naiveproxy/net/quic/core/quic_stream.cc
2018-02-02 05:49:39 -05:00

672 lines
22 KiB
C++

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/core/quic_stream.h"
#include "net/quic/core/quic_flow_controller.h"
#include "net/quic/core/quic_session.h"
#include "net/quic/platform/api/quic_bug_tracker.h"
#include "net/quic/platform/api/quic_flag_utils.h"
#include "net/quic/platform/api/quic_flags.h"
#include "net/quic/platform/api/quic_logging.h"
using std::string;
namespace net {
#define ENDPOINT \
(perspective_ == Perspective::IS_SERVER ? "Server: " : "Client: ")
namespace {
struct iovec MakeIovec(QuicStringPiece data) {
struct iovec iov = {const_cast<char*>(data.data()),
static_cast<size_t>(data.size())};
return iov;
}
size_t GetInitialStreamFlowControlWindowToSend(QuicSession* session) {
return session->config()->GetInitialStreamFlowControlWindowToSend();
}
size_t GetReceivedFlowControlWindow(QuicSession* session) {
if (session->config()->HasReceivedInitialStreamFlowControlWindowBytes()) {
return session->config()->ReceivedInitialStreamFlowControlWindowBytes();
}
return kMinimumFlowControlSendWindow;
}
} // namespace
QuicStream::QuicStream(QuicStreamId id, QuicSession* session)
: sequencer_(this, session->connection()->clock()),
id_(id),
session_(session),
stream_bytes_read_(0),
stream_error_(QUIC_STREAM_NO_ERROR),
connection_error_(QUIC_NO_ERROR),
read_side_closed_(false),
write_side_closed_(false),
fin_buffered_(false),
fin_sent_(false),
fin_outstanding_(false),
fin_received_(false),
rst_sent_(false),
rst_received_(false),
perspective_(session_->perspective()),
flow_controller_(session_->connection(),
id_,
perspective_,
GetReceivedFlowControlWindow(session),
GetInitialStreamFlowControlWindowToSend(session),
session_->flow_controller()->auto_tune_receive_window(),
session_->flow_controller()),
connection_flow_controller_(session_->flow_controller()),
stream_contributes_to_connection_flow_control_(true),
busy_counter_(0),
add_random_padding_after_fin_(false),
ack_listener_(nullptr),
send_buffer_(
session->connection()->helper()->GetStreamSendBufferAllocator(),
session->allow_multiple_acks_for_data()),
buffered_data_threshold_(GetQuicFlag(FLAGS_quic_buffered_data_threshold)),
remove_on_stream_frame_discarded_(
FLAGS_quic_reloadable_flag_quic_remove_on_stream_frame_discarded) {
SetFromConfig();
}
QuicStream::~QuicStream() {
if (session_ != nullptr && IsWaitingForAcks()) {
QUIC_DVLOG(1)
<< ENDPOINT << "Stream " << id_
<< " gets destroyed while waiting for acks. stream_bytes_outstanding = "
<< send_buffer_.stream_bytes_outstanding()
<< ", fin_outstanding: " << fin_outstanding_;
}
}
void QuicStream::SetFromConfig() {}
void QuicStream::OnStreamFrame(const QuicStreamFrame& frame) {
DCHECK_EQ(frame.stream_id, id_);
DCHECK(!(read_side_closed_ && write_side_closed_));
if (frame.fin) {
fin_received_ = true;
if (fin_sent_) {
session_->StreamDraining(id_);
}
}
if (read_side_closed_) {
QUIC_DLOG(INFO)
<< ENDPOINT << "Stream " << frame.stream_id
<< " is closed for reading. Ignoring newly received stream data.";
// The subclass does not want to read data: blackhole the data.
return;
}
// This count includes duplicate data received.
size_t frame_payload_size = frame.data_length;
stream_bytes_read_ += frame_payload_size;
// Flow control is interested in tracking highest received offset.
