mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-28 00:06:09 +03:00
500 lines
15 KiB
C++
500 lines
15 KiB
C++
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "base/strings/string_number_conversions.h"
|
|
|
|
#include <ctype.h>
|
|
#include <errno.h>
|
|
#include <stdlib.h>
|
|
#include <wctype.h>
|
|
|
|
#include <limits>
|
|
#include <type_traits>
|
|
|
|
#include "base/logging.h"
|
|
#include "base/numerics/safe_math.h"
|
|
#include "base/scoped_clear_errno.h"
|
|
#include "base/strings/utf_string_conversions.h"
|
|
#include "base/third_party/dmg_fp/dmg_fp.h"
|
|
|
|
namespace base {
|
|
|
|
namespace {
|
|
|
|
template <typename STR, typename INT>
|
|
struct IntToStringT {
|
|
static STR IntToString(INT value) {
|
|
// log10(2) ~= 0.3 bytes needed per bit or per byte log10(2**8) ~= 2.4.
|
|
// So round up to allocate 3 output characters per byte, plus 1 for '-'.
|
|
const size_t kOutputBufSize =
|
|
3 * sizeof(INT) + std::numeric_limits<INT>::is_signed;
|
|
|
|
// Create the string in a temporary buffer, write it back to front, and
|
|
// then return the substr of what we ended up using.
|
|
using CHR = typename STR::value_type;
|
|
CHR outbuf[kOutputBufSize];
|
|
|
|
// The ValueOrDie call below can never fail, because UnsignedAbs is valid
|
|
// for all valid inputs.
|
|
typename std::make_unsigned<INT>::type res =
|
|
CheckedNumeric<INT>(value).UnsignedAbs().ValueOrDie();
|
|
|
|
CHR* end = outbuf + kOutputBufSize;
|
|
CHR* i = end;
|
|
do {
|
|
--i;
|
|
DCHECK(i != outbuf);
|
|
*i = static_cast<CHR>((res % 10) + '0');
|
|
res /= 10;
|
|
} while (res != 0);
|
|
if (IsValueNegative(value)) {
|
|
--i;
|
|
DCHECK(i != outbuf);
|
|
*i = static_cast<CHR>('-');
|
|
}
|
|
return STR(i, end);
|
|
}
|
|
};
|
|
|
|
// Utility to convert a character to a digit in a given base
|
|
template<typename CHAR, int BASE, bool BASE_LTE_10> class BaseCharToDigit {
|
|
};
|
|
|
|
// Faster specialization for bases <= 10
|
|
template<typename CHAR, int BASE> class BaseCharToDigit<CHAR, BASE, true> {
|
|
public:
|
|
static bool Convert(CHAR c, uint8_t* digit) {
|
|
if (c >= '0' && c < '0' + BASE) {
|
|
*digit = static_cast<uint8_t>(c - '0');
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
// Specialization for bases where 10 < base <= 36
|
|
template<typename CHAR, int BASE> class BaseCharToDigit<CHAR, BASE, false> {
|
|
public:
|
|
static bool Convert(CHAR c, uint8_t* digit) {
|
|
if (c >= '0' && c <= '9') {
|
|
*digit = c - '0';
|
|
} else if (c >= 'a' && c < 'a' + BASE - 10) {
|
|
*digit = c - 'a' + 10;
|
|
} else if (c >= 'A' && c < 'A' + BASE - 10) {
|
|
*digit = c - 'A' + 10;
|
|
} else {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
template <int BASE, typename CHAR>
|
|
bool CharToDigit(CHAR c, uint8_t* digit) {
|
|
return BaseCharToDigit<CHAR, BASE, BASE <= 10>::Convert(c, digit);
|
|
}
|
|
|
|
// There is an IsUnicodeWhitespace for wchars defined in string_util.h, but it
|
|
// is locale independent, whereas the functions we are replacing were
|
|
// locale-dependent. TBD what is desired, but for the moment let's not
|
|
// introduce a change in behaviour.
