mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2024-11-28 00:06:09 +03:00
516 lines
17 KiB
C++
516 lines
17 KiB
C++
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "base/process/process_metrics.h"
|
|
|
|
#include <mach/mach.h>
|
|
#include <mach/mach_vm.h>
|
|
#include <mach/shared_region.h>
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include "base/containers/hash_tables.h"
|
|
#include "base/logging.h"
|
|
#include "base/mac/mac_util.h"
|
|
#include "base/mac/mach_logging.h"
|
|
#include "base/mac/scoped_mach_port.h"
|
|
#include "base/memory/ptr_util.h"
|
|
#include "base/numerics/safe_conversions.h"
|
|
#include "base/numerics/safe_math.h"
|
|
|
|
namespace base {
|
|
|
|
namespace {
|
|
|
|
#if !defined(MAC_OS_X_VERSION_10_11) || \
|
|
MAC_OS_X_VERSION_MAX_ALLOWED < MAC_OS_X_VERSION_10_11
|
|
// The |phys_footprint| field was introduced in 10.11.
|
|
struct ChromeTaskVMInfo {
|
|
mach_vm_size_t virtual_size;
|
|
integer_t region_count;
|
|
integer_t page_size;
|
|
mach_vm_size_t resident_size;
|
|
mach_vm_size_t resident_size_peak;
|
|
mach_vm_size_t device;
|
|
mach_vm_size_t device_peak;
|
|
mach_vm_size_t internal;
|
|
mach_vm_size_t internal_peak;
|
|
mach_vm_size_t external;
|
|
mach_vm_size_t external_peak;
|
|
mach_vm_size_t reusable;
|
|
mach_vm_size_t reusable_peak;
|
|
mach_vm_size_t purgeable_volatile_pmap;
|
|
mach_vm_size_t purgeable_volatile_resident;
|
|
mach_vm_size_t purgeable_volatile_virtual;
|
|
mach_vm_size_t compressed;
|
|
mach_vm_size_t compressed_peak;
|
|
mach_vm_size_t compressed_lifetime;
|
|
mach_vm_size_t phys_footprint;
|
|
};
|
|
#else
|
|
using ChromeTaskVMInfo = task_vm_info;
|
|
#endif // MAC_OS_X_VERSION_10_11
|
|
mach_msg_type_number_t ChromeTaskVMInfoCount =
|
|
sizeof(ChromeTaskVMInfo) / sizeof(natural_t);
|
|
|
|
bool GetTaskInfo(mach_port_t task, task_basic_info_64* task_info_data) {
|
|
if (task == MACH_PORT_NULL)
|
|
return false;
|
|
mach_msg_type_number_t count = TASK_BASIC_INFO_64_COUNT;
|
|
kern_return_t kr = task_info(task,
|
|
TASK_BASIC_INFO_64,
|
|
reinterpret_cast<task_info_t>(task_info_data),
|
|
&count);
|
|
// Most likely cause for failure: |task| is a zombie.
|
|
return kr == KERN_SUCCESS;
|
|
}
|
|
|
|
bool GetCPUType(cpu_type_t* cpu_type) {
|
|
size_t len = sizeof(*cpu_type);
|
|
int result = sysctlbyname("sysctl.proc_cputype",
|
|
cpu_type,
|
|
&len,
|
|
NULL,
|
|
0);
|
|
if (result != 0) {
|
|
DPLOG(ERROR) << "sysctlbyname(""sysctl.proc_cputype"")";
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool IsAddressInSharedRegion(mach_vm_address_t addr, cpu_type_t type) {
|
|
if (type == CPU_TYPE_I386) {
|
|
return addr >= SHARED_REGION_BASE_I386 &&
|
|
addr < (SHARED_REGION_BASE_I386 + SHARED_REGION_SIZE_I386);
|
|
} else if (type == CPU_TYPE_X86_64) {
|
|
return addr >= SHARED_REGION_BASE_X86_64 &&
|
|
addr < (SHARED_REGION_BASE_X86_64 + SHARED_REGION_SIZE_X86_64);
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
MachVMRegionResult ParseOutputFromMachVMRegion(kern_return_t kr) {
|
|
if (kr == KERN_INVALID_ADDRESS) {
|
|
// We're at the end of the address space.
