mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-24 06:16:30 +03:00
309 lines
11 KiB
C++
309 lines
11 KiB
C++
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "base/time/time.h"
|
|
|
|
#include <CoreFoundation/CFDate.h>
|
|
#include <CoreFoundation/CFTimeZone.h>
|
|
#include <mach/mach.h>
|
|
#include <mach/mach_time.h>
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/time.h>
|
|
#include <sys/types.h>
|
|
#include <time.h>
|
|
|
|
#include "base/logging.h"
|
|
#include "base/mac/mach_logging.h"
|
|
#include "base/mac/scoped_cftyperef.h"
|
|
#include "base/mac/scoped_mach_port.h"
|
|
#include "base/macros.h"
|
|
#include "base/numerics/safe_conversions.h"
|
|
#include "build/build_config.h"
|
|
|
|
#if defined(OS_IOS)
|
|
#include <time.h>
|
|
#include "base/ios/ios_util.h"
|
|
#endif
|
|
|
|
namespace {
|
|
|
|
#if defined(OS_MACOSX) && !defined(OS_IOS)
|
|
int64_t MachAbsoluteTimeToTicks(uint64_t mach_absolute_time) {
|
|
static mach_timebase_info_data_t timebase_info;
|
|
if (timebase_info.denom == 0) {
|
|
// Zero-initialization of statics guarantees that denom will be 0 before
|
|
// calling mach_timebase_info. mach_timebase_info will never set denom to
|
|
// 0 as that would be invalid, so the zero-check can be used to determine
|
|
// whether mach_timebase_info has already been called. This is
|
|
// recommended by Apple's QA1398.
|
|
kern_return_t kr = mach_timebase_info(&timebase_info);
|
|
MACH_DCHECK(kr == KERN_SUCCESS, kr) << "mach_timebase_info";
|
|
}
|
|
|
|
// timebase_info converts absolute time tick units into nanoseconds. Convert
|
|
// to microseconds up front to stave off overflows.
|
|
base::CheckedNumeric<uint64_t> result(mach_absolute_time /
|
|
base::Time::kNanosecondsPerMicrosecond);
|
|
result *= timebase_info.numer;
|
|
result /= timebase_info.denom;
|
|
|
|
// Don't bother with the rollover handling that the Windows version does.
|
|
// With numer and denom = 1 (the expected case), the 64-bit absolute time
|
|
// reported in nanoseconds is enough to last nearly 585 years.
|
|
return base::checked_cast<int64_t>(result.ValueOrDie());
|
|
}
|
|
#endif // defined(OS_MACOSX) && !defined(OS_IOS)
|
|
|
|
// Returns monotonically growing number of ticks in microseconds since some
|
|
// unspecified starting point.
|
|
int64_t ComputeCurrentTicks() {
|
|
#if defined(OS_IOS)
|
|
// iOS 10 supports clock_gettime(CLOCK_MONOTONIC, ...), which is
|
|
// around 15 times faster than sysctl() call. Use it if possible;
|
|
// otherwise, fall back to sysctl().
|
|
if (__builtin_available(iOS 10, *)) {
|
|
struct timespec tp;
|
|
if (clock_gettime(CLOCK_MONOTONIC, &tp) == 0) {
|
|
return (int64_t)tp.tv_sec * 1000000 + tp.tv_nsec / 1000;
|
|
}
|
|
}
|
|
|
|
// On iOS mach_absolute_time stops while the device is sleeping. Instead use
|
|
// now - KERN_BOOTTIME to get a time difference that is not impacted by clock
|
|
// changes. KERN_BOOTTIME will be updated by the system whenever the system
|
|
// clock change.
|
|
struct timeval boottime;
|
|
int mib[2] = {CTL_KERN, KERN_BOOTTIME};
|
|
size_t size = sizeof(boottime);
|
|
int kr = sysctl(mib, arraysize(mib), &boottime, &size, nullptr, 0);
|
|
DCHECK_EQ(KERN_SUCCESS, kr);
|
|
base::TimeDelta time_difference =
|
|
base::Time::Now() - (base::Time::FromTimeT(boottime.tv_sec) +
|
|
base::TimeDelta::FromMicroseconds(boottime.tv_usec));
|
|
return time_difference.InMicroseconds();
|
|
#else
|
|
// mach_absolute_time is it when it comes to ticks on the Mac. Other calls
|
|
// with less precision (such as TickCount) just call through to
|
|
// mach_absolute_time.