|
|
template<typename CHAR> class WhitespaceHelper {
|
|
};
|
|
|
|
template<> class WhitespaceHelper<char> {
|
|
public:
|
|
static bool Invoke(char c) {
|
|
return 0 != isspace(static_cast<unsigned char>(c));
|
|
}
|
|
};
|
|
|
|
template<> class WhitespaceHelper<char16> {
|
|
public:
|
|
static bool Invoke(char16 c) {
|
|
return 0 != iswspace(c);
|
|
}
|
|
};
|
|
|
|
template<typename CHAR> bool LocalIsWhitespace(CHAR c) {
|
|
return WhitespaceHelper<CHAR>::Invoke(c);
|
|
}
|
|
|
|
// IteratorRangeToNumberTraits should provide:
|
|
// - a typedef for iterator_type, the iterator type used as input.
|
|
// - a typedef for value_type, the target numeric type.
|
|
// - static functions min, max (returning the minimum and maximum permitted
|
|
// values)
|
|
// - constant kBase, the base in which to interpret the input
|
|
template<typename IteratorRangeToNumberTraits>
|
|
class IteratorRangeToNumber {
|
|
public:
|
|
typedef IteratorRangeToNumberTraits traits;
|
|
typedef typename traits::iterator_type const_iterator;
|
|
typedef typename traits::value_type value_type;
|
|
|
|
// Generalized iterator-range-to-number conversion.
|
|
//
|
|
static bool Invoke(const_iterator begin,
|
|
const_iterator end,
|
|
value_type* output) {
|
|
bool valid = true;
|
|
|
|
while (begin != end && LocalIsWhitespace(*begin)) {
|
|
valid = false;
|
|
++begin;
|
|
}
|
|
|
|
if (begin != end && *begin == '-') {
|
|
if (!std::numeric_limits<value_type>::is_signed) {
|
|
*output = 0;
|
|
valid = false;
|
|
} else if (!Negative::Invoke(begin + 1, end, output)) {
|
|
valid = false;
|
|
}
|
|
} else {
|
|
if (begin != end && *begin == '+') {
|
|
++begin;
|
|
}
|
|
if (!Positive::Invoke(begin, end, output)) {
|
|
valid = false;
|
|
}
|
|
}
|
|
|
|
return valid;
|
|
}
|
|
|
|
private:
|
|
// Sign provides:
|
|
// - a static function, CheckBounds, that determines whether the next digit
|
|
// causes an overflow/underflow
|
|
// - a static function, Increment, that appends the next digit appropriately
|
|
// according to the sign of the number being parsed.
|
|
template<typename Sign>
|
|
class Base {
|
|
public:
|
|
static bool Invoke(const_iterator begin, const_iterator end,
|
|
typename traits::value_type* output) {
|
|
*output = 0;
|
|
|
|
if (begin == end) {
|
|
return false;
|
|
}
|
|
|
|
// Note: no performance difference was found when using template
|
|
// specialization to remove this check in bases other than 16
|
|
if (traits::kBase == 16 && end - begin > 2 && *begin == '0' &&
|
|
(*(begin + 1) == 'x' || *(begin + 1) == 'X')) {
|
|
begin += 2;
|
|
}
|
|
|
|
for (const_iterator current = begin; current != end; ++current) {
|
|
uint8_t new_digit = 0;
|
|
|
|
if (!CharToDigit<traits::kBase>(*current, &new_digit)) {
|
|
return false;
|
|
}
|
|
|
|
if (current != begin) {
|
|
if (!Sign::CheckBounds(output, new_digit)) {
|
|
return false;
|
|
}
|
|
*output *= traits::kBase;
|
|
}
|
|
|
|
Sign::Increment(new_digit, output);
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
class Positive : public Base<Positive> {
|
|
public:
|
|
static bool CheckBounds(value_type* output, uint8_t new_digit) {
|
|
if (*output > static_cast<value_type>(traits::max() / traits::kBase) ||
|
|
(*output == static_cast<value_type>(traits::max() / traits::kBase) &&
|
|
new_digit > traits::max() % traits::kBase)) {
|
|
*output = traits::max();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