|
|
return MachVMRegionResult::Finished;
|
|
} else if (kr != KERN_SUCCESS) {
|
|
return MachVMRegionResult::Error;
|
|
}
|
|
return MachVMRegionResult::Success;
|
|
}
|
|
|
|
bool GetPowerInfo(mach_port_t task, task_power_info* power_info_data) {
|
|
if (task == MACH_PORT_NULL)
|
|
return false;
|
|
|
|
mach_msg_type_number_t power_info_count = TASK_POWER_INFO_COUNT;
|
|
kern_return_t kr = task_info(task, TASK_POWER_INFO,
|
|
reinterpret_cast<task_info_t>(power_info_data),
|
|
&power_info_count);
|
|
// Most likely cause for failure: |task| is a zombie.
|
|
return kr == KERN_SUCCESS;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// Getting a mach task from a pid for another process requires permissions in
|
|
// general, so there doesn't really seem to be a way to do these (and spinning
|
|
// up ps to fetch each stats seems dangerous to put in a base api for anyone to
|
|
// call). Child processes ipc their port, so return something if available,
|
|
// otherwise return 0.
|
|
|
|
// static
|
|
std::unique_ptr<ProcessMetrics> ProcessMetrics::CreateProcessMetrics(
|
|
ProcessHandle process,
|
|
PortProvider* port_provider) {
|
|
return WrapUnique(new ProcessMetrics(process, port_provider));
|
|
}
|
|
|
|
size_t ProcessMetrics::GetPagefileUsage() const {
|
|
task_basic_info_64 task_info_data;
|
|
if (!GetTaskInfo(TaskForPid(process_), &task_info_data))
|
|
return 0;
|
|
return task_info_data.virtual_size;
|
|
}
|
|
|
|
size_t ProcessMetrics::GetPeakPagefileUsage() const {
|
|
return 0;
|
|
}
|
|
|
|
size_t ProcessMetrics::GetWorkingSetSize() const {
|
|
size_t resident_bytes = 0;
|
|
if (!GetMemoryBytes(nullptr, nullptr, &resident_bytes, nullptr))
|
|
return 0;
|
|
return resident_bytes;
|
|
}
|
|
|
|
size_t ProcessMetrics::GetPeakWorkingSetSize() const {
|
|
return 0;
|
|
}
|
|
|
|
bool ProcessMetrics::GetMemoryBytes(size_t* private_bytes,
|
|
size_t* shared_bytes) const {
|
|
return GetMemoryBytes(private_bytes, shared_bytes, nullptr, nullptr);
|
|
}
|
|
|
|
// This is a rough approximation of the algorithm that libtop uses.
|
|
// private_bytes is the size of private resident memory.
|
|
// shared_bytes is the size of shared resident memory.
|
|
bool ProcessMetrics::GetMemoryBytes(size_t* private_bytes,
|
|
size_t* shared_bytes,
|
|
size_t* resident_bytes,
|
|
size_t* locked_bytes) const {
|
|
size_t private_pages_count = 0;
|
|
size_t shared_pages_count = 0;
|
|
size_t wired_pages_count = 0;
|
|
|
|
mach_port_t task = TaskForPid(process_);
|
|
if (task == MACH_PORT_NULL) {
|
|
DLOG(ERROR) << "Invalid process";
|
|
return false;
|
|
}
|
|
|
|
cpu_type_t cpu_type;
|
|
if (!GetCPUType(&cpu_type))
|
|
return false;
|
|
|
|
// The same region can be referenced multiple times. To avoid double counting
|
|
// we need to keep track of which regions we've already counted.