// Only interested in received frames that carry data.
if (frame_payload_size > 0 &&
MaybeIncreaseHighestReceivedOffset(frame.offset + frame_payload_size)) {
// As the highest received offset has changed, check to see if this is a
// violation of flow control.
if (flow_controller_.FlowControlViolation() ||
connection_flow_controller_->FlowControlViolation()) {
CloseConnectionWithDetails(
QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA,
"Flow control violation after increasing offset");
return;
}
}
sequencer_.OnStreamFrame(frame);
}
int QuicStream::num_frames_received() const {
return sequencer_.num_frames_received();
}
int QuicStream::num_duplicate_frames_received() const {
return sequencer_.num_duplicate_frames_received();
}
void QuicStream::OnStreamReset(const QuicRstStreamFrame& frame) {
rst_received_ = true;
MaybeIncreaseHighestReceivedOffset(frame.byte_offset);
if (flow_controller_.FlowControlViolation() ||
connection_flow_controller_->FlowControlViolation()) {
CloseConnectionWithDetails(
QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA,
"Flow control violation after increasing offset");
return;
}
stream_error_ = frame.error_code;
CloseWriteSide();
CloseReadSide();
}
void QuicStream::OnConnectionClosed(QuicErrorCode error,
ConnectionCloseSource /*source*/) {
if (read_side_closed_ && write_side_closed_) {
return;
}
if (error != QUIC_NO_ERROR) {
stream_error_ = QUIC_STREAM_CONNECTION_ERROR;
connection_error_ = error;
}
CloseWriteSide();
CloseReadSide();
}
void QuicStream::OnFinRead() {
DCHECK(sequencer_.IsClosed());
// OnFinRead can be called due to a FIN flag in a headers block, so there may
// have been no OnStreamFrame call with a FIN in the frame.
fin_received_ = true;
// If fin_sent_ is true, then CloseWriteSide has already been called, and the
// stream will be destroyed by CloseReadSide, so don't need to call
// StreamDraining.
CloseReadSide();
}
void QuicStream::Reset(QuicRstStreamErrorCode error) {
stream_error_ = error;
// Sending a RstStream results in calling CloseStream.
session()->SendRstStream(id(), error, stream_bytes_written());
rst_sent_ = true;
}
void QuicStream::CloseConnectionWithDetails(QuicErrorCode error,
const string& details) {
session()->connection()->CloseConnection(
error, details, ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET);
}
void QuicStream::WriteOrBufferData(
QuicStringPiece data,
bool fin,
QuicReferenceCountedPointer<QuicAckListenerInterface> ack_listener) {
if (data.empty() && !fin) {
QUIC_BUG << "data.empty() && !fin";
return;
}
if (fin_buffered_) {
QUIC_BUG << "Fin already buffered";
return;
}
if (write_side_closed_) {
QUIC_DLOG(ERROR) << ENDPOINT
<< "Attempt to write when the write side is closed";
return;
}
QuicConsumedData consumed_data(0, false);
fin_buffered_ = fin;
bool had_buffered_data = HasBufferedData();
// Do not respect buffered data upper limit as WriteOrBufferData guarantees
// all data to be consumed.
if (data.length() > 0) {
struct iovec iov(MakeIovec(data));
QuicStreamOffset offset = send_buffer_.stream_offset();
send_buffer_.SaveStreamData(&iov, 1, 0, data.length());
OnDataBuffered(offset, data.length(), ack_listener);
}
if (!had_buffered_data && (HasBufferedData() || fin_buffered_)) {
// Write data if there is no buffered data before.
WriteBufferedData();
}
}
void QuicStream::OnCanWrite() {
if (write_side_closed_) {
QUIC_DLOG(ERROR) << ENDPOINT << "Stream " << id()
<< "attempting to write when the write side is closed";
return;
}
if (HasBufferedData() || (fin_buffered_ && !fin_sent_)) {
WriteBufferedData();
}
if (!fin_buffered_ && !fin_sent_ && CanWriteNewData()) {
// Notify upper layer to write new data when buffered data size is below
// low water mark.
OnCanWriteNewData();
}
}
void QuicStream::MaybeSendBlocked() {
flow_controller_.MaybeSendBlocked();
if (!stream_contributes_to_connection_flow_control_) {
return;
}
connection_flow_controller_->MaybeSendBlocked();
// If the stream is blocked by connection-level flow control but not by
// stream-level flow control, add the stream to the write blocked list so that
// the stream will be given a chance to write when a connection-level
// WINDOW_UPDATE arrives.
if (connection_flow_controller_->IsBlocked() &&
!flow_controller_.IsBlocked()) {
session_->MarkConnectionLevelWriteBlocked(id());
}
}
QuicConsumedData QuicStream::WritevData(const struct iovec* iov,
int iov_count,
bool fin) {
if (write_side_closed_) {
QUIC_DLOG(ERROR) << ENDPOINT << "Stream " << id()
<< "attempting to write when the write side is closed";
return QuicConsumedData(0, false);
}
// How much data was provided.