static void Increment(uint8_t increment, value_type* output) {
|
|
*output += increment;
|
|
}
|
|
};
|
|
|
|
class Negative : public Base<Negative> {
|
|
public:
|
|
static bool CheckBounds(value_type* output, uint8_t new_digit) {
|
|
if (*output < traits::min() / traits::kBase ||
|
|
(*output == traits::min() / traits::kBase &&
|
|
new_digit > 0 - traits::min() % traits::kBase)) {
|
|
*output = traits::min();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
static void Increment(uint8_t increment, value_type* output) {
|
|
*output -= increment;
|
|
}
|
|
};
|
|
};
|
|
|
|
template<typename ITERATOR, typename VALUE, int BASE>
|
|
class BaseIteratorRangeToNumberTraits {
|
|
public:
|
|
typedef ITERATOR iterator_type;
|
|
typedef VALUE value_type;
|
|
static value_type min() {
|
|
return std::numeric_limits<value_type>::min();
|
|
}
|
|
static value_type max() {
|
|
return std::numeric_limits<value_type>::max();
|
|
}
|
|
static const int kBase = BASE;
|
|
};
|
|
|
|
template<typename ITERATOR>
|
|
class BaseHexIteratorRangeToIntTraits
|
|
: public BaseIteratorRangeToNumberTraits<ITERATOR, int, 16> {
|
|
};
|
|
|
|
template <typename ITERATOR>
|
|
class BaseHexIteratorRangeToUIntTraits
|
|
: public BaseIteratorRangeToNumberTraits<ITERATOR, uint32_t, 16> {};
|
|
|
|
template <typename ITERATOR>
|
|
class BaseHexIteratorRangeToInt64Traits
|
|
: public BaseIteratorRangeToNumberTraits<ITERATOR, int64_t, 16> {};
|
|
|
|
template <typename ITERATOR>
|
|
class BaseHexIteratorRangeToUInt64Traits
|
|
: public BaseIteratorRangeToNumberTraits<ITERATOR, uint64_t, 16> {};
|
|
|
|
typedef BaseHexIteratorRangeToIntTraits<StringPiece::const_iterator>
|
|
HexIteratorRangeToIntTraits;
|
|
|
|
typedef BaseHexIteratorRangeToUIntTraits<StringPiece::const_iterator>
|
|
HexIteratorRangeToUIntTraits;
|
|
|
|
typedef BaseHexIteratorRangeToInt64Traits<StringPiece::const_iterator>
|
|
HexIteratorRangeToInt64Traits;
|
|
|
|
typedef BaseHexIteratorRangeToUInt64Traits<StringPiece::const_iterator>
|
|
HexIteratorRangeToUInt64Traits;
|
|
|
|
template <typename STR>
|
|
bool HexStringToBytesT(const STR& input, std::vector<uint8_t>* output) {
|
|
DCHECK_EQ(output->size(), 0u);
|
|
size_t count = input.size();
|
|
if (count == 0 || (count % 2) != 0)
|
|
return false;
|
|
for (uintptr_t i = 0; i < count / 2; ++i) {
|
|
uint8_t msb = 0; // most significant 4 bits
|
|
uint8_t lsb = 0; // least significant 4 bits
|
|
if (!CharToDigit<16>(input[i * 2], &msb) ||
|
|
!CharToDigit<16>(input[i * 2 + 1], &lsb))
|
|
return false;
|
|
output->push_back((msb << 4) | lsb);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename VALUE, int BASE>
|
|
class StringPieceToNumberTraits
|
|
: public BaseIteratorRangeToNumberTraits<StringPiece::const_iterator,
|
|
VALUE,
|
|
BASE> {
|
|
};
|
|
|
|
template <typename VALUE>
|
|
bool StringToIntImpl(const StringPiece& input, VALUE* output) {
|
|
return IteratorRangeToNumber<StringPieceToNumberTraits<VALUE, 10> >::Invoke(
|
|
input.begin(), input.end(), output);
|
|
}
|
|
|
|
template <typename VALUE, int BASE>
|
|
class StringPiece16ToNumberTraits
|
|
: public BaseIteratorRangeToNumberTraits<StringPiece16::const_iterator,
|
|
VALUE,
|
|
BASE> {
|
|
};
|
|
|
|
template <typename VALUE>
|
|
bool String16ToIntImpl(const StringPiece16& input, VALUE* output) {
|
|
return IteratorRangeToNumber<StringPiece16ToNumberTraits<VALUE, 10> >::Invoke(