|
|
hash_set<int> seen_objects;
|
|
|
|
// We iterate through each VM region in the task's address map. For shared
|
|
// memory we add up all the pages that are marked as shared. Like libtop we
|
|
// try to avoid counting pages that are also referenced by other tasks. Since
|
|
// we don't have access to the VM regions of other tasks the only hint we have
|
|
// is if the address is in the shared region area.
|
|
//
|
|
// Private memory is much simpler. We simply count the pages that are marked
|
|
// as private or copy on write (COW).
|
|
//
|
|
// See libtop_update_vm_regions in
|
|
// http://www.opensource.apple.com/source/top/top-67/libtop.c
|
|
mach_vm_size_t size = 0;
|
|
mach_vm_address_t address = MACH_VM_MIN_ADDRESS;
|
|
while (true) {
|
|
base::CheckedNumeric<mach_vm_address_t> next_address(address);
|
|
next_address += size;
|
|
if (!next_address.IsValid())
|
|
return false;
|
|
address = next_address.ValueOrDie();
|
|
|
|
mach_vm_address_t address_copy = address;
|
|
vm_region_top_info_data_t info;
|
|
MachVMRegionResult result = GetTopInfo(task, &size, &address, &info);
|
|
if (result == MachVMRegionResult::Error)
|
|
return false;
|
|
if (result == MachVMRegionResult::Finished)
|
|
break;
|
|
|
|
vm_region_basic_info_64 basic_info;
|
|
mach_vm_size_t dummy_size = 0;
|
|
result = GetBasicInfo(task, &dummy_size, &address_copy, &basic_info);
|
|
if (result == MachVMRegionResult::Error)
|
|
return false;
|
|
if (result == MachVMRegionResult::Finished)
|
|
break;
|
|
|
|
bool is_wired = basic_info.user_wired_count > 0;
|
|
|
|
if (IsAddressInSharedRegion(address, cpu_type) &&
|
|
info.share_mode != SM_PRIVATE)
|
|
continue;
|
|
|
|
if (info.share_mode == SM_COW && info.ref_count == 1)
|
|
info.share_mode = SM_PRIVATE;
|
|
|
|
switch (info.share_mode) {
|
|
case SM_LARGE_PAGE:
|
|
case SM_PRIVATE:
|
|
private_pages_count += info.private_pages_resident;
|
|
private_pages_count += info.shared_pages_resident;
|
|
break;
|
|
case SM_COW:
|
|
private_pages_count += info.private_pages_resident;
|
|
// Fall through
|
|
case SM_SHARED:
|
|
case SM_PRIVATE_ALIASED:
|
|
case SM_TRUESHARED:
|
|
case SM_SHARED_ALIASED:
|
|
if (seen_objects.count(info.obj_id) == 0) {
|
|
// Only count the first reference to this region.
