)
// Since we scan potentially uninitialized portions of the stack, we can't run
// this test under any sanitizer that checks for uninitialized reads.
TEST_F(LoggingTest, LogMessageMarkersOnStack) {
const uint32_t kLogStartMarker = 0xbedead01;
const uint32_t kLogEndMarker = 0x5050dead;
const char kTestMessage[] = "Oh noes! I have crashed! 💩";
uint32_t stack_start = 0;
// Install a LogAssertHandler which will scan between |stack_start| and its
// local-scope stack for the start & end markers, and verify the message.
ScopedLogAssertHandler assert_handler(base::BindRepeating(
[](uint32_t* stack_start_ptr, const char* file, int line,
const base::StringPiece message, const base::StringPiece stack_trace) {
uint32_t stack_end;
uint32_t* stack_end_ptr = &stack_end;
// Scan the stack for the expected markers.
uint32_t* start_marker = nullptr;
uint32_t* end_marker = nullptr;
for (uint32_t* ptr = stack_end_ptr; ptr <= stack_start_ptr; ++ptr) {
if (*ptr == kLogStartMarker)
start_marker = ptr;
else if (*ptr == kLogEndMarker)
end_marker = ptr;
}
// Verify that start & end markers were found, somewhere, in-between
// this and the LogAssertHandler scope, in the LogMessage destructor's
// stack frame.
ASSERT_TRUE(start_marker);
ASSERT_TRUE(end_marker);
// Verify that the |message| is found in-between the markers.
const char* start_char_marker =
reinterpret_cast<char*>(start_marker + 1);
const char* end_char_marker = reinterpret_cast<char*>(end_marker);
const base::StringPiece stack_view(start_char_marker,
end_char_marker - start_char_marker);
ASSERT_FALSE(stack_view.find(message) == base::StringPiece::npos);
},
&stack_start));
// Trigger a log assertion, with a test message we can check for.
LOG(FATAL) << kTestMessage;
}
#endif // !defined(ADDRESS_SANITIZER)
const char* kToStringResult = "to_string";
const char* kOstreamResult = "ostream";
struct StructWithOstream {};
std::ostream& operator<<(std::ostream& out, const StructWithOstream&) {
return out << kOstreamResult;
}
TEST(MakeCheckOpValueStringTest, HasOnlyOstream) {
std::ostringstream oss;
logging::MakeCheckOpValueString(&oss, StructWithOstream());
EXPECT_EQ(kOstreamResult, oss.str());
}
struct StructWithToString {
std::string ToString() const { return kToStringResult; }
};
TEST(MakeCheckOpValueStringTest, HasOnlyToString) {
std::ostringstream oss;
logging::MakeCheckOpValueString(&oss, StructWithToString());
EXPECT_EQ(kToStringResult, oss.str());
}
struct StructWithToStringAndOstream {
std::string ToString() const { return kToStringResult; }
};
std::ostream& operator<<(std::ostream& out,
const StructWithToStringAndOstream&) {
return out << kOstreamResult;
}
TEST(MakeCheckOpValueStringTest, HasOstreamAndToString) {
std::ostringstream oss;
logging::MakeCheckOpValueString(&oss, StructWithToStringAndOstream());
EXPECT_EQ(kOstreamResult, oss.str());
}
} // namespace
} // namespace logging