|
|
return MachAbsoluteTimeToTicks(mach_absolute_time());
|
|
#endif // defined(OS_IOS)
|
|
}
|
|
|
|
int64_t ComputeThreadTicks() {
|
|
#if defined(OS_IOS)
|
|
NOTREACHED();
|
|
return 0;
|
|
#else
|
|
base::mac::ScopedMachSendRight thread(mach_thread_self());
|
|
mach_msg_type_number_t thread_info_count = THREAD_BASIC_INFO_COUNT;
|
|
thread_basic_info_data_t thread_info_data;
|
|
|
|
if (thread.get() == MACH_PORT_NULL) {
|
|
DLOG(ERROR) << "Failed to get mach_thread_self()";
|
|
return 0;
|
|
}
|
|
|
|
kern_return_t kr = thread_info(
|
|
thread.get(),
|
|
THREAD_BASIC_INFO,
|
|
reinterpret_cast<thread_info_t>(&thread_info_data),
|
|
&thread_info_count);
|
|
MACH_DCHECK(kr == KERN_SUCCESS, kr) << "thread_info";
|
|
|
|
base::CheckedNumeric<int64_t> absolute_micros(
|
|
thread_info_data.user_time.seconds +
|
|
thread_info_data.system_time.seconds);
|
|
absolute_micros *= base::Time::kMicrosecondsPerSecond;
|
|
absolute_micros += (thread_info_data.user_time.microseconds +
|
|
thread_info_data.system_time.microseconds);
|
|
return absolute_micros.ValueOrDie();
|
|
#endif // defined(OS_IOS)
|
|
}
|
|
|
|
} // namespace
|
|
|
|
namespace base {
|
|
|
|
// The Time routines in this file use Mach and CoreFoundation APIs, since the
|
|
// POSIX definition of time_t in Mac OS X wraps around after 2038--and
|
|
// there are already cookie expiration dates, etc., past that time out in
|
|
// the field. Using CFDate prevents that problem, and using mach_absolute_time
|
|
// for TimeTicks gives us nice high-resolution interval timing.
|
|
|
|
// Time -----------------------------------------------------------------------
|
|
|
|
// static
|
|
Time Time::Now() {
|
|
return FromCFAbsoluteTime(CFAbsoluteTimeGetCurrent());
|
|
}
|
|
|
|
// static
|
|
Time Time::FromCFAbsoluteTime(CFAbsoluteTime t) {
|
|
static_assert(std::numeric_limits<CFAbsoluteTime>::has_infinity,
|
|
"CFAbsoluteTime must have an infinity value");
|
|
if (t == 0)
|
|
return Time(); // Consider 0 as a null Time.
|
|
if (t == std::numeric_limits<CFAbsoluteTime>::infinity())
|
|
return Max();
|
|
return Time(static_cast<int64_t>((t + kCFAbsoluteTimeIntervalSince1970) *
|
|
kMicrosecondsPerSecond) +
|
|
kTimeTToMicrosecondsOffset);
|
|
}
|
|
|
|
CFAbsoluteTime Time::ToCFAbsoluteTime() const {
|
|
static_assert(std::numeric_limits<CFAbsoluteTime>::has_infinity,
|
|
"CFAbsoluteTime must have an infinity value");
|
|
if (is_null())
|
|
return 0; // Consider 0 as a null Time.
|
|
if (is_max())
|
|
return std::numeric_limits<CFAbsoluteTime>::infinity();
|
|
return (static_cast<CFAbsoluteTime>(us_ - kTimeTToMicrosecondsOffset) /
|
|
kMicrosecondsPerSecond) -
|
|
kCFAbsoluteTimeIntervalSince1970;
|
|
}
|
|
|
|
// static
|
|
Time Time::NowFromSystemTime() {
|
|
// Just use Now() because Now() returns the system time.
|
|
return Now();
|
|
}
|
|
|
|
// Note: These implementations of Time::FromExploded() and Time::Explode() are
|
|
// only used on iOS now. Since Mac is now always 64-bit, we can use the POSIX
|
|
// versions of these functions as time_t is not capped at year 2038 on 64-bit
|
|
// builds. The POSIX functions are preferred since they don't suffer from some
|
|
// performance problems that are present in these implementations.
|
|
// See crbug.com/781601 for more details.
|
|
#if defined(OS_IOS)
|
|
// static
|
|
bool Time::FromExploded(bool is_local, const Exploded& exploded, Time* time) {
|
|
base::ScopedCFTypeRef<CFTimeZoneRef> time_zone(
|
|
is_local
|
|
? CFTimeZoneCopySystem()
|
|
: CFTimeZoneCreateWithTimeIntervalFromGMT(kCFAllocatorDefault, 0));
|
|
base::ScopedCFTypeRef<CFCalendarRef> gregorian(CFCalendarCreateWithIdentifier(
|
|
kCFAllocatorDefault, kCFGregorianCalendar));
|
|
CFCalendarSetTimeZone(gregorian, time_zone);
|
|
CFAbsoluteTime absolute_time;
|
|
// 'S' is not defined in componentDesc in Apple documentation, but can be
|
|
// found at http://www.opensource.apple.com/source/CF/CF-855.17/CFCalendar.c
|
|
CFCalendarComposeAbsoluteTime(
|
|
gregorian, &absolute_time, "yMdHmsS", exploded.year, exploded.month,
|
|
exploded.day_of_month, exploded.hour, exploded.minute, exploded.second,
|
|
exploded.millisecond);
|
|
CFAbsoluteTime seconds = absolute_time + kCFAbsoluteTimeIntervalSince1970;
|
|
|
|
// CFAbsolutTime is typedef of double. Convert seconds to
|
|
// microseconds and then cast to int64. If
|
|
// it cannot be suited to int64, then fail to avoid overflows.