|
|
input.begin(), input.end(), output);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
std::string NumberToString(int32_t value) {
|
|
return IntToStringT<std::string, int32_t>::IntToString(value);
|
|
}
|
|
|
|
string16 NumberToString16(int32_t value) {
|
|
return IntToStringT<string16, int32_t>::IntToString(value);
|
|
}
|
|
|
|
std::string NumberToString(uint32_t value) {
|
|
return IntToStringT<std::string, uint32_t>::IntToString(value);
|
|
}
|
|
|
|
string16 NumberToString16(uint32_t value) {
|
|
return IntToStringT<string16, uint32_t>::IntToString(value);
|
|
}
|
|
|
|
std::string NumberToString(int64_t value) {
|
|
return IntToStringT<std::string, int64_t>::IntToString(value);
|
|
}
|
|
|
|
string16 NumberToString16(int64_t value) {
|
|
return IntToStringT<string16, int64_t>::IntToString(value);
|
|
}
|
|
|
|
std::string NumberToString(uint64_t value) {
|
|
return IntToStringT<std::string, uint64_t>::IntToString(value);
|
|
}
|
|
|
|
string16 NumberToString16(uint64_t value) {
|
|
return IntToStringT<string16, uint64_t>::IntToString(value);
|
|
}
|
|
|
|
#if defined(OS_MACOSX)
|
|
std::string NumberToString(size_t value) {
|
|
return IntToStringT<std::string, size_t>::IntToString(value);
|
|
}
|
|
|
|
string16 NumberToString16(size_t value) {
|
|
return IntToStringT<string16, size_t>::IntToString(value);
|
|
}
|
|
#endif
|
|
|
|
std::string NumberToString(double value) {
|
|
// According to g_fmt.cc, it is sufficient to declare a buffer of size 32.
|
|
char buffer[32];
|
|
dmg_fp::g_fmt(buffer, value);
|
|
return std::string(buffer);
|
|
}
|
|
|
|
base::string16 NumberToString16(double value) {
|
|
// According to g_fmt.cc, it is sufficient to declare a buffer of size 32.
|
|
char buffer[32];
|
|
dmg_fp::g_fmt(buffer, value);
|
|
|
|
// The number will be ASCII. This creates the string using the "input
|
|
// iterator" variant which promotes from 8-bit to 16-bit via "=".
|
|
return base::string16(&buffer[0], &buffer[strlen(buffer)]);
|
|
}
|
|
|
|
bool StringToInt(const StringPiece& input, int* output) {
|
|
return StringToIntImpl(input, output);
|
|
}
|
|
|
|
bool StringToInt(const StringPiece16& input, int* output) {
|
|
return String16ToIntImpl(input, output);
|
|
}
|
|
|
|
bool StringToUint(const StringPiece& input, unsigned* output) {
|
|
return StringToIntImpl(input, output);
|
|
}
|
|
|
|
bool StringToUint(const StringPiece16& input, unsigned* output) {
|
|
return String16ToIntImpl(input, output);
|
|
}
|
|
|
|
bool StringToInt64(const StringPiece& input, int64_t* output) {
|
|
return StringToIntImpl(input, output);
|
|
}
|
|
|
|
bool StringToInt64(const StringPiece16& input, int64_t* output) {
|
|
return String16ToIntImpl(input, output);
|
|
}
|
|
|
|
bool StringToUint64(const StringPiece& input, uint64_t* output) {
|
|
return StringToIntImpl(input, output);
|
|
}
|
|
|
|
bool StringToUint64(const StringPiece16& input, uint64_t* output) {
|
|
return String16ToIntImpl(input, output);
|
|
}
|
|
|
|
bool StringToSizeT(const StringPiece& input, size_t* output) {
|
|
return StringToIntImpl(input, output);
|
|
}
|
|
|
|
bool StringToSizeT(const StringPiece16& input, size_t* output) {
|
|
return String16ToIntImpl(input, output);
|
|
}
|
|
|
|
bool StringToDouble(const std::string& input, double* output) {
|
|
// Thread-safe? It is on at least Mac, Linux, and Windows.