size_t write_length = 0;
if (iov != nullptr) {
for (int i = 0; i < iov_count; ++i) {
write_length += iov[i].iov_len;
}
}
QuicConsumedData consumed_data(0, false);
if (fin_buffered_) {
QUIC_BUG << "Fin already buffered";
return consumed_data;
}
bool had_buffered_data = HasBufferedData();
if (CanWriteNewData()) {
// Save all data if buffered data size is below low water mark.
consumed_data.bytes_consumed = write_length;
if (consumed_data.bytes_consumed > 0) {
QuicStreamOffset offset = send_buffer_.stream_offset();
send_buffer_.SaveStreamData(iov, iov_count, 0, write_length);
OnDataBuffered(offset, write_length, nullptr);
}
}
consumed_data.fin_consumed =
consumed_data.bytes_consumed == write_length && fin;
fin_buffered_ = consumed_data.fin_consumed;
if (!had_buffered_data && (HasBufferedData() || fin_buffered_)) {
// Write data if there is no buffered data before.
WriteBufferedData();
}
return consumed_data;
}
QuicConsumedData QuicStream::WriteMemSlices(QuicMemSliceSpan span, bool fin) {
DCHECK(session_->can_use_slices());
QuicConsumedData consumed_data(0, false);
if (span.empty() && !fin) {
QUIC_BUG << "span.empty() && !fin";
return consumed_data;
}
if (fin_buffered_) {
QUIC_BUG << "Fin already buffered";
return consumed_data;
}
if (write_side_closed_) {
QUIC_DLOG(ERROR) << ENDPOINT << "Stream " << id()
<< "attempting to write when the write side is closed";
return consumed_data;
}
bool had_buffered_data = HasBufferedData();
if (CanWriteNewData() || span.empty()) {
consumed_data.fin_consumed = fin;
if (!span.empty()) {
// Buffer all data if buffered data size is below limit.
QuicStreamOffset offset = send_buffer_.stream_offset();
consumed_data.bytes_consumed =
span.SaveMemSlicesInSendBuffer(&send_buffer_);
OnDataBuffered(offset, consumed_data.bytes_consumed, nullptr);
}
}
fin_buffered_ = consumed_data.fin_consumed;
if (!had_buffered_data && (HasBufferedData() || fin_buffered_)) {
// Write data if there is no buffered data before.
WriteBufferedData();
}
return consumed_data;
}
QuicConsumedData QuicStream::WritevDataInner(size_t write_length,
QuicStreamOffset offset,
bool fin) {
StreamSendingState state = fin ? FIN : NO_FIN;
if (fin && add_random_padding_after_fin_) {
state = FIN_AND_PADDING;
}
return session()->WritevData(this, id(), write_length, offset, state);
}
void QuicStream::CloseReadSide() {
if (read_side_closed_) {
return;
}
QUIC_DLOG(INFO) << ENDPOINT << "Done reading from stream " << id();
read_side_closed_ = true;
sequencer_.ReleaseBuffer();
if (write_side_closed_) {
QUIC_DLOG(INFO) << ENDPOINT << "Closing stream " << id();
session_->CloseStream(id());
}
}
void QuicStream::CloseWriteSide() {
if (write_side_closed_) {
return;
}
QUIC_DLOG(INFO) << ENDPOINT << "Done writing to stream " << id();
write_side_closed_ = true;
if (read_side_closed_) {
QUIC_DLOG(INFO) << ENDPOINT << "Closing stream " << id();
session_->CloseStream(id());
}
}
bool QuicStream::HasBufferedData() const {
DCHECK_GE(send_buffer_.stream_offset(), stream_bytes_written());
return send_buffer_.stream_offset() > stream_bytes_written();
}
QuicTransportVersion QuicStream::transport_version() const {
return session_->connection()->transport_version();
}
void QuicStream::StopReading() {
QUIC_DLOG(INFO) << ENDPOINT << "Stop reading from stream " << id();
sequencer_.StopReading();
}
const QuicSocketAddress& QuicStream::PeerAddressOfLatestPacket() const {
return session_->connection()->last_packet_source_address();
}
void QuicStream::OnClose() {
CloseReadSide();
CloseWriteSide();
if (!fin_sent_ && !rst_sent_) {
// For flow control accounting, tell the peer how many bytes have been
// written on this stream before termination. Done here if needed, using a
// RST_STREAM frame.