|
|
seen_objects.insert(info.obj_id);
|
|
shared_pages_count += info.shared_pages_resident;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (is_wired) {
|
|
wired_pages_count +=
|
|
info.private_pages_resident + info.shared_pages_resident;
|
|
}
|
|
}
|
|
|
|
if (private_bytes)
|
|
*private_bytes = private_pages_count * PAGE_SIZE;
|
|
if (shared_bytes)
|
|
*shared_bytes = shared_pages_count * PAGE_SIZE;
|
|
if (resident_bytes)
|
|
*resident_bytes = (private_pages_count + shared_pages_count) * PAGE_SIZE;
|
|
if (locked_bytes)
|
|
*locked_bytes = wired_pages_count * PAGE_SIZE;
|
|
|
|
return true;
|
|
}
|
|
|
|
void ProcessMetrics::GetCommittedKBytes(CommittedKBytes* usage) const {
|
|
WorkingSetKBytes unused;
|
|
if (!GetCommittedAndWorkingSetKBytes(usage, &unused)) {
|
|
*usage = CommittedKBytes();
|
|
}
|
|
}
|
|
|
|
bool ProcessMetrics::GetWorkingSetKBytes(WorkingSetKBytes* ws_usage) const {
|
|
CommittedKBytes unused;
|
|
return GetCommittedAndWorkingSetKBytes(&unused, ws_usage);
|
|
}
|
|
|
|
bool ProcessMetrics::GetCommittedAndWorkingSetKBytes(
|
|
CommittedKBytes* usage,
|
|
WorkingSetKBytes* ws_usage) const {
|
|
task_basic_info_64 task_info_data;
|
|
if (!GetTaskInfo(TaskForPid(process_), &task_info_data))
|
|
return false;
|
|
|
|
usage->priv = task_info_data.virtual_size / 1024;
|
|
usage->mapped = 0;
|
|
usage->image = 0;
|
|
|
|
ws_usage->priv = task_info_data.resident_size / 1024;
|
|
ws_usage->shareable = 0;
|
|
ws_usage->shared = 0;
|
|
|
|
return true;
|
|
}
|
|
|
|
ProcessMetrics::TaskVMInfo ProcessMetrics::GetTaskVMInfo() const {
|
|
TaskVMInfo info;
|
|
ChromeTaskVMInfo task_vm_info;
|
|
mach_msg_type_number_t count = ChromeTaskVMInfoCount;
|
|
kern_return_t result =
|
|
task_info(TaskForPid(process_), TASK_VM_INFO,
|
|
reinterpret_cast<task_info_t>(&task_vm_info), &count);
|
|
if (result != KERN_SUCCESS)
|
|
return info;
|
|
|
|
info.internal = task_vm_info.internal;
|
|
info.compressed = task_vm_info.compressed;
|
|
if (count == ChromeTaskVMInfoCount)
|
|
info.phys_footprint = task_vm_info.phys_footprint;
|
|
return info;
|
|
}
|
|
|
|
#define TIME_VALUE_TO_TIMEVAL(a, r) do { \
|
|
(r)->tv_sec = (a)->seconds; \
|
|
(r)->tv_usec = (a)->microseconds; \
|
|
} while (0)
|
|
|
|
double ProcessMetrics::GetPlatformIndependentCPUUsage() {
|
|
mach_port_t task = TaskForPid(process_);
|
|
if (task == MACH_PORT_NULL)
|
|
return 0;
|
|
|
|
// Libtop explicitly loops over the threads (libtop_pinfo_update_cpu_usage()
|
|
// in libtop.c), but this is more concise and gives the same results:
|
|
task_thread_times_info thread_info_data;
|
|
mach_msg_type_number_t thread_info_count = TASK_THREAD_TIMES_INFO_COUNT;
|
|
kern_return_t kr = task_info(task,
|
|
TASK_THREAD_TIMES_INFO,
|
|
reinterpret_cast<task_info_t>(&thread_info_data),
|
|
&thread_info_count);
|
|
if (kr != KERN_SUCCESS) {
|
|
// Most likely cause: |task| is a zombie.
|
|
return 0;
|
|
}
|
|
|
|
task_basic_info_64 task_info_data;
|
|
if (!GetTaskInfo(task, &task_info_data))
|
|
return 0;
|
|
|
|
/* Set total_time. */
|
|
// thread info contains live time...
|
|
struct timeval user_timeval, system_timeval, task_timeval;
|
|
TIME_VALUE_TO_TIMEVAL(&thread_info_data.user_time, &user_timeval);
|
|
TIME_VALUE_TO_TIMEVAL(&thread_info_data.system_time, &system_timeval);
|
|
timeradd(&user_timeval, &system_timeval, &task_timeval);
|
|
|
|
// ... task info contains terminated time.