|
|
ScopedClearErrno clear_errno;
|
|
|
|
char* endptr = nullptr;
|
|
*output = dmg_fp::strtod(input.c_str(), &endptr);
|
|
|
|
// Cases to return false:
|
|
// - If errno is ERANGE, there was an overflow or underflow.
|
|
// - If the input string is empty, there was nothing to parse.
|
|
// - If endptr does not point to the end of the string, there are either
|
|
// characters remaining in the string after a parsed number, or the string
|
|
// does not begin with a parseable number. endptr is compared to the
|
|
// expected end given the string's stated length to correctly catch cases
|
|
// where the string contains embedded NUL characters.
|
|
// - If the first character is a space, there was leading whitespace
|
|
return errno == 0 &&
|
|
!input.empty() &&
|
|
input.c_str() + input.length() == endptr &&
|
|
!isspace(input[0]);
|
|
}
|
|
|
|
// Note: if you need to add String16ToDouble, first ask yourself if it's
|
|
// really necessary. If it is, probably the best implementation here is to
|
|
// convert to 8-bit and then use the 8-bit version.
|
|
|
|
// Note: if you need to add an iterator range version of StringToDouble, first
|
|
// ask yourself if it's really necessary. If it is, probably the best
|
|
// implementation here is to instantiate a string and use the string version.
|
|
|
|
std::string HexEncode(const void* bytes, size_t size) {
|
|
static const char kHexChars[] = "0123456789ABCDEF";
|
|
|
|
// Each input byte creates two output hex characters.
|
|
std::string ret(size * 2, '\0');
|
|
|
|
for (size_t i = 0; i < size; ++i) {
|
|
char b = reinterpret_cast<const char*>(bytes)[i];
|
|
ret[(i * 2)] = kHexChars[(b >> 4) & 0xf];
|
|
ret[(i * 2) + 1] = kHexChars[b & 0xf];
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
bool HexStringToInt(const StringPiece& input, int* output) {
|
|
return IteratorRangeToNumber<HexIteratorRangeToIntTraits>::Invoke(
|
|
input.begin(), input.end(), output);
|
|
}
|
|
|
|
bool HexStringToUInt(const StringPiece& input, uint32_t* output) {
|
|
return IteratorRangeToNumber<HexIteratorRangeToUIntTraits>::Invoke(
|
|
input.begin(), input.end(), output);
|
|
}
|
|
|
|
bool HexStringToInt64(const StringPiece& input, int64_t* output) {
|
|
return IteratorRangeToNumber<HexIteratorRangeToInt64Traits>::Invoke(
|
|
input.begin(), input.end(), output);
|
|
}
|
|
|
|
bool HexStringToUInt64(const StringPiece& input, uint64_t* output) {
|
|
return IteratorRangeToNumber<HexIteratorRangeToUInt64Traits>::Invoke(
|
|
input.begin(), input.end(), output);
|
|
}
|
|
|
|
bool HexStringToBytes(const std::string& input, std::vector<uint8_t>* output) {
|
|
return HexStringToBytesT(input, output);
|
|
}
|
|
|
|
} // namespace base
|