QUIC_DLOG(INFO) << ENDPOINT << "Sending RST_STREAM in OnClose: " << id();
session_->SendRstStream(id(), QUIC_RST_ACKNOWLEDGEMENT,
stream_bytes_written());
rst_sent_ = true;
}
if (flow_controller_.FlowControlViolation() ||
connection_flow_controller_->FlowControlViolation()) {
return;
}
// The stream is being closed and will not process any further incoming bytes.
// As there may be more bytes in flight, to ensure that both endpoints have
// the same connection level flow control state, mark all unreceived or
// buffered bytes as consumed.
QuicByteCount bytes_to_consume =
flow_controller_.highest_received_byte_offset() -
flow_controller_.bytes_consumed();
AddBytesConsumed(bytes_to_consume);
}
void QuicStream::OnWindowUpdateFrame(const QuicWindowUpdateFrame& frame) {
if (flow_controller_.UpdateSendWindowOffset(frame.byte_offset)) {
// Writing can be done again!
// TODO(rjshade): This does not respect priorities (e.g. multiple
// outstanding POSTs are unblocked on arrival of
// SHLO with initial window).
// As long as the connection is not flow control blocked, write on!
OnCanWrite();
}
}
bool QuicStream::MaybeIncreaseHighestReceivedOffset(
QuicStreamOffset new_offset) {
uint64_t increment =
new_offset - flow_controller_.highest_received_byte_offset();
if (!flow_controller_.UpdateHighestReceivedOffset(new_offset)) {
return false;
}
// If |new_offset| increased the stream flow controller's highest received
// offset, increase the connection flow controller's value by the incremental
// difference.
if (stream_contributes_to_connection_flow_control_) {
connection_flow_controller_->UpdateHighestReceivedOffset(
connection_flow_controller_->highest_received_byte_offset() +
increment);
}
return true;
}
void QuicStream::AddBytesSent(QuicByteCount bytes) {
flow_controller_.AddBytesSent(bytes);
if (stream_contributes_to_connection_flow_control_) {
connection_flow_controller_->AddBytesSent(bytes);
}
}
void QuicStream::AddBytesConsumed(QuicByteCount bytes) {
// Only adjust stream level flow controller if still reading.
if (!read_side_closed_) {
flow_controller_.AddBytesConsumed(bytes);
}
if (stream_contributes_to_connection_flow_control_) {
connection_flow_controller_->AddBytesConsumed(bytes);
}
}
void QuicStream::UpdateSendWindowOffset(QuicStreamOffset new_window) {
if (flow_controller_.UpdateSendWindowOffset(new_window)) {
OnCanWrite();
}
}
void QuicStream::AddRandomPaddingAfterFin() {
add_random_padding_after_fin_ = true;
}
void QuicStream::OnStreamFrameAcked(QuicStreamOffset offset,
QuicByteCount data_length,
bool fin_acked,
QuicTime::Delta ack_delay_time) {
QuicByteCount newly_acked_length = 0;
if (!send_buffer_.OnStreamDataAcked(offset, data_length,
&newly_acked_length)) {
CloseConnectionWithDetails(QUIC_INTERNAL_ERROR,
"Trying to ack unsent data.");
return;
}
if (!fin_sent_ && fin_acked) {
CloseConnectionWithDetails(QUIC_INTERNAL_ERROR,
"Trying to ack unsent fin.");
return;
}
// Indicates whether ack listener's OnPacketAcked should be called.
const bool new_data_acked = !session()->allow_multiple_acks_for_data() ||
newly_acked_length > 0 ||
(fin_acked && fin_outstanding_);
if (fin_acked) {
fin_outstanding_ = false;
}
if (!IsWaitingForAcks()) {
session_->OnStreamDoneWaitingForAcks(id_);
}
if (ack_listener_ != nullptr && new_data_acked) {
ack_listener_->OnPacketAcked(newly_acked_length, ack_delay_time);
}
}
void QuicStream::OnStreamFrameRetransmitted(QuicStreamOffset /*offset*/,
QuicByteCount data_length) {
if (ack_listener_ != nullptr) {
ack_listener_->OnPacketRetransmitted(data_length);
}
}
void QuicStream::OnStreamFrameDiscarded(QuicStreamOffset offset,
QuicByteCount data_length,
bool fin_discarded) {
if (remove_on_stream_frame_discarded_) {
// TODO(fayang): Remove OnStreamFrameDiscarded from StreamNotifierInterface
// when deprecating
// quic_reloadable_flag_quic_remove_on_stream_frame_discarded.