|
|
TIME_VALUE_TO_TIMEVAL(&task_info_data.user_time, &user_timeval);
|
|
TIME_VALUE_TO_TIMEVAL(&task_info_data.system_time, &system_timeval);
|
|
timeradd(&user_timeval, &task_timeval, &task_timeval);
|
|
timeradd(&system_timeval, &task_timeval, &task_timeval);
|
|
|
|
TimeTicks time = TimeTicks::Now();
|
|
int64_t task_time = TimeValToMicroseconds(task_timeval);
|
|
|
|
if (last_system_time_ == 0) {
|
|
// First call, just set the last values.
|
|
last_cpu_time_ = time;
|
|
last_system_time_ = task_time;
|
|
return 0;
|
|
}
|
|
|
|
int64_t system_time_delta = task_time - last_system_time_;
|
|
int64_t time_delta = (time - last_cpu_time_).InMicroseconds();
|
|
DCHECK_NE(0U, time_delta);
|
|
if (time_delta == 0)
|
|
return 0;
|
|
|
|
last_cpu_time_ = time;
|
|
last_system_time_ = task_time;
|
|
|
|
return static_cast<double>(system_time_delta * 100.0) / time_delta;
|
|
}
|
|
|
|
int ProcessMetrics::GetPackageIdleWakeupsPerSecond() {
|
|
mach_port_t task = TaskForPid(process_);
|
|
task_power_info power_info_data;
|
|
|
|
GetPowerInfo(task, &power_info_data);
|
|
|
|
// The task_power_info struct contains two wakeup counters:
|
|
// task_interrupt_wakeups and task_platform_idle_wakeups.
|
|
// task_interrupt_wakeups is the total number of wakeups generated by the
|
|
// process, and is the number that Activity Monitor reports.
|
|
// task_platform_idle_wakeups is a subset of task_interrupt_wakeups that
|
|
// tallies the number of times the processor was taken out of its low-power
|
|
// idle state to handle a wakeup. task_platform_idle_wakeups therefore result
|
|
// in a greater power increase than the other interrupts which occur while the
|
|
// CPU is already working, and reducing them has a greater overall impact on
|
|
// power usage. See the powermetrics man page for more info.
|
|
return CalculatePackageIdleWakeupsPerSecond(
|
|
power_info_data.task_platform_idle_wakeups);
|
|
}
|
|
|
|
int ProcessMetrics::GetIdleWakeupsPerSecond() {
|
|
mach_port_t task = TaskForPid(process_);
|
|
task_power_info power_info_data;
|
|
|
|
GetPowerInfo(task, &power_info_data);
|
|
|
|
return CalculateIdleWakeupsPerSecond(power_info_data.task_interrupt_wakeups);
|
|
}
|
|
|
|
bool ProcessMetrics::GetIOCounters(IoCounters* io_counters) const {
|
|
return false;
|
|
}
|
|
|
|
ProcessMetrics::ProcessMetrics(ProcessHandle process,
|
|
PortProvider* port_provider)
|
|
: process_(process),
|
|
last_system_time_(0),
|
|
last_absolute_idle_wakeups_(0),
|
|
last_absolute_package_idle_wakeups_(0),
|
|
port_provider_(port_provider) {}
|
|
|
|
mach_port_t ProcessMetrics::TaskForPid(ProcessHandle process) const {
|
|
mach_port_t task = MACH_PORT_NULL;
|
|
if (port_provider_)
|
|
task = port_provider_->TaskForPid(process_);
|
|
if (task == MACH_PORT_NULL && process_ == getpid())
|
|
task = mach_task_self();
|
|
return task;
|
|
}
|
|
|
|
// Bytes committed by the system.