|
|
double microseconds =
|
|
(seconds * kMicrosecondsPerSecond) + kTimeTToMicrosecondsOffset;
|
|
if (microseconds > std::numeric_limits<int64_t>::max() ||
|
|
microseconds < std::numeric_limits<int64_t>::min()) {
|
|
*time = Time(0);
|
|
return false;
|
|
}
|
|
|
|
base::Time converted_time = Time(static_cast<int64_t>(microseconds));
|
|
|
|
// If |exploded.day_of_month| is set to 31
|
|
// on a 28-30 day month, it will return the first day of the next month.
|
|
// Thus round-trip the time and compare the initial |exploded| with
|
|
// |utc_to_exploded| time.
|
|
base::Time::Exploded to_exploded;
|
|
if (!is_local)
|
|
converted_time.UTCExplode(&to_exploded);
|
|
else
|
|
converted_time.LocalExplode(&to_exploded);
|
|
|
|
if (ExplodedMostlyEquals(to_exploded, exploded)) {
|
|
*time = converted_time;
|
|
return true;
|
|
}
|
|
|
|
*time = Time(0);
|
|
return false;
|
|
}
|
|
|
|
void Time::Explode(bool is_local, Exploded* exploded) const {
|
|
// Avoid rounding issues, by only putting the integral number of seconds
|
|
// (rounded towards -infinity) into a |CFAbsoluteTime| (which is a |double|).
|
|
int64_t microsecond = us_ % kMicrosecondsPerSecond;
|
|
if (microsecond < 0)
|
|
microsecond += kMicrosecondsPerSecond;
|
|
CFAbsoluteTime seconds = ((us_ - microsecond - kTimeTToMicrosecondsOffset) /
|
|
kMicrosecondsPerSecond) -
|
|
kCFAbsoluteTimeIntervalSince1970;
|
|
|
|
base::ScopedCFTypeRef<CFTimeZoneRef> time_zone(
|
|
is_local
|
|
? CFTimeZoneCopySystem()
|
|
: CFTimeZoneCreateWithTimeIntervalFromGMT(kCFAllocatorDefault, 0));
|
|
base::ScopedCFTypeRef<CFCalendarRef> gregorian(CFCalendarCreateWithIdentifier(
|
|
kCFAllocatorDefault, kCFGregorianCalendar));
|
|
CFCalendarSetTimeZone(gregorian, time_zone);
|
|
int second, day_of_week;
|
|
// 'E' sets the day of week, but is not defined in componentDesc in Apple
|
|
// documentation. It can be found in open source code here:
|
|
// http://www.opensource.apple.com/source/CF/CF-855.17/CFCalendar.c
|
|
CFCalendarDecomposeAbsoluteTime(gregorian, seconds, "yMdHmsE",
|
|
&exploded->year, &exploded->month,
|
|
&exploded->day_of_month, &exploded->hour,
|
|
&exploded->minute, &second, &day_of_week);
|
|
// Make sure seconds are rounded down towards -infinity.
|
|
exploded->second = floor(second);
|
|
// |Exploded|'s convention for day of week is 0 = Sunday, i.e. different
|
|
// from CF's 1 = Sunday.
|
|
exploded->day_of_week = (day_of_week - 1) % 7;
|
|
// Calculate milliseconds ourselves, since we rounded the |seconds|, making
|
|
// sure to round towards -infinity.
|
|
exploded->millisecond =
|
|
(microsecond >= 0) ? microsecond / kMicrosecondsPerMillisecond :
|
|
(microsecond - kMicrosecondsPerMillisecond + 1) /
|
|
kMicrosecondsPerMillisecond;
|
|
}
|
|
#endif // OS_IOS
|
|
|
|
// TimeTicks ------------------------------------------------------------------
|
|
|
|
// static
|
|
TimeTicks TimeTicks::Now() {
|
|
return TimeTicks(ComputeCurrentTicks());
|
|
}
|
|
|
|
// static
|
|
bool TimeTicks::IsHighResolution() {
|
|
return true;
|
|
}
|
|
|
|
// static
|
|
bool TimeTicks::IsConsistentAcrossProcesses() {
|
|
return true;
|
|
}
|
|
|
|
#if defined(OS_MACOSX) && !defined(OS_IOS)
|
|
// static
|
|
TimeTicks TimeTicks::FromMachAbsoluteTime(uint64_t mach_absolute_time) {
|
|
return TimeTicks(MachAbsoluteTimeToTicks(mach_absolute_time));
|
|
}
|
|
#endif // defined(OS_MACOSX) && !defined(OS_IOS)
|
|
|
|
// static
|
|
TimeTicks::Clock TimeTicks::GetClock() {
|
|
#if defined(OS_IOS)
|
|
return Clock::IOS_CF_ABSOLUTE_TIME_MINUS_KERN_BOOTTIME;
|
|
#else
|
|
return Clock::MAC_MACH_ABSOLUTE_TIME;
|
|
#endif // defined(OS_IOS)
|
|
}
|
|
|
|
// static
|
|
ThreadTicks ThreadTicks::Now() {
|
|
return ThreadTicks(ComputeThreadTicks());
|
|
}
|
|
|
|
} // namespace base
|