QUIC_FLAG_COUNT_N(
quic_reloadable_flag_quic_remove_on_stream_frame_discarded, 1, 2);
return;
}
QuicByteCount newly_acked_length = 0;
if (!send_buffer_.OnStreamDataAcked(offset, data_length,
&newly_acked_length)) {
CloseConnectionWithDetails(QUIC_INTERNAL_ERROR,
"Trying to discard unsent data.");
return;
}
if (!fin_sent_ && fin_discarded) {
CloseConnectionWithDetails(QUIC_INTERNAL_ERROR,
"Trying to discard unsent fin.");
return;
}
if (fin_discarded) {
fin_outstanding_ = false;
}
if (!IsWaitingForAcks()) {
session_->OnStreamDoneWaitingForAcks(id_);
}
}
bool QuicStream::IsWaitingForAcks() const {
return (!remove_on_stream_frame_discarded_ || !rst_sent_ ||
stream_error_ == QUIC_STREAM_NO_ERROR) &&
(send_buffer_.stream_bytes_outstanding() || fin_outstanding_);
}
bool QuicStream::WriteStreamData(QuicStreamOffset offset,
QuicByteCount data_length,
QuicDataWriter* writer) {
DCHECK_LT(0u, data_length);
return send_buffer_.WriteStreamData(offset, data_length, writer);
}
void QuicStream::WriteBufferedData() {
DCHECK(!write_side_closed_ && (HasBufferedData() || fin_buffered_));
if (session_->ShouldYield(id())) {
session_->MarkConnectionLevelWriteBlocked(id());
return;
}
// Size of buffered data.
size_t write_length = BufferedDataBytes();
// A FIN with zero data payload should not be flow control blocked.
bool fin_with_zero_data = (fin_buffered_ && write_length == 0);
bool fin = fin_buffered_;
// How much data flow control permits to be written.
QuicByteCount send_window = flow_controller_.SendWindowSize();
if (stream_contributes_to_connection_flow_control_) {
send_window =
std::min(send_window, connection_flow_controller_->SendWindowSize());
}
if (send_window == 0 && !fin_with_zero_data) {
// Quick return if nothing can be sent.
MaybeSendBlocked();
return;
}
if (write_length > send_window) {
// Don't send the FIN unless all the data will be sent.
fin = false;
// Writing more data would be a violation of flow control.
write_length = static_cast<size_t>(send_window);
QUIC_DVLOG(1) << "stream " << id() << " shortens write length to "
<< write_length << " due to flow control";
}
QuicConsumedData consumed_data =
WritevDataInner(write_length, stream_bytes_written(), fin);
send_buffer_.OnStreamDataConsumed(consumed_data.bytes_consumed);
AddBytesSent(consumed_data.bytes_consumed);
QUIC_DVLOG(1) << ENDPOINT << "stream " << id_ << " sends "
<< stream_bytes_written() << " bytes "
<< " and has buffered data " << BufferedDataBytes() << " bytes."
<< " fin is sent: " << consumed_data.fin_consumed
<< " fin is buffered: " << fin_buffered_;
// The write may have generated a write error causing this stream to be
// closed. If so, simply return without marking the stream write blocked.
if (write_side_closed_) {
return;
}
if (consumed_data.bytes_consumed == write_length) {
if (!fin_with_zero_data) {
MaybeSendBlocked();
}
if (fin && consumed_data.fin_consumed) {
fin_sent_ = true;
fin_outstanding_ = true;
if (fin_received_) {
session_->StreamDraining(id_);
}
CloseWriteSide();
} else if (fin && !consumed_data.fin_consumed) {
session_->MarkConnectionLevelWriteBlocked(id());
}
} else {
session_->MarkConnectionLevelWriteBlocked(id());
}
if (consumed_data.bytes_consumed > 0 || consumed_data.fin_consumed) {
busy_counter_ = 0;
}
}
uint64_t QuicStream::BufferedDataBytes() const {
DCHECK_GE(send_buffer_.stream_offset(), stream_bytes_written());
return send_buffer_.stream_offset() - stream_bytes_written();
}
bool QuicStream::CanWriteNewData() const {
return BufferedDataBytes() < buffered_data_threshold_;
}
uint64_t QuicStream::stream_bytes_written() const {
return send_buffer_.stream_bytes_written();
}
const QuicIntervalSet<QuicStreamOffset>& QuicStream::bytes_acked() const {
return send_buffer_.bytes_acked();
}
} // namespace net