|
|
size_t GetSystemCommitCharge() {
|
|
base::mac::ScopedMachSendRight host(mach_host_self());
|
|
mach_msg_type_number_t count = HOST_VM_INFO_COUNT;
|
|
vm_statistics_data_t data;
|
|
kern_return_t kr = host_statistics(host.get(), HOST_VM_INFO,
|
|
reinterpret_cast<host_info_t>(&data),
|
|
&count);
|
|
if (kr != KERN_SUCCESS) {
|
|
MACH_DLOG(WARNING, kr) << "host_statistics";
|
|
return 0;
|
|
}
|
|
|
|
return (data.active_count * PAGE_SIZE) / 1024;
|
|
}
|
|
|
|
bool GetSystemMemoryInfo(SystemMemoryInfoKB* meminfo) {
|
|
struct host_basic_info hostinfo;
|
|
mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT;
|
|
base::mac::ScopedMachSendRight host(mach_host_self());
|
|
int result = host_info(host.get(), HOST_BASIC_INFO,
|
|
reinterpret_cast<host_info_t>(&hostinfo), &count);
|
|
if (result != KERN_SUCCESS)
|
|
return false;
|
|
|
|
DCHECK_EQ(HOST_BASIC_INFO_COUNT, count);
|
|
meminfo->total = static_cast<int>(hostinfo.max_mem / 1024);
|
|
|
|
vm_statistics64_data_t vm_info;
|
|
count = HOST_VM_INFO64_COUNT;
|
|
|
|
if (host_statistics64(host.get(), HOST_VM_INFO64,
|
|
reinterpret_cast<host_info64_t>(&vm_info),
|
|
&count) != KERN_SUCCESS) {
|
|
return false;
|
|
}
|
|
DCHECK_EQ(HOST_VM_INFO64_COUNT, count);
|
|
|
|
static_assert(PAGE_SIZE % 1024 == 0, "Invalid page size");
|
|
meminfo->free = saturated_cast<int>(
|
|
PAGE_SIZE / 1024 * (vm_info.free_count - vm_info.speculative_count));
|
|
meminfo->speculative =
|
|
saturated_cast<int>(PAGE_SIZE / 1024 * vm_info.speculative_count);
|
|
meminfo->file_backed =
|
|
saturated_cast<int>(PAGE_SIZE / 1024 * vm_info.external_page_count);
|
|
meminfo->purgeable =
|
|
saturated_cast<int>(PAGE_SIZE / 1024 * vm_info.purgeable_count);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Both |size| and |address| are in-out parameters.
|
|
// |info| is an output parameter, only valid on Success.
|
|
MachVMRegionResult GetTopInfo(mach_port_t task,
|
|
mach_vm_size_t* size,
|
|
mach_vm_address_t* address,
|
|
vm_region_top_info_data_t* info) {
|
|
mach_msg_type_number_t info_count = VM_REGION_TOP_INFO_COUNT;
|
|
mach_port_t object_name;
|
|
kern_return_t kr = mach_vm_region(task, address, size, VM_REGION_TOP_INFO,
|
|
reinterpret_cast<vm_region_info_t>(info),
|
|
&info_count, &object_name);
|
|
// The kernel always returns a null object for VM_REGION_TOP_INFO, but
|
|
// balance it with a deallocate in case this ever changes. See 10.9.2
|
|
// xnu-2422.90.20/osfmk/vm/vm_map.c vm_map_region.
|
|
mach_port_deallocate(task, object_name);
|
|
return ParseOutputFromMachVMRegion(kr);
|
|
}
|
|
|
|
MachVMRegionResult GetBasicInfo(mach_port_t task,
|
|
mach_vm_size_t* size,
|
|
mach_vm_address_t* address,
|
|
vm_region_basic_info_64* info) {
|
|
mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT_64;
|
|
mach_port_t object_name;
|
|
kern_return_t kr = mach_vm_region(
|
|
task, address, size, VM_REGION_BASIC_INFO_64,
|
|
reinterpret_cast<vm_region_info_t>(info), &info_count, &object_name);
|
|
// The kernel always returns a null object for VM_REGION_BASIC_INFO_64, but
|
|
// balance it with a deallocate in case this ever changes. See 10.9.2
|
|
// xnu-2422.90.20/osfmk/vm/vm_map.c vm_map_region.
|
|
mach_port_deallocate(task, object_name);
|
|
return ParseOutputFromMachVMRegion(kr);
|
|
}
|
|
|
|
} // namespace base
|